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ABSTRACT Let the rectangular matrix A be large and
sparse. Assume that plane rotations are used to decompose A
into RDS where RTR=I, D is diagonal and S is upper
triangular. Both column and row interchanges have to be used in
order to preserve the sparsity of matrix A during the decom-~
position. It is proved that if the column interchanges are fixed,
then the number of non-zero elements in S does not depend on
the row interchanges used. However,this does not mean that the
computational work is also independent of the row interchanges.
Two pivotal strategies, where the same rule is used in the choice
of pivotal columns, are described and compared. It is verified
(by many numerical examples) that if matrix A is not very
sparse, then one of these strategies will often perform better
than the other both with regard to the storage and the computing
time. The accuracy and the robustness of the computations are

also discussed.




1.5tatement of the problem

1 mxn

Let m€EN, ne€m, beR™™ and A €ER be given. Asume

that : (i) m>n, (ii) rank(A)=n, (iii) n is large (say,

n>100) and (iv) A is sparse (i.e. many elements of A are

equal to zero). Consider the decomposition

(1.1) RDS = PAQ + E

nxn

where P e ™™ and Q ER are permutation matrices, EeRr™m

is a perturbation matrix, R € R™*D is such that RTR = IEanxn,

nxn nxn

DER is a diagonal matrix and SER is an upper triangular

matrix.

Denote A1 = A and assume for the moment that the diagonal

matrix D, € g™ is given. The decomposition (1.1) 4is often car-

ried out by the method of plane rotations in n major steps. During

the k'th major step (k=1(1)n) the product D AL (where

Dk e R is diagonal and Ak €lR

mxn .
contains only zero elements

under the diagonal in its first k-1 columns for k>1) is

transformed into D (where ]%ﬁq eR™™  is diagonal and

k+1Ak+1

A € R™*M

K+ 1 contains only zero elements under the diagonal in its

first k columns) by the following algorithm:
(i) Choose the pivotal column J (kfjfn) and interchange

column j and column k 1if j#k. Denote the matrix so found by

(ii) Assume that the k'th column in Ak has sk+1 non-

zero elements on and/or under the diagonal. Then S multiplica~

tions with elementary orthogonal matrices are performed when sk_>0

so that after each multiplication one zero element in the pivotal

column is produced (on or under the diagonal).




(iii) ©Let the i'th TOW (k<i<m) be the only row which con-
tains a non-zero element in the pivotal column after the last multi-

plication with an elementary orthogonal matrix during the major step

k. Interchange row i and row k if i#k.

When the computations in the n'th major step are completed,
the product Dn+1An+1 will be available. It 1is clear that the
first n rows of An+1 form matrix 3 and matrix D from

(1.1) is the upper left (nxn) - submatrix of D osq
Multiplication by an elementary orthogonal matrix is often cal-

led a minor step and is carried out as follows. Consider the k'th

major step again. Assume that (1) wu>*k, v>k, u#v and (ii) a _#0,

vk
avk#O. Then the elementary orthogonal matrix Ouv (which differs
) . . mxm

from the identity matrix IER only by Ouu=ovv=Y and
OUV=—OVU=G with Y2+02=1) is used to transform into zero one of
auk and &k It is readily seen that in fact the multiplication

vy of jd 0 a e . . &
(1.2) u uk un

- d o e e

o v} o v #vk %vn
has to be performed (when n is large and A is sparse many of

the elements of the last matrix in (1.2) are normally zero elements;
therefore some sparse matrix technique, where only the non-zero ele-
ments are stored and used in the arithmetic operations,has to be im-

. . mxm
plemented). In the classical Givens method [12,13] D, =T ER
(k=1(1)n) and the multiplication (1.2) 1is carried out directly,

i.e. the new elements are computed by

. a .= e . ,=- L+ . j = .
(1.3) aUJ e, oaVJ, a oga Ya ., j=k(1)n

This means that 2 multiplications are needed in the com-




putation of each new element. If D =1 (k=1(1)n) is not re-
quired, then the first two matrices in (1.2) can be refactorized,

e.g. in the following way:

Then the multiplication

Q
o
o

vk " " Tvun

is carried out and the new elements are computed by the formulae:
(1.6) a .=a .toa ., a .=Ba .+a ., j=k(1)n.

It is clear that only one multiplication per new element is
needed when (1.6) are used instead of (1.3). The refactoriza-
tion (1.4) is proposed by Gentleman [9] (see also [16,11]1). This is
not the only possible refactorization of the left-hand side of (1.4).
Some other refactorizations are given by Wilkinson [25],-pp.12—13.

In this way Wilkinson has shown that both the classical Givens method
and the Gentleman version can be found as special cases in the gene-

ralized plane rotations with a suitable choice of the matrices D

k
(k=1(1)n). The refactorization (1.4) will be used in this paper.
The following algorithm can be used in the computation of o,

R and Y (see also Lawson et al. [17]1, BjSrck [5] and Zlatev
and Nielsen [301]).

It




2 2 2 2
. >
(1.7) uauk - dvavk
then produce a zero element in row v by
= — _npA2,.2
(1.8) B = avk/auk, o de/du .
If
2 2 2 2
. <
(1.9) uauk vavk
then produce a zero element in row ! by
_ . 2,2
(1.10) o = auk/avk, 8 adu/dv

In both cases

(1.11) v =1/(1—d6)

and the new elements of the diagonal matrix Dk involved in this
minor step are computed by
=2 2.2 -2 2.2
1.12 da = d =
( ) LT Y dj = vy ag
Remark 1.1 It is easily seen that the above algorithm ensures
that the squares of the diagonal elements of Dk (x=1(1)n) are
decreased by a factor 6ki €El3,1) after the i'th minor step
(1=1(1)sk) of major step k
Remark 1.2 If Di (k=1(1)n+1) are stored instead of Dk’




then no square root is needed.

Remark 1.3 If the problem under consideration is not weighted,

2

then D, =1 can be chosen. If the problem is weighted, then D1

1

must have diagonal elements equal to the squares of the weights.

If matrix A is sparse, then a good choice of P and Q
(in other words, a good pivotal strategy) will normally lead to a
considerable reduction in the computing time and the storage needed.
Two pivotal strategies will be considered in this paper. These pi-

votal strategies can be defined as follows.

Definition 1.1 The set

(1.13) ij = {aij / 1=k (1)m}

is called the active part of column J (j=k(1)n) at major step

k (x(1(1)n).
Rule 1 At any major step k (k=1(1)n) the column which
contains a minimal number of non-zero elements in its active part

(or one of these columns if there are several) is chosen as pivotal.

Definition 1.2 The set

(1.1L4) Ry s = {aij / j=k{(1)n}

is called the active part of row i (i=%x(1)m) at major step

k (k=1(1)n).




Definition 1.3 Consider major step k (k=1(1)n). The

number of non-zero elements in row i (i=k(1)m) before minor

step s (s=1(1)s,) will be denoted by r(k,s,i)

k
Rule 2 Consider major step k (k=1(1)n). Choose a row i
for which (1) k<i<m, (2) aik#O and (3) if u is

any row for which k<u<m and auk#o, then r(k,1,i) <r(k,1,u).
Consider any two rows v and T (k <v,t <m, v#i, t#i) with

avk#o and aTk#O. The elements a and are trans-

vk ark

formed into zero by multiplication with the elementary orthogonal

matrices 0., and 0, and, moreover, if r{k,1,v) <r(k,1,t)
then &y will be transformed into zero before a_ . (the multi-
plication with Oiv will be performed before the multiplication

with 0. ).
1T

Rule 3 Consider major step k (k=1(1)n). Before any minor

step s (s=1(1)s, ) choose two rows U and v for which

k

=
A
=
L

<
1A

m, (2) auk#o, avk#o, (3) if T is any row
with k<t<m and aTk#O, then max(r(k,s,u),r(k,s,v))<r(k,s,t).
Produce a zero element in one of these two rows (multiplying by Ouv)
according to the algorithm described by (1.7) = (1.11).

Definition 1.4 The pivotal strategy based on Rule 1 and

Rule 3 will be called Strategy 1 or a variable pivotal row

strategy.

Definition 1.5 The pivotal strategy based on Rule 1 and

Rule 2 will be called Strategy 2 or a fixed pivotal row stra-

tegy.



Strategy 2 has been used by Duff [7], see also [8,21]. Stra-
tegy 1 1is based on ideas suggested by Gentleman [10] and has been
implemented in the sparse code described in [29,30]. A comparison of
these two strategies will be carried out in this paper. The main re-
sults obtained in this comparison are:

A, If Strategy 1 and Strategy 2 are used with the same matrix
Q (i.e. the column interchanges are the same), then the two stra-
tegies produce the same number of non-zero elements in matrix §
However, this does not mean that the computational work for obtaining
the decomposition (1.1) will be the same; see Corollary 2.1 anad
Example 2.1 din Section 2.

B. If matrix A is very sparse and the sparsity is well preserved
during the computbtations, then the two strategies will give similar
results (especially when the number of non-zero elements in the ac-
tive part of the pivotal column is less than L for each k
(k=1(1)n); see Theorem 2.2).

c. If n > 100 and if the matrix is not very sparse, then
Strategy 1 will often give better results than Strategy 2 with re-
gard both to the storage used and the computing time needed; more-
over, Strategy 1 ensures more robust computations; see the nume-

rical results in Section 3.




2. Computations with a fixed matrix @

The following definitions and theorems are needed before the
discussion of the question: what should be expected when the stra-
tegies defined in Section 1 are used with the same column inter-

changes (the same matrix § )%

Definition 2.1 The set

(2.1) B, ={a..€A / k<i<m A k<j<n}

will be called the active part of A (k=1(1)n).

Definition 2.2 The set

(2.2) Ly, = {3/ aij#o Aag €Bk}

will be called the sparsity pattern of the active part of row i

{i=x(1)m) at major step k (k=1(1)n).

Definition 2.3 The set

(2.3) M. ={i/ a..#0 A a..€B._}

will be called the sparsity pattern of the active part of column

3 (ij=k(1)n) at major step k (k=1(1)n).

Definition 2.k The set

(2.4) N, o= {3/ aij#o A a4 €B,. A 1 €Mkk}




will be called the union sparsity pattern of the

active parts of the

rows involved in the computations at major step k (k=1(1)n)
Remark 2.1 It is clear that
(2.5) N, = i%{ L :
kk
Definition 2.5 The set
* = i a . 1 .
(2.6) Nkj {i / aip#O A alue CkJ A 1€MKJ A k<n}

where the submatrix C is defined by

k]

(2.7)

will be called the union sparsity pattern of the rows in matrix ij
which have non-zero elements in the active part of column J
(j=k+1(1)n)

Theorem 2.1 The number of non-zero elements in matrix S
found by plane rotations does not depend on the permutation matrix
P when the permutation matrix Q is kept fixed.

Proof Assume that the multiplication with the fixed matrix
Q has been performed before the beginning of the computations, i.e.
A1=AQ and Akzﬁk (k=1(1)n). It is clear that this assumption

is not a restriction.

Consider the k'th major step (k=

plication with any elementary orthogonal matrix

veMkk)

1(1)n).

After the multi-

0

sy (HEM A

the sparsity patterns of the active parts of the rows in-
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volved in the computations are given by

(2.8) LkuULk\) and (LkuULkv Nk},

where the second sparsity pattern is for the row in which a zero
element in the pivotal column is produced. The expressions (2.8)
show that after the last minor step in the k'th major step the

sparsity patterns of the active parts of the rows involved are given

by

(2.9) u L. =X and ( \J L )Nk} = N Sk}
€M i €M,

It is clear that the expressions in (2.9) do not depend on
the order in which the zero elements are produced.

Consider now the sets Nﬁj (j=k+1(1)n A k<n). These sets
are invariant during the computations at major step k (k=1(1)n-1).
Indeed, new non-zero elements may be produced in some rows i

(i eM but this happens only in the positions where there are

kk)

non-zero elements in one or several of the other rows belonging to

M .
Ik Therefore N

k+1<n).

N and N¥.=N

* = * x . T=k+
k,k+1 “k+1 k] "k+1,] (3=k+2(1)n A

Thus the theorem is proved because: (i) an arbitrary major

step k has been considered, (ii) +the number, N of the non-

k?
zero elements in the k'th row of 8 does not depend on the
order in which the zero elements in the pivotal column k are
produced and (ii1) +the union sparsity pattern of the active
parts of the rows which will be involved in the computations during

the next major step, k+1'st, does not depend on the computations

during the k'th major step.
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The following two results follow immediately from Theorem 2.1.

n
Corollary 2.1 Assume that the same column intercﬂéges have

been used both with Strategy 1 and Strategy 2. Then the number of

non-zero elements in matrix S will be the same for these two

strategies.

Theorem 2.2 Assume that: (i) if at any major step there

are several columns which have a minimal number of non-zeroc elements

in their active parts, then the same column will be chosen as pi-

votal with both Strategy 1 and Strategy 2, (ii) after the column

interchanges the number of elements in Mkk is smaller than 4

for any k (k=1(1)n-1). Then the numbers of non-zero elements

in B found by Strategy 1 and Strategy 2 are the same for all k

k

0

Corollary 2.1 states that if the same matrix Q is used,
then Strategy 1 and Strategy 2 will produce matrices S with the
same number of non-zero elements. This does not mean, however, that
the computational work needed to obtain (1.1) is also the same.

The next example 1llustrates this.

Example 2.1 Consider the (14x8) matrix whose sparsity pat-

tern is given in Fig. 2.1. The decomposition (1.1) has been per-
formed with Q=1 and both BStrategy 1 and Strategy 2 have been
used to determine P (it is readily seen that the use of Q=1
satisfies Rule 1 at each major step). The elementary orthogonal mat-
rices which can be used at each major step are listed in Table 2.1

(the second index always shows the row where a zero element is pro-
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" x 0 0 x 0 0 0]
0 x 0 xx O 0 O
0O 0O0x 000 zx O
000 x 0x 00
0O 000 x 0 x O
0 00 00 x x x
0O 0x 0000 x
x x 0x 00 0 x
0 x 00 0 x 0 x
0 0x 0x 00 x
0 0 x x 0 x 0 x
x 0 0 0 x 0 x x
x 0 0 0 x 0 x x
0 0x 00 x 0O
s -
Fig 2.1

The sparsity pattern of a (14x8) matrix (the non-

zero elements are denoted by x in this figure)

duced). The numbers of minor steps and of fill-ins produced at each
major step are given in Table 2.2. The total results show that even
for this very small (but not very sparse) matrix the number of
minor steps and fill-ins is reduced by about 7% when Strategy 1
is used and when Q is the same for both strategies. Of course,
the numbers of non-zero elements in S are the sanme, 33, for

the two strategies.

Corolary 2.1 and Example 2.1 1indicate that even when the same

matrix Q is used Strategy 1 may be more profitable. One can
expect that for large matrices (n > 100) the reduction in minor
steps and fill-ins will be greater than 7% . However, if the mat-

rix is extremely sparse, then Theorem 2.2 shows that both the sto-
rage and the computing time will be the same for the two strategies

when Q is the same and the sparsity is preserved well. Some ex-
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B Strategy 2 Strategy 1

ki 1 2 3 i 5 6 T 1 21 3 b 5 6 T

1 P1,81%,121%,13 1,8 1%12,13]%1,12

2P2,91%.,8 |%,12%,13 9,0 1%.,8 1%,12

3P3,71%,141%,10 (%3, 11 3,7 193,11 1°3,10]%,11

APy 8l%.9 %4, 11 (04, 12]%,13 %h8 1%,0 %, 11]%,12

> P5.,81%,9 {%5,10(%,111%,12{%,13 % ,131%.,9 {%,8 |%,10]%,11{%,12

¢ Ps.8(%,9 [%.10%,11]%,12]%,13]%,1u|%,9 |%.8 |%,10|%,11|%,12{%,13
"P7,81%7,9 1°7,10 °7,11(%7,12]%7,131%7,14{%7.8 |®7.0 [%7,10]%7,11]%,12]%7,13] %7, &
81%,91%,101%,11%8,12/%,13|%, 1% 98,9 {%8,10 |%8,11]%,12|%,13|%, 11

Table 2,1
The elementary orthogonal matrices used in the decomposition of the matrix from Fig. 2.1

(k=1(1)8, i=1(1)s, ).

k
Major Strategy 2 Strategy 1
step Number of minor Number of Number of minor Number of
k steps fill-ins steps fill-ins
1 3 8 3 6
5 3 T
3 11 L 11
L 5 3 L 3
6 b 6
5 3
6 T Q 6 i
0
7 T 0 T
8 6 0 6 0
Total h2 3k 39 31
Table 2.2

The number of minor steps and fill-ins found in the decomposition of the matrix from Fig.2.1
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perimental results (Duff [7]) indicate that for very sparse matrices
this is also true even when the requirement for the same Q is re-
moved.,

In the real computations the matrices will not be extremely
sparse (note that in [7] there are examples where the number of non-
zero elements in the matrix is smaller than the number of rows) and
Q will not be the same. In the next section some numerical expe-
riments are carried out in order to compare the two strategies in

such situations for matrices with large n
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3. Numerical results

In this section a comparison of the performance of the two stra-
tegies will be carried out for some matrices with large n . Some
information about the codes, the sparse technique and the test-mat-
rices used is needed before the discusion of the numerical results

which are given in Table 3.1 - Table 3.9.

3.1. The codes used The decomposition (1.1) 1is used for

solving linear least-squares problems

(3.1) X = A+b
where A+ is the pseudo-inverse ([18419]) of matrix A . Assume
that parallel computations with vector b are carried out during

the decomposition (1.1) so that

(3.2) b* = R Pb
is available after the n'th major step. Then an approximation
X1 to X can be found by
-1_-1

(3.3) x, = Q5 D b*,

Sometimes many problems (3.1) with the same matrix A
have to be solved. In this case it is necessary to keep R, D and
S . When A is dense S is stored on and over the diagonal,
while information about R can be stored in an economical and
stable way under the diagonal [23]. When matrix A is sparse this

is not efficient because matrix R contains normally more non-
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zero elements than matrix A . Therefore it 1s more profitable to
store and keep a copy of the non-zero elements of A [3,5]. If
matrices s, D and A are available, then an approximation
X, (in general different from that computed by (3.3)) can be

found from

(3.4) x, = HA'D
where
(3.5) g = qs ' 2(sT) TgT.

A special parameter T ( drop-tolerance, see [6,20,24.,26])
can be used during (1.71) so that if an element computed by (1.3)
or (1.6) 1is smaller (in absolute value) than T , +then this ele-
ment is considered as a zero element in the further computations.
Both storage and computing time may be saved when positive values of

T are used ([27,28,22,31]). However, the use of T>0 may cause

large errors in the approximation X, also. Therefore the fol-
lowing iterative process (i=1(1)p~1)
(3.6) r. = b-Ax r¥ = ATr.
i i 1 i?
* = *
(3.7) a¥ = Hr¥
. . = + *
(3.8) i1 *3 dl
has to be used when T is large.
The combination, sparse matrix technique + large drop- tole-

rance + iterative refinement , is used in the code LLSSO01 (see
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[29,30]). The vectors r.os r? R d? and X, are stored in
double precision. All inner products (3.4)-(3.7) are accumulated

in double precision. The non-zero elements of all matrices are stored
in single precision. In this way the accepted approximation, xp R

as a rule has accuracy of order 0(82) where > is the machine
sccuracy in single precision [1,2,4]. Strategy 1 is implemented in

LLsSs0o1. Another version, LLSS02, where Strategy 2 1s implement-

ed, has been developed. Since the only difference between LLSS01

and LLSS0?2 is the pivotal strategy, any difference in the results

is caused by the pivotal strategy only.

3.2. Storage scheme. The storage scheme is the same for both

codes and is based on ideas proposed by Gustavson [14,15]. Let NZ
be the number of non-zero elements in A . Before the beginning of
the computations the non-zero elements of matrix A are stored

in the first NZ locations of a real array A . The order of

the non-zero elements can be arbitrary but if A(L)= then

a. .

1J
SNR(L)=j and RNR(L)=1 must be assigned (1,=1(1)NZ, SNR and
RNR are integer arrays of length NN ). The codes order the non-

zero elements by rows and store them in the first NZ locations

A A(M)=3a Ali<s = L<M

of array A again, so that A(L)=a t

1]

and A(L)= = SNR(L)=j. Some additional information about the

a. .
1J
row starts and row ends is also stored by the codes. A copy of array
A and array SNR is made in the real array A1 and integer ar-
ray SN (both of length ©NZ). The information about the row starts
and row ends is also copied. This information is used in the itera-
tive process (see (3.6)). In the pivotal search it is necessary to

scan the columns. Therefore the structure is ordered by columns, but

only the row numbers of the non-zero elements so ordered are stored

before the beginning of the decomposition in the first NZ loca-
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Strategy 1 St rategy 2
m COUNT|{Time |ITterations|{ Accuracy |[COUNT |Time |Iterations|Accuracy
100 210 |0.58 5 4L.16E-26| 210 }0.60 5 1.91E-26
110 220 |0.73 T 1.06E-271 227 [0.82 9 2.88E-26
120 230 }0.62 5 3.77E-27} 230 J0.65 5 3.51E-27
130 2o J0.64 5 3.7T4E-27| 240 0.6k 5 8.48E-27
140 250 | 0.68 6 2.88E-27( 250 |0.7h4 7 2.55E-27
150 260 1 0.65 5 3.7T4E-27] 260 |0.7t1 6 6.21E-27
160 270 1 0.77 7 1.54E-27] 270 }0.67 5 5.96E-27
170 280 }0.T1 6 2.88E-27| 280 0.8k 8 1.82E-27
180 290 {0.72 6 3.10E-27] 290 Jo0.67 5 5.35E-27
190 300 | 0.85 7 1.06E-27] 300 }0.96 9 2.88E-27
200 310 | 0.83 6 3.69E-27} 310 }0.97 8 1.7ThE-27

Table 3.1

Problems with matrices A=F2(m,100,11,1,10) are solved. NZ=m+110,

-25

NN=L4800, T=10 The experiment has been run on a CDC Cyber 173.

tions of array RNR so that if RNR(L)=1 and RNR(M)=s (where

i and s are the row numbers of aij and ast) and 1f j<+t,
then L<M. The row numbers of the non-zero elements in column k
are not needed after the major step k and are therefore removed

from array RNR by the codes. The non-zero elements 8. (i>k)

are transformed into zero in major step k, therefore these elements

and their column numbers are removed from arrays A and SNR.
Some elements (with their row and column numbers) may be removed
when positive values of the drop-tolerance T are used. Unfortu-

nately, some new non-zero elements (fill-ins) are also created

(when one of the elements involved in (1.6) is zero, while the other

is non—-zero). Such new elements and their column numbers {row num-

bers) are stored at the end of the row (column) if there are free lo-
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5t rategy 1 St rategy 2
m COUNT|Time |Iterations|Accuracy |COUNT |Time|Iterations |Accuracy
100 872 |1.42 5 4L.53E-26| 878 |1.60 7 3.04E-26
110 559 |1.23 i 9.59E-26 | 568 |1.45 10 L.97E-27
120 522 [1.18 T 2.90E~-27| 526 [1.27 8 2.20E-2T7
130 536 | 1.20 7 1.89E-27{ 560 |1.L48 10 6.94E-27
140 611 [1.15 5 1.96E-26| 617 {1.33 7 8.78E-27
150 677 11.54 8 9.59E-28] 653 |1.50 8 6.T9E-2T7
160 638 |1.h2 7 1.62E-261 687 |1.58 8 6.21E-27
170 717 |1.75 9 2.32E-27| 711 |1.56 7 6.41E-27
180 776 11.73 T 9.59E-28| 783 |[1.80 8 1.01E-27
190 811 | 1.8L4 T 1.32E-26| 812 [2.00 9 1.56E-26
200 817 11.73 5 3.02E-26] 858 J]2.10 9 9.69E-26

Table 3.2
Problems with matrices A=F2(m,100,11,2,10) are solved. NZ=2m+110Q,

-25

NN=4800, T=10 The experiment has been run on a CDC Cyber 173.

cations. Otherwise a copy of the row (column) is made at the end of
arrays A and SNR (RNR). It is clear that there is a 1limit to the
number of new coples that can be made without exceeding the capa-
city of the arrays. Therefore occasional '"garbage" collections are
necessary. The '"garbage" collections increase the computing time
and should be avoided {(using a large length for the arrays A, SNR
and RNR) when this is possible. See more details about the storage

scheme in [30].

3.3. Test-matrices. The results (especially the storage and

the computing time) depend on the preservation of sparsity during
(1.1). The preservation of sparsity depends on the dimensions of mat-

rix A , on the distribution of the non-zero elements within A,
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S trategy 1 S trategy 2
m COUNT| Time jIterations|Accuracy|COUNT| Time |Iterations|Accuracy
100 | 1997 5.26 15 2.73E-27{2076 k.70 10 1.57TE-27
110 | 2217 L.6k T 3.89E-27{2L439 5.76 T 2.68E-27
120 | 2331 L.89 5 1.34E-26]2095 5.09 8 1.9TE~-27
130 | 2336 5.96 9 T.57TE-26]2378 6.50 9 2.02E-27
140 | 2287 5.94 7 5.58E-27| 2476 6.71 8 T7.5TE-28
150 | 2896 8.35 7 2.12E-27{250kL 6.66 5 1.27TE-26
160 | 264k 8.82 9 2.2TE-27]3052 | 11.48 10 8.58E-28
170 | 2676 8.73 T L.oLE-28[3198 | 13.21 11 1.36E-27
180 | 3361 f1k.1b4 8 1.92E-2T7]13595 | 16.93 5 8.96E-27
190 | 3334 J1L.L6 T 3.08E~27f3435 | 16.33 5 1.26E-26
200 | 3690 |16.83 T 3.34E-27f L4143 | 22.64L 8 2.63E-27
Table 3.3

Problems with matrices A=F2(m,100,11,3,10) are solved. NZ=3m+110,

NN=L4800, T=TO_25. The experiment has been run on a CDC Cyber 173.

on the magnitude of the non-zero elements and on the number of the
non-zero elements before the beginning of the decomposition. There-
fore, it is desirable to develop a generator for test-matrices where
one or several of the above characteristics can be specified and
changed automatically. Such a generator (subroutine MATRF2) has been
developed ( a full documentation is in preparation). This generator
produces matrices of class F2(m,n,c,r,o) where the parameters can
be varied and have the following significance: (i) +the number of
rows in the desired matrix can be specified by m, (ii) the number
of columns in the desired matrix can be specified by n, (iii) the
positions of certain non-zero elements within the desired matrix can
be specified by ¢, (iv) +the number NZ of non-zero elements in

the desired matrix can be specified by r so that NZ=rm+110,
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St rategy 1 St rategy 2
T COUNT Time Iterations |COUNT | Time Iterations
1072° | 2706(0.85)18.91(0.85) 8.0(1.03)| 2854 [10.5k 7.8
10"2 1169(0.71)13.72(0.75) |16.8(1.10)| 1646 | L.98 15.3
107" 816(0.65)13.32(0.72) |22.2(1.02)| 1259 k.58 21.7
Table 3.4

Problems with matrices A=F2(m,100,11,3,10), m=100(10)200, are
solved. NZ=3m+110, ©NN=480O. The average results (for the 11
problems solved with each value of the drop-tolerance T) are gi-
ven in this table. The ratios of the characteristics obtained by
Strategy 1 and the corresponding characteristics obtained by Stra-
tegy 2 are given in brackets. The experiment has been run on a CDC

Cyber 173.

(v) the magnitude of the non-zero elements in the desired matrix can

be specified by o so that max(!aij])/min(laij[) = 10a2, a..#0

1]
The matrices of class F2({m,n,c,r,o) were used in all experi-
ments. All parameters were varied in gquite large intervals; some of

the results are given in Table 3.1 - Table 3.9.

3.4%. Comparison of the storage required by the two strategies.

It is not so easy to compare the storage required by the two stra-

He optimal value fg/

tegies because Y NN (the length of the three large arrays A,

SNR, RNR ) is not known in advance. The number of non-zero ele-—
ments in S should not be used in the comparison (if the column
interchanges happen to be the same, then the same number of non-

zero elements in matrix S will be produced by the two strategies,
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St rategy 1 St rategy 2
m Growth factor|Smallest element{ Growth factor|{Smallest element
100 6.50 6.21E-2 2.88E+15 2.98E-32
110 L.69 8.85E-3 1.05E+11 L.OTE-27
120 2.36 1.69E-2 2.3LE+17 T.12E-26
130 1.46 1.31E-1 5.9LE+ 8 1.66E-23
140 2.07 3.27E-2 2.38E+12 2.32E-27
150 1.12 1.97E-2 1.54E+1L 5.13E-30
160 2.4 3.88E-2 1.02E+ 9 2.22E-20
170 L.k2 6.98E-3 1.75E+11 6.31E-27
180 L.50 1.59E-3 1.63E+ 8 1.55E-19
190 6.52 5.45E-4 4L.05E+12 1.73E-27
200 L1y 2.65E-3 1.13E+ 8 1.0LE-19

Table 3.5

Problems with matrices A=F2(m,100,11,3,10) are solved. NZ=3m+110,
NN=4800, T=10 °. "Growth factor" is the ratio of the largest (in
absolute value)element found in array A during any step of the de-
composition and the largest (in absolute value) element in array A
before the beginning of the decomposition. "Smallest element" 1is
the smallest element in matrix Dn+1' The experiment has been run

on & CDC Cyber 173.

but this does not mean that the computational work and the number
of fill-ins are the same; see Corollary 2.1 and Example 2.1).

Denote by COUNT1 and COUNT2 the maximal numbers of non-

zero elements kept in array A when Strategy 1 and Strategy 2 are

used. COUNT1 and COUNT2 can be used in the comparison (note

that COUNT without any index will be used when there is no danger

of misunderstanding). If e.g. COUNT1 < COUNT2 on a given class

of problems, then Strategy 1 performs better than Strategy 2 for
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Strategy S trategy 2
n COUNT |Time |Iterations|Accuracy | COUNT|{Time|Iterations |Accuracy
100 L323]2.95 9 1.35E~1k L685]3.82 9 1.67TE-1k
110 L68613.78 10 1.80E~14 LeoT)3.72 11 2.22E-1L
120 3212 11.15 9 2.33E-14 L220(2.48 10 1.35E-14
130 3160(1.22 11 1.60E-14 Likbhio,25 9 1.87E-1k
140 29hk6 11.23 9 2.98E-1h L1hks5]11.92 7 1.82E-1k
150 368311.543 8 2.38E-1L Loo2t2.1h 8 2.35E-14L
Table 3.6
Problems with matrices A=F2(200,n,11,6,10) are solved. NZ=1110,
NN=10000, T=10—2. The experiment has been run on an IBM 3033.

this class because either smaller values of NN

could be speci-

fied with Strategy 1 (reducing the storage) or the number of "gar-

bage" collections with Strategy 1 will often be smaller when the
same values of NN are used with both strategies.
Denote ES = COUNTT/COUNT2 . Es will be called the effi-

ciency factor with regard to the storage requirements. By the use

of ES the following conclusions can be drawn for the two stra-

tegies from our experiments with matrices of class F2(m,n,c,r,a)

(which were run with different values of the parameters).

(i) If the matrix is very sparse, then E.m T is normally

observed (see Table 3.1, Table 3.2 and the first line of

Table 3.8). This result should be expected (because in this si-

tuation it is very likely that the conditions of

Theorem 2.2 are
satisfied) and has already been reported in [7].
(ii) If the matrix is not very sparse, then often ES < 1
(i.e. Strategy 1 performs better than Strategy 2), see Table 3.3,

Table 3.6, Table 3.7 and Table 3.8
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St rategy 1 Strategy 2

c COUNT [|Time |[Tterations|Accuracy |COUNT|Time {Iterations |[Accuracy
20 L118(2.40 9 1.38E-14L L088|2.30 7 1.07TE-1k
25 397512.50 8 3.94E-15 L1o1{2.50 10 1.51E-1k4
30 3683 (2.24 11 2.80E-14 4088(2.33 10 2.L2E-14
35 Lo33{2.57 8 2.93E-14 hs2s5)2.87 8 3.33E-1k
Lo 3hk1|2.0L 9 3.31E-1k4 4L56013.13 8 3.20E-1k
Ls 261211.26 9 3.09E-1k 3407 1.70 8 1.95E-1k
50 3025{1.57 10 2.93E-1L 38L0[1.9L 10 2.64LE-14
55 347811.92 10 2.6ULE~-1L L288]2.66 10 2.78E-1L

Table 3.7
Problems with matrices A=F2(150,100,c,6,10) are solved. NZ=1010,

NN=10000, T=10_2. The experiment has been run on an IBM 3033

(iii) If the drop-tolerance T 1is increased and if the matrix
is not very sparse, then E, becomes smaller (see Table 3.4). An
explanation of this phenomenon can be given as follows. The algorithm
described by (1.7)-(1.11) cannot be applied with Strategy 2. This
leads to very small elements 1in Dn+1 and very large elements in
A (k=1(1)n) when Strategy 2 is used in the decomposition
(1.1). Let a = ma@([aijl) where a

the elements of matrix A before the beginning of the decomposition.

(i=1(1)m, j=1(1)n) are

1j
Let a be the absolute value of the largest in absolute value ele-
ment kept in array A during any step of the decomposition (1.1).
The ratio ala is called the growth factor. The results given in
Table 3.5 show that the growth factors are very large when Stra-
tegy 2 1is used (note that the growth factors become larger for
T=1O—25 ; this shows that the growth factors tend to increase when

the drop-tolerance T is decreased). There-




25.

S trategy 1 S trategy 2
T COUNT Time Iterations | COUNT Time Iterations
2 427(0.96)11.62(1.02){16.7{(1.06) b7 1.590 15.7
3 816(0.65)3.32(0. 72) 22. 7( 5) 1 1259 L.58 21.7
b 1346(0.68)14.76(0.66) 11, oo) 1989 7.16 20.2
5 1962(0.72)(7.96(0.71)]21.6(1.03) | 2718 11.28 21.0
6 21u4(0.70)18.94(0.66)]21.3(1.22) | 304k 13.47 17.4
Table 3.8

Problems with matrices A=F2(m,100,11,r,10), m=100(10)200, are
1

solved. NZ=rm+110, NN=L480O, T=10 . The average results (for
the 11 problems solved with each value of parameter r ) are
given in this table. The ratios of the characteristics obtained by

Strategy 1 and the corresponding characteristics obtained by Stra-
tegy 2 are given in brackets. The experiment has been run on a

CDC Cyber 173.

fore the number of non-zero elements which are removed by the drop-
tolarance is smaller for Strategy 2.

It is necessary to emphasize here that the use of iterative re-
finement with a large value of the drop-tolarance gives a great re-
duction in storage for these problems (the use of two extra arrays
A1 and SN in the iterative process is fully compensated because

the length of the other three large arrays can be chosen much smaller
when T is large). This is normally so for problems which produce
many fill-ins. If the problem does not produce many fill-ins ( if

e.g. r=1 or r=2 ), then the use of iterative refinement will

require some extra storage.
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St r ategy 1 S tratesgy 2

o m=100 m=150 m=200 n=100 m=150 m=200

10 L.16E-26 | 2.88E-27 | 1.06E-27 1.96E-26 | 6.21E-27 |[1.7LhE~-27
102 4L,.38E-25 | 3.33E~26 | 2.29E~-26 9.08E-26 { 3.0TE-26 {3.50E~26
103 2.20E-2L4 | 2.24E~25 | 2, 01E-24 2.04bE-24 | 5. L6E-25 | 2.36E-25
10” 1.17E-23 | 1.53E-24 | L.55E-24 1.66E-23 | 1.15E-2k [6.97E~-25
105 L.93E-23 | 2,32E-23 | 8.Lk5sE-2)k 3.10E-23 | 3.83E-24 {2.12E-23
106 1.06E-21 1| 2.00E-22 | 1.05E~22 3.78E~-22 | 2.64E-22 |3.70E-22
107 3.60E-211{ 1.24E-21 1| 1.31E~-21 2.63E-21 : 1.50E-21 {2.18E-21
108 1.60E-19 | 3.38E-20 | 1.11E-19 5.77TE-20 | 1.22E-19 {4 ,55E-19
109 3.81E-17 ] L.48E~171 1.46E-17 8.44E-17 | L.79E-1T7 {1.79E~ 3
1010 2.39E-13{ 7.21E-16 | 2.68E-16 3.66E-151 1.11E-13 |2.90E 0

Table 3.9
Problems with matrices A=F2(m,100,11,2,a) are solved. NZ=2m+110,

NN=4800, T=10_25. The accuracy of the approximations calculated by

the two codes 1is given in this table. The experiment has been run

on a CDC Cyber 173.

(iv) If r <3, then E. o=~ 1. If r >3,
then E &~ 0.7 see Table 3.8. No clear relation between ES and
any of the parameters p, n, ¢ and o has been observed; see some
results in Table 3.3, Table 3.6 and Table 33}. However, note
that if the matrix is not very sparse, then Strategy 1 performs
better than Strategy 2 for any choice of the parameters m, n, ¢ and «o.

3.5. Comparison of the computing time reguired by the two stra-
tegies. Denote by t1 the computing time used by LLSSO01 and
by ty that used by LLSS02. The number Et = tI/tQ will be

called the efficiency factor with regard to the computing time re-

quired. Conclusions (1) = (4iv) from Section 3.4 hold also when
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ES is replaced by EJC . This means that if the matrix is not
very sparse, then the computing time will very often be reduced when
Strategy 1 is used instead of Strategy 2. In some examples the
computing time obtained by Strategy 1 1s halved in comparison
with that obtained by Strategy 2. See e.g. Table 3.6.

Note again the great efficiency of the use of large values of
the drop-tolerance T (see Table 3.4). However, it should be noted
that if the number of fill-ins is small (which is typical for very
sparse matrices), then the use of a large drop-tolerance will cause

more iterations and therefore extra computing time. Of course, the

use of large values for the drop-tolerance leads to extra iterations

also when the matrix is not very sparse and many
However, the reduction in the computing time for
so great in this case (because many fill-ins are

tolerance) that the total computing time is also

3.6. Comparison of the accuracy achieved by

fill-ins are produced.

the decomposition is
removed by the drop-

reduced consgiderably.

the two strategies.

If the matrix is well conditioned (if a < 100

in our experiments),

then the accuracy achieved by the two subroutines 1s approximately

the same (of order of magnitude 0(62) vhere > is the machine
accuracy; £=O(1O#1h) for CDC Cyber 173 and e=O(TO_7)

for IBM 3033). The fact that the accuracy achieved has order of
magnitude 0(82) ig in full agreement with the results obtained

by Bjoérck [1,2,4]. Note that the number of iterations needed to

obtain such accuracy is approximately the same for both subroutines

when the drop-tolerance is very small, T=1O_25

in our experi-
ments ( in Table 3.1 and Table 3.2 the numbers of iterations
for Strategy 1 are slightly smaller than those for Strategy 2 ).

There is a tendency that the numbers of iterations for Strategy 2

are smaller than those for Strategy 1 when the drop-tolerance 1is
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large (see Table 3.4 and Table 3.8). This is probably caused by
the fact that more elements are removed when Strategy 1 is used
with a large drop-tolerance ( see the values of COUNT in the tab-
les and Section 3.4) and thus the decomposition computed by Stra-
tegy 1 1is not very accurate. Since the computational cost per itera-
tion is much smaller than that for the decomposition (1.1), the fact
that Strategy 1 uses more iterations has no visible influence on the
efficiency factor with regard to the computing time required (see
Section 3.5).

An experiment with different values of o has also been car-
ried out. The matrices A=F2(m,100,11,2,a) with m=100(10)200 have

0722 and a=1O(1O)1O1O

9 and a=101o

been used in this experiment with T=1
The results for a < 109 are comparable. For a=10
Strategy 1 gives much more accurate results for some problems. The
results for m=100, m=150 and m=200 are given in Table 3.9.
The experiments indicate that the fact,that Strategy 2 pro-
duces very small elements in Dn+1 and very large (in absolute

value) elements in Ak (k=1(1)n+1), has not a great influence on
the accuracy of the approximations computed using this pivotal stra-

tegy.

3.7. Robustness of the computations. The fact, that the elements

of D 1 become very small and the growth factors (see Section 3.4)
become very large when Strategy 2 1s used (see Table 3.5), can lead
to underflows and overflows. Note that,when the problem with matrix

A=F2(110,100,11,2,10) was solved with Strategy 2, the growth factor

1hO). On CDC Cyber 173 this did not

was of magnitude o(10
cause trouble, but on many other computers such a large growth factor

will lead to overflow. Of course, there is no guarantee against over-

flows when Strategy 1 is used. But the results given in Table 3.5
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indicate that the computations with Strategy 1 are much more robust

than those with Strategy 2.

3.8. General conclusion. The numerical experiments indicate

that Strategy 1 should be preferred 1in the choice between the
two strategies discussed in this paper when problem (3.1) is
solved and when the plane rotations have to be used in the decom-

position of matrix A
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