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SUMMARY

This paper shows how invariants can be found for coloured Petri nets.
We define a set of transformation rules, which can be used to transform

the incidence-matrix, without changing the set of invariants.




1. INTRODUCTION

In [ 2] coloured Petri nets are defined as a generalisation of place/
transition-nets, and it is shown how to generalise the invariant-concept,
[3], to coloured Petri nets. The elements in the involved matrices are
no longer integers but functions, and matrix-multiplication is generalised
to involve composition/application of these functions. In [2] it is shown
how to use invariants when proving various properties for the con-
sidered systems. In the present paper it will be shown how to find
invariants by a sequence of transformations mapping the incidence-matrix
into gradually simpler matrices with the same set of invariants. The
present paper is a continuation of [2], and it will use the definitions and

notations from [ 2] without further explanation.

In section 2 we define four transformation rules, which can be used to
transform the incidence-matrix of a coloured Petri net. The four trans—

formation rules are inspired by the method of Gauss-—elimination, which
is used for matrices, where all elements belong to a field. We prove that

the transformation rules are sound, i.e. they do not change the set of

invariants.

The matrix-elements for coloured Petri nets are not contained in a field,
but only in a non-commutative ring, and thus division of two elements may
be impossible. For this situation no general algorithm is known to solve
homogeneous matrix-equations. Thus we cannot expect our set of trans-
formation rules to be complete, i.e. it is in general not possible to find

all invariants only by means of the rules.

Although our set of transformation rules is not complete, it often allows
us to transform the incidence-matrix to such a degree, that a number of
invariants immediately can be found by inspection of the simplified matrix.
In sections 3-5 we describe three different systems by means of coloured
Petri nets, and we use the transformation rules to find invariants.
Section 6 is a conclusion and we summarise the results from our three

examples.




When a coloured Petri net is used to describe a system the corresponding

incidence-matrix normally has the following properties:

it is a sparse matrix

there is a high degree of dependency between the individual

columns

~ there are several solutions for the homogeneous matrix—

equation

- many of the matrix-elements are simple commutative functions,

e.g. identity~-functions

it is hot a square-maitrix.

Our transformation rules are designed to benefit from these properties,

and they will not be adequate for other more general kinds of matrices.




2. TRANSFORMATION RULES

In this section we define the four transformation rules and prove

their soundness.

In an incidence-matrix each row corresponds to a single place. We
shall, however, define our transformation rules on a more general
form of matrices, where each row may have a set of places attached.

Each place is attached to at most one row, and it carries a weightfactor

indicating how to translate solutions for the homogeneous matrix—

equation into invariants (details will be defined later).

Let D be Nor Z. In [2] we considered functions of the form
f€ [A=[B~ D]] and the linear extension f€ [[A~+ D] =+ [B =+ D]]

defined to satisfy f(g)(b) =Z g(a) f(a)(b) for all g€ [A+ D] and b € B.
acA
However, to guarantee convergence of the summation, it is necessary

to replace any set of the form [C + D] by its subset [C = ID]]C containing
only those functions h, where the support {c €C | h(c) 75 O} is finite,
For finite C we have [C - [D]f =[C = D].

Let P be the set of places of a coloured Petri net and for each p € P
with colour-set C(p) define D(p) = [C(p) - Z]f. A matrix (with places

and weightfactors attached) is wellformed (over P) iff it has the following

properties:

a) All matrix-elements are linear functions.

b) Each column has attached a nonempty set C, and each

element in the column has [C - Z]f as domain.

c) Each row has attached a nonempty set C, and each element

in the row has [C = Z]. as range.

d) All places attached to rows are elements of P.
e) Each place is attached to at most one row.
f) Each place p, attached to a row with range D (see below),

has a weightfactor, which is a linear function from D(p)

into D.




The domain (range) of a column (row) in a wellformed matrix is defined

as the domain (range) of its elements.

For each coloured Petri net the incidence-matrix is wellformed over

the set of places in the net. In each step of our transformations we

shall assume the current matrix to be wellformed, and it can be proved
that our transformation rules preserve this property. But first we define
how to translate the solutions of a homogeneous matrix-equation of a

wellformed matrix over P, into invariants over P.

It should be remembered that we consider homogeneous matrix-equations
of the form u ® W = O, where the unknown vectior u has an element
u(r) for each row r in the matrix W. In particular this means that our

generalisation of Gauss~-elemination operates on columns instead of rows.

Let u be a solution o the homogeneous matrix—equation of a wellformed
matrix over a set of places P. The corresponding invariant v is defined

by the following equation satisfied for each place p € P:

u(r)e w if p is attached to row r with weightfactor w

vip) =
O if p is not attached to any row

An invariant v covers a place p if the weight v(p) differs from the

zero-function O,

To define our transformation rules we need the following definition,
which may be motivated by a careful inspection of the proof for our
soundness—theorem. A function of the form f € [[A - Z]f “+ B~ Z] f]

is pseudosurjective iff Vb€ B I g€ [A Z]f 3z€ z - {0} [f(g) = zb].

Surjectivity implies pseudosurjectivity.

Before each transformation-step we assume the current matrix to be of the form

W = (w where 1< n,m< »,

ij) <is=n, 1<iEm




Transformation 1

If column j (i.e. the functions (W”.) )} has domain Aj’ D is a non-

=i<n
empty set, Aj‘ =D~ Z]f and h € [AJ.‘ -+ AJ.] is a pseudosurjective linear

function, replace column j by (W.. o h)

H 1
i <i<n and replace domain Aj by Aj .

Transformation 2

IT two different columns j and k have domains Aj and A, and h € [AJ. - Ak]

is a linear function, replace column j by (WU + Wikg h)1SiSn'

Transformation 3

If all elements in column | are zero-functions, remove column j.

Transformation 4

If all elements in column j are zero-fucctions, except two different elements

WU and W which satisfy Wij =hand W, . =~go h, where g and h are

Kj’ Kj
linear functions and h is pseudosurjective, replace row k by
(go Wij + ij)EjSm' For each place p attached to row | with weightfactor

w, give p weightfactor we g, and if we g differs from the zero~function,

attach p to row k., Remove row | and column j.

Transformations 1 and 2 are generalisations of the rules for Gauss-elimination.
They can be used to simplify the matrix-elements, but do not change the
size of the matrix. Columns and rows can be removed by transformation 3

and by transformation 4,

Column j is a linear combination of a set of columns A iff there exists a

family of linear functions {g_ | a € A} such that W.. = & W. o g_ for
a i ia a
all 1€ 1..n. acA

From transformations 2 and 3 we can derive a fifth transformation rule.
It allows us to remove any column, which is a linear combination of a set
of other columns. It should be noted, that a column j may be a linear com-

bination of a column k, without k being a linear combination of j.

Transformation 4 may seem complicated, but in most applications g will be

a very simple function.




If g is the identity~function we have a column with two non-zero elements,

which satisfy Wij = -W Then column j corresponds to an equation,

kj®
where any solution u must satisfy u(i) = u(k). Transformation 4 allows
us to add row | and row k., The set of places attached to the new row

is the union of those attached to the old. All weightifaciors are unaltered.

If g is the zero-function we have a column with only one non-zero element
Wi" Then column j corresponds to an equation, where any solution u
must satisfy u(i) = O. Transformation 4 allows us to remove row i,

together with the places attached to it.

A matrix W' (with domains, ranges, places and weightfactors attached).
is obtainable from an incidence-matrix W of a coloured Peiri net iff there
exists a sequence of transformations of types 1-4, which transforms W

into W',

The four transformation rules are independent, i.e. omission of any of

them would decrease the set of obtainable matrices.

Proposition

Any matrix obtainable from an incidence-matrix with places P is

wellformed over P.

Proof Check that each transformation rule preserves wellformedness.

O

Theorem (soundness)

Let W! be a matrix obtainable from the incidence-matrix W of a
coloured Petri net. Then W! and W have exactly the same set of

invariants.

Proof For each type of transformation rule we prove that a single
application does not change the set of invariants. Then a simple induction-

argument completes the proof.




Transformation 1

h n
We shall prove % Vi o Wij =0, ® z v, o (WiJ' o h)= O, where O
i=1 i=1

are zero-functions over domains Aj and AJ.' respectively.

and O

1 2

By linearity of the involved functions we get ( Z Vi o (W i oh)g!) =
i=1
(2 Vio W, )(h(g')) for all g' € A '. It is thus enough to prove the following
Ji=1
biimplication

QEA [ vie W, )(g)—o] ® Vg'EA'[ Evav )(h(g'))=O]
i=1 i=1

= follows directly from the functionality of h, while « follows from

pseudosurjectivity of h and from liniarity of the involved functions.

Transformation 2

By linearity of the involved functions we get the following biimplication

n
EvoW = O A EVoW = O
ij ik
i=1 i=1
g
EVo(W +Wkoh)—OAEVoWik=O

i=1 i=1

Transformation 3

Column | corresponds to an equation, which is always satisfied, and
can thus be removed without changing the set of invariants. By trans-
formation 3 we may obtain a matrix with no columns. Such a matrix

has as solutions all vectors u which have the correct size and functionality.

Transformation 4

Column j corresponds to an equation, where any solution u must satisfy
u(i) = u(k) o g. When this is the case linearity of the involved functions
allow us to combine the two rows without changing the set of equations,
and column j can be omitted since the corresponding equation is always

satisfied (by the modification of the weightfactors). 0

In section 3-5 we consider three examples of coloured Petri nets, and we
show how our transformation rules can be used to obtain simple matrices

from which invariants can be found directly by inspection.



3. SMAL L. DATA BASE SYSTEM

Our first example is the network of data bases, described and analysed
in[2], section 5. The example has also been used in [1], where it

was described in terms of predicate/transition-nets.

In figure 1 the horizontal and vertical lines labelled m0, ml, m2, and
m3 indicate four different matrices. The four asterisk!s in the horizontal
line labelled mO shows that the incidence-matrix m0 has four columns

cl-c4. Analogously the vertical line labelled m0 shows that mO has eight

rows,
cl c2 c3 c4 c5 c6
DBM DBM MB MB DBM MB
mo * * * * T2,
cl+c2
mi T2, i T2,
c5 * ¥ * * c3+c4
m2 % T2, % * %
c6
m3 * x T3, T4,
inactive DBM | % * | % * -ID ID -RECI REC
walting DBM * *x | % * 1D -1D
]
performing DBM | % * | % * REC,‘—REC
exclusion E * * | ox ] % -ABS ABS
unused MB * * | % * | ~MINE MINE
sent MB * * [ * [T4,] MINE -ID MINE -ID
——————————————————— e = ———t e e e e e ———————— ———
received MB * | x| % | % D | -ID
i
acknowledged MB * bk % T4, -MINE | 1D ~-MINE ID
i
sent, acknowledged | MB T4, * ~MINE ! 1D

Figure 1. Small data base system, A.

The asterisk!s indicate the columns and rows contributing to the individual
matrices. Application of transformation rules are indicated by equations.
Each equation contains a transformation number (T1-T4) or NLC! (for linear
combination). Moreover the equations contain the involved column numbers
and the applied functions when these are non-trivial. An equation above
(before) an asterisk indicates how the column (row) is created, while an
equation below (after) an asterisk indicates how the column (row) is removed.
The sequential order of the transformations is shown by subscripts, and this
also enables us to distinguish between different applications of the same

transformation rule.



From the horizontal lines m0 and m1 it can be seen that column cl by T2
(transformation 2) has been removed in favour of column c5, which has
been created by adding c1 and c2. Analogously c3 is removed in favour

of c6 and we have the matrix m2, consisting of c2,b c4,‘ c5, cb6 and the

first eight rows. By T4 c6 is removed and the rows for "sent! and
"acknowledged! are combined into a new row. Next T3 allows us to remove
c5, and we have the matix m3, also shown in figure 2, together with five
solutions to the homogeneous matrix-equation. The five solutions corres-

pond to the five simple invariants found in [2].

c2 c4 mg i1 i2 i3 i4 i5
m3 DBM MB DBM MB E DBM MB
inactive DBM 1D REC LDBM 1D
waiting DBM ~-1D 1D ABS MINE
performing DBM ~-REC 1D 1D
exclusion E ABS 1 1D

_L:\;_s:a;i ____________ _—I\ZB MINE MB ID

sent, acknowledged | MB -MINE 1D 1D -1D
received MB -1D 1D -REC -ID

Figure 2. Small data base system, B.

In this paper all applications of T4 will be with g equal to the identity-
function or the zero~function. This implies that all weightfactors are
identity-functions and they will not be shown. In more complicated examples
it is sufficient to show the weightfactors, which differ from the identity—~

function.

During the transformations it is important to use a systematic notation

to show the transformations already performed and the matrix currently
obtained. Using the asterisk-notation it is possible to show all transfor-
mations and all obtained matrices in a single figure, but often clarity is
enhanced by redrawing (and reorganizing) the entire matrix. As a further

aid to the eye, columns and rows can be hatched when they are removed.
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4, TELEPHONE SYSTEM

Our second example is a telephone system. The coloured Petri net in
figure 3 represents the behaviour of individual telephones, as seen by
users. The status of a telephone may change from "inactive!' to the
situation where the receiver has been removed and you hear a "continuous'
tone. Next to the situation, where a number u has been dialled and you
hear '"no tone! until either you get a tone with "'short! intervals (indi-
cating that telephone u is already engaged) or you get a tone with Hong"
intervals (indicating that the bell is "ringing! at telephone u). In the

latter situation the receiver may be removed at telephone u and the two
telephones are "connected" until the calling telephone returns to "inactive!

thereby making telephone u !"disconnected!.

u
N\

g inactive J= N

AN T

I
u u

{ continuous

Uop

] Gol  [=] 7]
u \ \

P

1 u

Nno tone

( short ) Cringing
U

P

+P2
{ connected ’
U
P1+P2

N =)

2

\ /

isconnected

U

Figure 3. Telephone system, part 1.
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U is a set of colours, which represents the different telephone numbers.
InV = U x U the first component represents the calling telephone, while
the second component represents the called telephone. F’1 and Pz are the
two projections mapping elements of VV in their first and second component,

respectively,

The coloured Petri net in figure 3 describes how individual telephones
behave, but tells very little about the synchronization between them.

This synchronization is described by the coloured Petri net in figure 4,
which represents the telephone exchange. Thus the total telephone system
consists of figure 3 overlayed by figure 4 (i.e. identification of the tran-

sitions with the same number).

Seen from the telephone exchange each telephone may be "free " or
"engaged!. A pair (u1, uz) at "request!!" indicates that U, has been dialled
from u,. When u, is !"free' the call (ul, uz) may progress to '"request2!!

and when the receiver is removed at U, there is "connexion!! between u

1

and uz.

74
( 4 free request1
P Pty [P (
(o] [5] [3] [7] [&] ] O]
\v Vv u u
P P, +P P
! \1 2 \J { engaged request2
AN
P
u 257
5 v
. { connexion )
\ v /
\_ ),

Figure 4. Telephone system, part 2.
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The net in figure 4 contains a sidecondition (transition 4 has only
concession if the called telephone is ""engaged', but the firing of
transition 4 does not change the marking of '"engaged!). This side-
condition is not reflected in the incidence-matrix shown in figure 5,
since no tokens are added or removed by the firing. There is not a
bijective correspondence between incidence-matrices and coloured Petri
nets with sideconditions, but only between incidence-matrices and
coloured Petri nets without sideconditions. Invariants are defined in
terms of the incidence-matrix, and thus they can say nothing about
system properties relying on the presence of sideconditions. But, as

we shall see, there is still a large number of interesting invariants.

Initially mo(inactive) = mo(fr‘ee) =2 U and all other places are unmarked.
The incidence-matrix is indicated by lines m0 in figure 5 and it can be

transformed as shown in figures 5, 6 and 7.

cl ¢2 ¢3 lc4 c5 c6 c? c8 c9 cl0 clil c¢ci12 ci3
U \ \ \ \ AV 8} V] \ \ ¥) \ u
T2 T
mo ¥ * * * * * * * * % cores c7—2§8
T2 T LC
m1 * c15 x * * * 5125 * * * _c1a * x
m2 |« * * * * % x * T4, LEA
inactive u * *| *|-iD —F’2 P D |{»] P1+P2 P D
continuous uj| ¥ T4l D -P ~-ID -P,
no tone [V I B Py =P -P, -P;
fong O B I P -P, -P,
short U Fp O Ty P1 -1D P1 1D
ringing U LR P, _Pz -P,
connected u * | % * p1+p2 _p1_p2
disconnected u x| Tay P, -ID ~1D
PR N -
free u D P, Py [[»] ID P +P, P, D
engaged (0 L I B A P, -P, -ID -ID -P-P,} -P; -ID
requesti AV I L iD -ID 1 -ID ~1D
request2 AV ki B D ~-ID -iD
cohnexion A2 I A ID -ID
cont,short,disc) y T4 * 1D p1 pz _ID

Figure 5. Telephone system, A,



cl c3 c4 c5 c6 c8 c9 cl10 cl4 ci15
u \Y v \Y% \V u \ \V \Y% \Y
m2 * * * * * * * *
LT, Cs T2,
m3| % e * e R S
~ -c1 —cloPy, clPy| clp, eote
T2 T2,
* * 10
mé c15 clé * ¥
inactive u -1D —Pz F>1 1D P1+P2 P1
cont, short,disc | U 1D F>1 Pz -1D p1+pz p1+p2
no tone u _p] _p1 _Pl
fong u P] —F’1 --P1 -P1
ringing u Pz —Pz _pz _pz
connected ]} P]+P2 —PI—PZ ._pr.pz
free -ID ~P, 1D
. u o P iﬁpz P,
engaged u 1D Pz —F’1 ~iD _PI-PZ —P1
requestl \ ~1D -1D ~ID
request2 Vv 1D ~-ID -1D 1D
connexion AV D ~-ID 1 -1D
I

Figure 6. Telephone system, B.

For the matrix m4 eight solutions to the homogeneous matrix-equation

is shown in figure 7, and it is easy to interpret the corresponding in-
variants in terms of the original system. As an example i7 tells that

the "ringing'' telephones are exactly those for which a call is waiting

at '""request2!", and i5 tells that a telephone is ""connected! iff its number

is contained in one of the telephone~pairs having ""connexion!,

cl c4 cl4 cl15 m il i2 i3 i4 i5 i6 i7 i8
0

mé4

U \v AV \ U u U U U u U E
inactive u -ID P2 9| ID 1D
cont, short,disc u D P] P1+F’2 PI+P2 1D
no tone u -F’1 1D -1D
long u —PI 1D -1D -ABS
ringing u —F’2 D ~1D ABS
connected u —F’1-P2 1D ~1D
free u -ID zu ID -ID
engaged u 1D 1D
request] v -1D P1
request2 \ ~-ID F’1 PZ
connhexion \Y -ID F’1+F’2

Figure 7. Telephone system, C.
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The coloured Petri net in figures 3 and 4 constitutes a formal model,
which allows us to determine even the more subtle properties of the
specified telephone system. As an example, we can investigate what
happens when a telephone is called by itself, and it can be seen that a
""connexion' only can be interrupted by the calling telephone and not
by the called telephone. If only an informal description was given, it

would be easy to forget about some of these special cases.

Now an important question has to be answered. How did we find the
transformations to be used in figure 5 and figure 62 In particular it
may seem difficult to know, when it is adequate to apply T2, and to

find columns, which are linear combinations of other columns.

In general it is advisable to look for columns, which as far as possible
have their non-zero elements in the same rows. As an example c1 and c6
(in figure 6) have four non-zero rows in common. Having made this
observation it is rather easy to obtain c14 by means of T2 and the function

P1. Next we have to decide, whether it is c1 or c6, which should be

removed in favour of c14, If we, as shown, choose to remove c6 we can
use T2 directly. If we choose to remove c1 we must first use T1 to re-

place c1 by Hcloe PI“, which then can be removed by T2. Normally we remove

the most complicated column (i. e. many non-zero elements or complex functions).

A linear combination will often be established in several sieps: Two
columns are combined, and some of the elements in the new column are
identical to those in an existing column. We record the rows, where the
columns differ and search for a third column with non-~zero elements in
those rows., This process may continue in several steps until we hit the
desired column. As an example we may start by combining c1 and c6
according to the equation "c6 - c1 o P1”. This yields a column with

four occurrences of ”P1 + Pz“, which are present in several other
columns. We next notice that this new column is identical to c9 except

at the places "long'", "ringing!, '"connected", ''request2!", and ''connexion!',
But these five places are exactly the non-zero rows for ¢5, and by adding

this column to '"c6 - cl1o P1” we get c9.

It should be noted that in figure 7 the columns are "independent!" in the

sense that only the second row has more than one non-zero element.
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5. LARGE DATA BASE SYSTEM

Our third example is a network of data bases, similar to that in our first
example. But now several managers can be non-passive concurrently and
this calls for a more complicated communication discipline. The example
has also been used in [ 1] and [ 5], where it was described in terms of
predicate/transition-nets and synchronization processes respectively.
The system is described by the coloured Petiri net in figure 8, which is

a straightforward transiation of the predicate/transition-net given in [1].

The set of colours and the functions are the same as for the small data
base system in section 3, except that SEN maps each pair <s,r> € MB
into its first component, which indicates the sender. For convenience
some places are shown more than once. The initial marking is

mo(passive) =7,DBM and mo(HOME) =L MB. All other places are unmarked.

Transitions b1, b2 and b3 represent user interaction with one of the
managers, A user can request an operation by placing a token on "INTREQ!
(b1) and later receive an answer as a token on !"/DONE! {b2) or "REJECT"!
{b3).

Wwhen manager k finds an internal request on "[NTREQ!, k passes from
"passive! to "active!! and informs the other managers by moving the
corresponding message buffers from "HOME! to HEXTREQ!' {transition 1).

Now there are two possibilities:
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MB =T DBM ME
rREQ M 1 HOME
MINE MINE

D

B REC

MB
@ active

soaking
DBM

SEN 7 N REC X

Figure 8, Large data base system.
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Manager k gets a positive answer on ”ACK+“ from all other managers

(6, 11, or 15; depending on the state of the manager). Then k performs
the update and passes from Mactive" to "updating'' and sends an update-
request to the other managers on '"UPD' (2), The other managers perform
the update and answer k on "ACKd!" (4, 10, 12, or 14; depending on the
state of the manager). Then k returns the message buffers to "HOME",

informs the user at "DONE! and passes from ''updating! to !passive" {13).

Manager k receives at least one negative answer on NACK ! (5}, Then
k informs the user at "REJECT!" and passes from "active!! to !"'soaking!!
(3}. The answers at HACK T and "ACK ™" are collected at "ACKb"
(repeated firing of 7 and 8). Then k returns the message buffers to

NHOME! and passes from !'soaking!' to !"passive! {9).

<l c2 3 cit <5 cb 7 8 <8 i1cl0 ¢11 ¢l2 | <13 cla ci5 1 ¢c16 <17 c18
bt b2 b3 1 2 3 4 5 & 7 8 g 10 1 2 13 14 15
DEM DBM DBM! DBM LBM MB | MB MB M3 IMB MB DBM| MB MB MB |DBM MB MB
mo x * » » * ® * * x> s * ® - * » . » ¥
[ LC tc; LT
ml| T4 T4, Ty * * * = % * = * * c7‘ * c75 + C?s CM‘:
INTREQ | DBM| * T4} 1D -0
DONE DMl ¥ T4, ~1D [I=}
REJECT |08M| * iT4 -1z SEN REC
passive DM * | * -ID D 1D
active DBM| * * D -1 -SEN -REC
soaking DBM] * | * SEN REC B[]
updaiing [DBM| ® | * ] -1
HOME M3 x| ¥ -MINE MINE MINE
EXTREQ | MB | * | * MINE -1D -1D -o -1D
acxt va | x| —MINE g T, o) 10
ACK™ MB | x| ¥ : i -1D
ACKDb M3 | ¥ ¥ 10 D -MINE
ACKd MB | * | = [ L 1D | -MINE 1D
UED MB | ¥ | * { MINE ~1D «ID ~ID ~ID

Figure 9. Large data base system, A,
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c4 c5 c6 c7 8 c9 cl0 cii cl2 cl4 cli6
DBM  DBM MB MB MB MB MB MB DBM MB DBM
mi * * * * * % * * * * x
m2 * * Thy 1Tay Tay * T4, T4,  * T4, ¥
3 ¢
m * * T3, * *
passive DBM x| *| x -1D D 1D
active DBM * [Tay 1D -1D ~SEN -REC
soaking DBM * T4y SEN REC -iD
updating DBM * 1 % * 1D -10
HOME MB * | % % | -MINE MINE MINE
EXTREQ MB * [Ty MINE -iD  -ID -1D
ack?t MB | « T4, -MINE D |-ID D
ACK™ MB * [T D -iD
ACKb MB * [Tay 1D ID -MINE
ACKd MB | % [Tay, 1D ~MINE
uPD MB | % [Tay, MINE -1D
active, soaking DBM Tyl % = D -1D ~iD
EXTREQ,ACK™| vg {rul | o | MiNE —mine —MINE
ACK™,ACKb &
ACKd, UPD MB  [Tay *| * MINE ~“MINE

Figure 10, Large data base system, B.

The incidence-matrix can be transformed as shown in figures 9, 10 and 11.

For the matrix m4 five solutions to the homogeneous matrix—-equation are

shown in figure 11, and it is easy to interpret the corresponding invariants

in terms of the original system. As an example i4 tells that when a process

is "active! or "soaking', all its message buffers are either at '"EXTREQ!,

nack i,

HACK™

"
4

or "ACKb!",

It should be noted that the matrix m4 is non-sparse, in the sense that 8

out of 12 elements differ from the zero~function.

c4 ch cl2 ct6 m il i2 i3 14 i5
DBM DBM DBM DBM DBM MB MB MB MB
m3 * * * *
LC,, Ceo
mié 1 o153 cla—cle * *
passive DBM -iD ID D ZDBM 1D MINE
active, soaking DBM 1D ~iD -ID 1D MINE
updating DBM D -1D 1D MINE
HOME MB -MINE MINE MINE | ZMB D -1D
+
EXTREQ,ACK
ACK™, ACKb MB MINE -MINE -MINE ID -ID
ACKd, UPD MB MINE -MINE 1D -1D

Figure 11, Large data base system, C.
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6., CONCLUSION

We have defined a set of transformation rules, which can be used to
transform the incidence-mairices for coloured Petri nets. The trans-

formation rules are sound and independent, but not complete.

Moreover we described three different systems by means of coloured
Petri nets. For each system our transformation rules allowed us to obtain
a simplified matrix, where it was easy to find solutions for the homo-
geneous matrix—-equation. These solutions were translated to the corres-
ponding invariants and some of these were interpreted in terms of the
original coloured Petri net. The degree of simplification achieved by

our transformation rules is shown in figure 12.

T T 1 -
Rows | Columns | Elements | Non-zero
! 1 ' elements
before after }befor‘e after‘J'befor*e after‘} before after

1 1 I
I | I

Small data 8 7 i 4 2 I 32 14 1 18 9
base system = 'I
1 | i

Telephone 13 11 11 4 1143 a4 b 52 14
system i i
i 1

Large data 14 6 | 18 2 L 2s2 12| a7 8
base system i i i
I i i
Figure 12 Size of the matrices before and after

application of the transformation rules.

In this paper we have not used transformation 1, and we have only
used transformation 4 in the two simple cases, where g is the identity-
function or the zero-function. However, in the analysis of larger,
more complicated systems, we have found the need for these two trans-

formations.

Our transformation rules can be used to find invariants, but they can

also show that certain places cannot be covered by any invariants.
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In [4] it has been shown for place/transition-nets that the existence

of non-coverable places implies that the net either is not ""strongly

bounded!" or has no "alive!' marking. It would be of interest to derive

a similar result for coloured Peiri nets.
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