ISSN 0105-8517

K-VISIT ATTRIBUTE GRAMMARS

by

Hanne Riis

Sven Skyum

DAIMI PB~121
June 1980

Computer Science Department
AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55

=

=Y

K-VISIT ATTRIBUTE GRAMMARS

Hanne Riis

Sven Skyum™®

Computer Science Department
Aarhus University

Ny Munkegade

DK~8000 Aarhus C

Denmark

* from August 1 at:

Computer Science Department
University of Edinburgh
JCMB

The King's Buildings
Mayfield Road

Edinburgh EHY9 3JZ

Scotland

Abstract

It is shown that any well-defined attribute grammar is k-visit for
some k. Furthermore it is shown that given a well-defined grammar G
and an integer k, it is decidable whether G is k~visit. Finally we show
that the k-visit grammars specify a proper hierarchy with respect to

translations.

1. INTRODUCTION

Knuth introduced attribute grammars as a formalism for associating
meanings with strings of context-free lahguages ([7]). Because of the
generality of the formalism there have been defined several subclasses

of attribute grammars, which are often easier to handle (see e. g. [11,

[5]’ [6]’ and {4]).

One of these subclasses is the one-visit (or re-ordered, [8]) attribute

grammars of [2].

We define an extension of this class - the class of k-visit attribute gram-
mars. The definition of a k-visit attribute grammar is a generalization
of that of a one-visit attribute grammar: An attribute grammar G is k-visit
if for any derivation tree t of G it is possible to evaluate all the attributes
associated with t by walking through t in such a way that no node int is

visited more than k times.

While it is possible to find a local property for the: productions, which is
equivalent to the global one-visit property (see [2]), there seems to be
no such local property corresponding to the k-visit property for an

attribute grammar,

We show in this paper that any well-defined (see [7]) attribute grammar

G is k-visit for some k. Furthermore it is shown using a pumping argument,

that given a well-defined grammar G and an integer k it is decidable whether
G is k-visit. Thus we can effectively for any well-defined attribute grammar
G find the minimal k such that G is k-visit. Finally we show that the k-visit

attribute grammars specify a proper hierarchy with respect to translations.

2. NOTATION AND DEFINITIONS

In this section we will recall the definition of an attribute grammar and
define some related concepts. We use a definition of an attribute grammar

similar to that given in [2]

A semantic domain 8 is a pair (D,F) where D is a set of sets and £ is a

set of mappings of functionality Dy X Dy X euu X B, - D {(m = 0), where D
and Dj for 1< j=mare sets inD. The elements of D will be called domains

whereas the elements of E will be called semantic functions.

An attribute grammar (AG) G over a semantic domain 8 = (D,F) can be

considered as an extension of a context-free grammar (CFG) Gu = (N, T,P, 2).

To each nonterminal X of Gu there is associated a fixed set A(X) called
the attributes of X. The set A(X) is divided into two disjoint sets, 1(X),
the set of inherited attributes, and S(X), the set of synthesized attributes.
To each element in A(X) there is associated a domain from D. We require

without loss of generality that S(Z) is a singleton and that I(Z) = @.

To each production p: F ::= WOF1W1 FZWZ' CeW g ann’ Wj ET*x (0<]j<n),
F,F—’J.@ N (1 <j=n)of G, there is associated so-called semantic rules.

There will be exactly one semantic rule for each attribute b in the set

s(F)u I(F1 Ju I(Fz) U... U I(Fn). A semantic rule for b consists of a se~
mantic function f: D1 X D2 X eeo X Dm -+ D from F together with m attributes
a;y 8y, ...y a8 from the set I(F) U S(I:'1 Yu S(Fy)u... U S(I'—'n). The attributes
b and aj for 1 =< j < m must satisfy that the domain D is associated with b
whereas the domain Dj is associated with aj for 1 <j<m. We say that b

depends on aJ. for 1 =j<m.

Example 2.1

Let us define an AG G over a semantic domain § = (D, F).

D will consist of the single set D = {A, B} *, i.e. sequences of Als and Bls.

In F we have five semantic functions:

1>\: + D 1}\() =X, the empty string
T) 1 = i
]A' D A() = A, the constant string A
15: * D 18() =B, the constant string B
L: DD v(a) = a, the identity function, a € D
& Dx DD &(a,b) = ab, the concatenation function, a,b € D.

The underlying grammar Gu of the AG G will be

Z =X
X =X X | Y
Y:'=A]B

To each attribute of any symbol we associate the domain D. We give

the productions of the AG and their semantic rules below in an affix~like
notation. The inherited attributes will be prefixed by downward arrows
(1) whereas synthesized attributes will be prefixed by upward arrows (1).

pl: <zt (a)> i=<X L 1.()1t a>

A(
p2: <X lat tle)>::=<X 4 (b))t c¢><X | r(a) t b>
p3: <X lat &a,b)>::= <Y t b>

p4: <Y+ 1, ()> u=A

p5: <Y 1t 1_()> =8B
O

To each node in a derivation iree t defined by the CFG Gu we will associate
attributes similar to those of the symbol labeling the node. Let n be a node
labeled with a nonterminal X int. If p: X = ><1><2. . ><m is the production
used to expand n in t then the semantic rules for the attributes in S(X)
associated with p are used to give values to the synthesized attributes of n
(denoted S(n)). On the other hand if X occurs on the right hand side of the
production g: Y ::= Y1Yz. . .Yhand N is introduced in t by an application

of q then the semantic rules for the attributes in I(X) associated with q are

used to give values to the inherited atiributes of n (denoted I(n)).

In the following a derivation tree will have root labelled Z and leaves

labelled by symbols from T.

If t is a derivation tree and n a node in t then tn denotes the subtree of
t with root n,and t"" denotes the tree t with the subtree of n, exceptn

itself, removed.

We want to give values to (or evaluate) all the attributes associated with

(the nodes of) the tree t. This is done during a walk through the tree.

When arriving at a node we may evaluate some of the inherited or synthe-

sized attributes of the node and after that continue to either the father,

a son or a brother of the node or the node itself.
A walk through a tree t is a sequence

s =<n A1> <N

12 A> ... <n A >
r’r

2?2
where

1) nj is an interior node int for 1 <j<r

2) If nj% Ny then n,

+1 is the father, a son or a brother of
nj, 1=j<r

3) Aj is a subset of the inherited or synthesized attributes of

njfor‘1Sj§r~

For each node n in t we define

A computation sequence for a derivation iree t is a walk

=< ~ z
cs nl,A1><n2,A2> QnP,AP>
through t satisfying

4) Ny =n_ is the root of t

5) the attributes of AJ. do not depend on those of Ai for

izj, 1<j<r

6) for each interior node n! in 1:
. "=
ifcs(n') =B 1Bz. . .Bhthen
a) BJ._C; I(n') if jisodd, 1=<j=<h

b) Bj S(n') ifjis even, 1<j<h

N

h
c) U B; = in) U s(n')
hat?
d) BiﬂBj=¢ifi75j
e) let CS=CS.'<'n‘,Bj> <n,’,C > <nz‘,C2>...

! <al .
<nk ,C > <n ,BJ._H><:s2 3

k
if j is odd (even) then n, is a nhode in t, (t") for 1< i<k

(Note, that 4) implies that h is even.)
J
Thus when walking 'down! in a subtree we evaluaie some of the inherited

attributes of the root of the subtree. When returning from the subiree we

evaluate some of the synthesized atiributes of the root of the subiree,.

0

Example 2.2

Consider the following derivation tree t of the AG of Example 2. 1.

L.et | denote the inherited attributes of a node and S the synthesized.

A computation sequence for t which traverses t twice from left to right is

< < < : < v
1. pass { n1,¢> Nyl > n3,¢><n4,¢> n4,S><n3,¢>
g, 1> <n\6,§Z§><‘n'6,S> <Ng, S> <Ny P> <Ny, B>
{ <n1,t;25> <n2,¢> <ng, I> <nv4,§25> <n-4,¢> <N, S>

2. pass
<n5,g2§> <n6,¢> <n6,¢> <n.5,¢> <n,, S><n;,S>

L.et t be a derivation tree and n an interior node in t. Consider a computation

sequence cs for t of the form
cs = csy <n, Bl> cs, <N, Bz> CSq

where |cs1 (n) | (the length of cs, (n)) is even and csz(n‘) = X\ (the empty

string).

The subsequence cs, will walk through the subtree t of t with root n.
We say that <n, B1

n is visited once. Thus if \cs(n)] = 2R then n'is visited.h times.

> cs, <N, BZ> specifies a visit to t and that the node

t is said to be k—-visit if there exists a computation sequence cs for t

satisfying that for each node n in t: |cs(n)| < 2k.

An AG G is k-visit if any derivation tree of Gu is k-visit.

Knuth introduced a subclass of AGs called well-defined AGs ([7]).

If an AG is well-defined then the attributes do not depend circularly on
each other in any derivation tree. The test for the well-definedness
property of an AG has exponential time complexity {see[3]). It is

easy to show that if the AG is well-defined then there exists a computation

sequence for any derivation tree.

Let t be a derivation tree of a well-defined AG. Given a computation
sequence for t we can determine the value of the attribute at the root of t.
This value will be denoted the meaning of t in the semantic domain

9 : meaning (t,8). This value is independent of the choice of computation

sequence (see [9]).
The translation T(G,) specified by the well-defined AG G is defined by

T(G, 8) = {(t, meaning(t, 9)): t is a derivation tree for Gu}

Example 2.3

For the derivation tree t of Example 2.2 we have meaning(t, 8) = BA.

The AG of Example 2.1 specifies the translation
T(G,8) = {(t,VR) !t is a derivation tree for v in Gu}

W is the string v reversed.)

3. THE k-VISIT PROPERTY

In this section we will show that for any well~defined AG G there exists
a k such that G is k-visit. This is done in two steps. First we show that
any computation sequence can be transformed into a special kind of
computation sequence called a reduced computation sequence; In the
second step we use these reduced computation sequences to determine a

k such that the AG is k-visit.

Definition 3.1
A reduced computation sequence for a derivation tree t is a computation

sequence cs for t satisfying:

if N is an interior node in t and
cs = cs; <n, D> cs, <n, D> csgy

where |c:s1 (n)] is even and csz(n) =)\

then cs, (n) = cs3(n') =).

Intuitively, if cs is a reduced computation sequence then we will only
visit a node n when some of its attributes can be evaluated. And if there
are no attributes associated with n then we will visit n at most once.
Note that a reduced computation sequence need not be the shortest com-

putation sequence for a tree.

Example 3.2

A reduced computation sequence for the tree in Example 2. 2 is:

<ng, P> <n,, | > <Ng, 1 > <ng, P> <n,, S> <ng, S>
<ng, 1> <ng, D> <Ny S> <ng, S> <ny, S> <n,, S>
]

Any computation sequence for a derivation tree t can be transformed into a
reduced computation sequence. To see this we will define two transfor-

mations T1 and T2 on computation sequences.

The purpose of both of these transformations will be to remove what we

might call superfluous visits to subtrees.

The transformation T1 can be applied to a computation sequence cs of

the form

<n, B> cs

cs = cs; <n, D> cs, <n, @> cs 4

3

where]cs1 (n)] is even and csz(n) = cs3(n) =).

Thus there will be a visit to n where no attributes of n become evaluated
and there will be at least one more visit to n (note that B might be empty).
The result of applying T1 to cs is ‘the sequence

cs Csy €S <n, B> CS, CSy

It can be proved that cs' is a computation sequence for t.

Example 3.3

In the computation sequence cs of Example 2. 2 we have a superfluous

visit to the node Na. We can apply the transformation T1 to cs and get

cs, { <Ny, P> <ng, 1>
£<nf5, I> <ng, @> <ng, S> <Nng, S> <Ny, P> <ny, D>

cs
3 <n1,¢> <ng, P>

<n, B> <ns, I>

cs, {<n4,¢> <Ny S>

cs,, <:<n4, D> <ny, P> <ng S>

<Ng, 0> <Ngs D> N, D> <Ny S> <Ny, S>
0

The transformation T, can be applied when the computation sequence cs

has the form
¢s = cs; <n, B> cs, <n, P> cs, <n, P> cs,,

where |cs,(n)| is even and cs,(n) = cs4ln) = .

10

Thus we have a visit to n where no attributes become evaluated but
there has been at least one more visit to n. The result of applying

the transformation T2 to cs is the sequence
f = <
cs Csy CS5 <N, B> CS, €S,
It can again be proved that cs' will be a computation sequence for t.

Using the transformations T1 and T2 repeatedly we get the following

lemma.

Lemma 3.4
For each computation sequence for a derivation tree t there exists a

reduced computation sequence for the tree.

Theorem 3.5

For any well-defined AG G there exists an integer k such that G is

k-visit.

Proof
Let K (= 1) be the maximal number of attributes associated with any non-
terminal of G. Let cs be a reduced computation sequence for a derivation
tree t. From the definition of a reduced computation sequence it follows
that |cs(n)| < 2K for any node n of t. Thus G must be K-visit.

O

11

4, DECIDABILITY OF THE k-VISIT PROPERTY

L_et G be a well-defined AG and let k be an integer. Is G k-visit?
From Theorem 3.5 it follows that there is a K such that G is K-visit.
If therefore k =2 K then obviously G is k-visit. We will in this section
see how to test whether G is k-visit for arbitrary k> 0 and thereby

how to find the least k such that G is k-visit.

The following lemma is the key for proving the decidability of the k-visit

property.

Lemma 4.1

For any well-defined AG G there exists a (computable) integer g such that for all
derivation trees t of Gu there exists a derivation tree t of height at most

g such that t is k-visit if{ is k-visit.

O

Before proving the lemma we need some technical definitions.

Definition 4.2

Let t be a derivation tree and n a node in t. An outside(n) computation

sequence for t is a walk

cs = <n,, A1> <Nn,, A2> cee SN, Ar‘>
through " satisfying
41) n, =n_is the root of t.
5!) If n; # nor Aj c I{n) then the attributes of Aj do not depend on

those inAi forizj, 1<j<r.

6') For each node n' int" 6a)-6e) are satisfied.

12

An inside(n) computation sequence for t is a walk

s = <ng, A1> <Ny, A2> cer <N, AP>
through t, satisfying
4" n,=n_=n.

51) If n, # nor Aj ¢ S(n) then the attributes of AJ do not depend

on those ofAi forizj, 1 <j<rp,

6') For each node n! in t, 6a)-6e) are satisfied.

O

Note that any pair of an outside(n) and an inside(n) computation sequence
cs and cs, for't, where n is an interior node, and cso(n) = csi(n) can be
combined into a computation sequence for t and any computation sequence is

such a combination.

The concept of a reduced computation sequence can easily be generalized

to outside(n) and inside(n) computation sequences.

Example 4, 3

For the derivation tree t of Example 2. 2 we have an outside(n) computa-

tion sequence

<Ny P> <Ny, 1> <ng, P> <n s, S> <Ng, 1> <ng, P> <ng, S>
<Ng, S><ng, I> <ng, P> <n,, S><ny, S>

And we have an inside(n:;) computation sequence

<Nz 1> <Ny, P> <nyy S> <Ng, P> <ng, P> <n,, S>

13

Let t be a derivation tree and n a node in t. We define for a reduced

inside(n) computation sequence cs for t

visit(i)(hJ cs) = <m,cs(n)>

where m = max| les(n®)] @ n'in tn}.

1
2
We define for a reduced outside(n) computation sequence cs for t

(

visit o)(n‘, cs) = <m,cs(n)>

where m = max{-% les(n')| : n'in ¢}

Furthermore, let

Il

(i)(

computation sequence for t}

(0)(4

VlSlT’il)(n) {visit''/(n,cs) : cs is a reduced inside(n)

VISIT(tO)(n) {visit n,cs) : ¢cs is a reduced outside(n)

computation sequence for t}

We know that the AG G is K-visit where K is the maximal number of
atiributes associated with any nonterminal of G. Therefore in any

tuple <m,B,,B, ... B, > in VlSlT(ti)(n) (resp. VISIT(tO)(n)) we have
m=K and h = 2m. This means that the number of elements in VISIT

(i)(
1
(resp. VISITiO)(n)) is bounded by some (computable) constant Vg» Which

n)
depends only on the AG G.

Consider a derivation tree t of Gu. Assume that in t we have two nodes

n and n! satisfying

i) n! is a descendant of n
if) n and n' have the same nonterminal X as label

iii) vnswi”(n) = VISIT(t”(n').

Let t' be the derivation tree obtained by replacing (in t) the subiree tn

with the subtree tn"

/\

We will prove that if t' is k-visit then t is k-visit. Assume that t! is k-visit.
Then there exist a reduced computation sequence cs! for t! and elements

<m,,cs'(n')>in \/lSlT(t:)(n‘) and <m,,cs'(n')> in \/ISlTi?)(n') such that
i

k= max{m ,m,}. Since \/lSlT(t.)(n) = \/ISlT(ti)(n') = vxsrrii)(n') and

\/lStho (n) = \/lSth?)(n') there exist an inside(n) computation sequence
cs, for t, such that csi(n) = cs'(n') and <m1,csi(n)> is in \/lSIT(tI)(n),
and an outside(n) computation sequence cs_ for t such that cso(n‘) = cs'(n')

L o . .
and <mz,cso(n)> is in \/lSlTi)(r\). t is then k-visit because cs. and cs
can be combined to a computation sequence, which visits each node at most

max{mvm < k times.

2}

To complete the proof of\'/the L.emma observe that if the height of t is
greater than g = NG . 2 S where NG is the number of nonterminals in G

then there exist nodes n and n! in t satisfying i)-iii) above. By removing
parts of the tree as above repeatedly we can finally obtain a derivation tree
t with the required property.

0

15

Theorem 4, 4
For any well-defined AG G and any integer k it is decidable whether

G is k-visit or not.

Proof
Lemma 4.1 shows that we only have to check whether all derivation trees
of height bounded by some (computable) constant are k-visit.

L]

Corollary 4,5

Given a well-defined AG G it is possible to find the minimal k for which
G is k-visit.

O

16

5. A k-VISIT HIERARCHY

In this section se will give an example (from [9]) of a translation that
can be specified by a k-visit AG but which cannot be specified by any

(k=1)-visit AG over the same semantic domain.

The AG will be over a semantic domain 8 = (D,). D consists of a single

domain D = A%, i.e. sequences of Als. In E we have two semantic functions

1>\ :=2 D 1>\()=, the empty string

G20 &la) = Aa, concatenation with A, a € D
First we specify the productions of the underlying grammar Gu:

Z = X
X o= AX | X

We will define an AG Gk with underlying grammar Gu which specifies the

transtation
2k . e .
7(k) = {{t,v™") : t is a derivation tree for v in G, b,
The nonterminal X has associated 2+k attributes, k inherited and
k synthesized,and Z has one synthesized attribute. Let GI< have the

productions:

pl: <Z ¢ &A(ak)> L=

XL O et oplay) ... 1 &, (a 4)ta ta, ... ta>
p2: <X lag ta, ... 1ak¢&A(b1)f&A(b2)... T&A(bk)>::=

A <X l&A(aﬁ l&A(az)... l&A(ak)Tb1 thy ... tb >
p3: <><la1 bag ... iak?&A(al)?&A(az)... ?&A(ak)>::=A

It is easy to see that T(Gk, 9) = (k).

[4

As an example consider the following derivation tree (k = 2) and its

dependency grapht!

3
O wgpmaemne O e O
O g O e O

6

Q et O ez O
O mmremgzy O omeepm O

A (reduced) computation sequence for this tree is

<n1,¢> DN ly><ngli><n,, L><n,S . ><n, S, 30 S

<N 5 lz> <N 4 lz> <N lz> <n«-4,5'2> <n3,S'2> <n2,52>

><n,, S, >

<n1,51 >

where lj is the jlth inherited attribute of a node and Sj is the j'th

synthesized, 1 = j = k.

In general consider a derivation tree t of Gk'

18

The following will be a reduced computation sequence for t:

cs=m1,¢> CSy CSy + .. €S <N, S, >
where
.= < . ' e ee < .
ch N s lJ> <n3, lJ> nm, IJ>
< S.>< S>... <n,S >,
=17 SN m=1)? 7] N2 7

Since |cs(n)| = 2k for n # n, and |cs(n'1)| = 2 it is obvious that G, is

k~-visit.

We claim that the translation 7(k) cannot be specified by a (k-1)-visit

AG over the semantic domain 8.

To see this, assume that Gk' is a (k=1)-visit AG over the semantic domain
% such that T(Gk', 9) = 7(k) and let t be the derivation tree for A" as above.
The length of any reduced computation sequence for t in Gk' will be less
than or equal to 2(k-1) « m+2 since each internal node is visited at most
k-1 times and the root of t only once. Each application of a semantic
function from F can at most increase the length of the value of the:'"new!"
attribute by one compared with the "old!" one. Thus the length of

meaning(t, ®) is at most 2(k-1) » m+1 (we must start by applying 1>\())
which contradicts the fact that the length equals 2k » m.

Altogether this proves the following theorem.

Theorem 5.1

There exists a semantic domain § such that translations specified by k-visit

AGs over 8 define a proper hierarchy.
O

19

References

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

G. V. Bochmann:
"Semantic evaluation from left to right!", Comm. ACM 19, 55-62, 1976.

J. Engelfriet and G. Filé:
"The formal power of one-visit attribute grammars!

Memorandum 286, Twente University of Technology, 1979.

M. Jazayeri, W.F. Ogden and W. C. Rounds:
UThe intrinsically exponential complexity of the circularity problem
for attribute grammars!, Comm. ACM 18, 697-706, 1975.

M. Jazaveri and K. G, Walter:
"The alternating semantic evaluator!
Proceedings of the ACM 1975 Annual Conference, 230-234, 1975.

M. Kastens:
"Ordered attribute grammars', Acta Informatica, vol. 13,
Fasc. 3, 229-256, 1980.

K. Kennedy and S. K. Warren:

"Automatic generation of efficient evaluators for attribute grammars!,
Conference Record of the Third ACM Symposium on Principles

of Programming Languages, 32-49, 1976.

D. E. Knuth:

"Semantics of context—free languages!, Math. Syst. Theory 2,
127-145, 1968.

"Semantics of context-free languages: correction!", Math. Syst.
Theory 5, 95-96, 1971.

B. H. Mayoh:
"Attribute grammars and mathematical semantics!
DAIMI PB-90, Dept. of Comp. Sci., Aarhus University, 1978,

H. Riis:
"Subclasses of attribute grammars!!

DAIMI PB-114, Dept. of Comp. Sci., Aarhus University, 1980

	20051017105012_Page_01_Image_0001.tiff
	20051017105012_Page_02_Image_0001.tiff
	20051017105012_Page_03_Image_0001.tiff
	20051017105012_Page_04_Image_0001.tiff
	20051017105012_Page_05_Image_0001.tiff
	20051017105012_Page_06_Image_0001.tiff
	20051017105012_Page_07_Image_0001.tiff
	20051017105012_Page_08_Image_0001.tiff
	20051017105012_Page_09_Image_0001.tiff
	20051017105012_Page_10_Image_0001.tiff
	20051017105012_Page_11_Image_0001.tiff
	20051017105012_Page_12_Image_0001.tiff
	20051017105012_Page_13_Image_0001.tiff
	20051017105012_Page_14_Image_0001.tiff
	20051017105012_Page_15_Image_0001.tiff
	20051017105012_Page_16_Image_0001.tiff
	20051017105012_Page_17_Image_0001.tiff
	20051017105012_Page_18_Image_0001.tiff
	20051017105012_Page_19_Image_0001.tiff
	20051017105012_Page_20_Image_0001.tiff
	20051017105012_Page_21_Image_0001.tiff
	20051017105012_Page_22_Image_0001.tiff

