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Abstract

Methods are described which make it possible, when given an arbitrary attribute

grammar (or AG),

1. to analyze the AG to determine which of its atiributes may be computed during

LR parsing;

2. to augment the parser with instructions and data structures to compute many

attributes during parsing;

3. to use attribute values to assist the parsing process (e.g. to use symbol
table information to decide whether P(X) is an array element or a function
call).

INTRODUC TION

Related work

This work builds on a number of other results concerning atiribute evaluation
during parsing. An early paper by Lewis, Rosenkrantz and Stearns [LLRS74]
describes evaluation of synthesized attributes during parsing, and introduces the
idea of an L-attributed AG, in which both inherited and synthesized attributes may
be evaluatéed in one left-right pass over the parse tree. Bochmann [Boc’?G] develops
this idea further, including multipass evaluation.

Evaluation of inherited attributes during bottom-up parsing is trickier since
the parse tree structure is not definitely known (e.g. teft recursion gives problems).
A method to evaluate both types of attributes during LLR parsing of (_-atiributed
AGs is in [Wat??a]. New nonterminals called "copy symbols!! are added to the AG.

These derive the empty string; their purpose is to drive action routines which




maintain a stack of attribute values, Unfortunately it is not easy {o see where or
whether copy symbols can be inserted without destroying the LLR property. This
problem is addressed by Purdom and Brown [PuB79]; They present an efficient
algorithm to find ''safe' positions in productions for such insertions.

The use of attributes to influence parsing decisions seems to originate with
Watt (e.g. [Wat77a]).The technique is further developed and a number of realistic
applications are given in [WatBO]. He also describes implementation in top-down,
bottom-up and multipass parsers. Milton and Fischer describe the use of this tech-
nique in a compiler-writing system which uses LL. parsing [MiF?Q].

Rowland investigates attribute evaluation in bottom-up parsing via left corner
parsing [Row?77]. Raiha and Ukkonen [R&uU80] introduce conditions on attribute
grammars parsable by "recursive descent!" and "'recursive ascent!" which allow
evaluation during parsing. These generalize the classes of both [MH:79] and

[Row?77], and allow some use of inherited attributes with left recursion.

Overview

The method to be described systematizes and extends those referenced above.
It is based on a more powerful method described in [Mad80a].

Our approach evaluates atiributes during LR parsing, based on a preliminary
analysis of the structure of the LR parse tables and the AG. If the AG is

LR-atiributed then every atiribute will be evaluated as scon as possible during

parsing; otherwise as many attributes as possible are evaluated during parsing,and
the remainder are evaluated afterwards. Even for non-L R-attributed AGs (and
most realistic programming languages contain a few right dependencies) consider-
able storage savings may result from this approach, providing the attributes are
saved in an expression dag (described below).

Further, the parse-time known attribute values may be used to influence the
parsing itself, allowing the use of grammars which are syntactically ambiguous
even though semantically unambiguous. Such grammars are often more natural
and/or‘ compact than their LR equivalents (and an LR equivalent may not even exist).
A common problem solvable by attribute~influenced parsing concerns identifiers:

a choice between ''procid = identifier!", "arrayid =+ identifier", "simplevar = identi-
fier!! is most naturally based on symbol table information. Other natural examples
may be found in [ Wat80].

Our approach begins with the output of a parser generator (SLR, LALR or LR)

H

so we recall some terminology from [AhU77]. A parse configuration is a pair

(So Xog Sq oo X S, aj...an$)

where each ><i is a grammar symbo} and each Si is a state. A state is a set of items
of the form A = «.8 where A » aff is a production (for full LR parsing an item has

the form [A @+ .8 u]. We won't make use of the lookahead u and so drop it for nota-



tional simplicity). The parse tables have the functionalities:

ACTION : Siates x Lookaheads = Actions
GOTO : States x Nonterminals »+ States

where Actions may be of four types: shift S, reduce X #+ g, accept and error,

Following is an overview of our method:
First the base grammar of the AG is processed by an LLR parser generator.

The AG is analyzed (in conjunction with the parser's output) to classify each

attribute as known or unknown.

The values of all known attributes will be maintained on the stack during

07t X
those symbols; in addition, the values of the known attributes in

parsing. Known synthesized attributes of X will be kept with

IN(Si) = {g ‘ a is an inherited attribute of a nonterminal B such that

S, contains an item A-+o.BB |
will be kept on the stack with state Si'

Values of unknown attributes of the stack symbols will be kept elsewhere (see

the next section).

Known attributes are evaluated when performing shift and reduce actions

(see Figure 2 for an example of a parser augmented by evaluation actions).

Attributes may be used to influence the parsing process by replacing error

entries in ACTION by disambiguating predicates (the term is from [MiF?Q]),

These may conveniently take the form

CASE
pr‘ed1 : ac:tion1
pred : action
n n

ESAC

in this expression pr‘ed1, . e ,pr‘edn are logical expressions depending only on
attributes present on the stack, and action1, oo ,actionn are in Actions. The

first true predicate selects the corresponding action.

Remark Each item A = g¢.Bf in a state Si represents a prediction of the form of

the remaining input. Since this is not yet known, we maintain information of the

atiributes of every such B, even those which may turn out to be unnecessary on

the basis of future input. This redundancy seems to be very small for practical AGs,

partly because we store only the values of distinct attributes of Si'




Example of Notation

We use the concise and readable notation of [Wat77b]|. The example in

Figure 1 (taken from [Watt??a]) should be self-explanatory; it models variable

declaration and usage, with the usual constraints that every usage refers to a

declared variable, and that no variable is declared twice.

An attiribute occurrence a in an AG rule X = ><1. . .><m is called

defining if it is an inherited attribute of X or a synthesized attribute
of ><1, cee s X '

applied if it is a synthesized attribute of X or an inherited attribute
of ><1,. o ,Xn.

Following Bochmann [Boc76] we assume that each applied attribute occurrence is

a function of the defining atiributes. We further assume the AG is noncircular.

Grammar Symbol Attributes

pg = program pg 1OK

dc = declaration dc tOK
dc t1SET

st = statement st ISET
st 1OK

v = variable v 1 VAR

Atiribute Productions
<pg 1OK1 and OK2>
<dc t{VAR/} fttrue>

<dc 1SET U {VAR} 1OK and VAR ¢ SET>

<st ISET ttirue>
<st ISET tOK and VAR € SET>

Interpretations

is true iff the program contains no errors of

variable usage or declaration

is true iff no variable is declared twice in
this declaration
is the set of variables declared in this

declaration

is the set of variables declared in this
program
is true iff this statement contains no unde-

clared variables

is the name of this variable (given by lexical

analysis)

<dc t1SET t1OK 1> <st |SET tOK2>
declare €v 1t VAR>
<dc 1SET tOK> declare €£v 1 VAR>

+ 4 3 3

€ (empty string)
<st ISET 10OK> use €v t VAR>

+

Figure 1. Example of Attribute Grammar Notation




aulyoerin 91B1S 311Ul 4 B se

MO 1s pUe MO | op =:

(L3st tis 3 mvAl A)
PUE MO

HVYN Y 0 3189

‘] 2unBl 4 Joy 9|ge ] 9sJed bBullen|eAT—-aINglJdilyY ‘g oJnbl -

Yo 6d
1S op « Bd Sonpod .A,J
$

Cis = Mol lis
z L 85
A TSR 15 ¢ '1s  SDNpoad n

(LAS!

fdvnl A} 0 13s) Cop

A DJde[oep NUU « "op

—

C5p 3 uwAL A) PUB MOL Cop = ol lop
13s)

&

andl =: MO\ 1s

J ¢« 1S

Sonpad
/ 13si op = 1351 1s

bop @A HVAL A 199D OA
2oNnpadJ A ENEIEER <l op
aNndJ} = MO op
fdvn Al =t 1354 0p VAL A 199 >
A DJB|D3P ¢ Op °donpad /I\I ENETRETS



STORAGE MANAGEMENT

We now describe two ways to store the values of the unknown attributes.

Attributed parse trees

This is the most straightforward, and involves tagging each parse tree node
with a record containing the values of all its attributes. The known attributes of
stack symbols ><0, N ,Xm_l may be placed in the tree; however, the values of
khown attributes in states SO’ .. ’Sm must be kept on the stack since it is not
known whether or not they will be part of the tree. After parsing is completed the
tree is traversed (e.g. by the methods of [KeW76] or [CoH79]) to compute un-~

known attribute values.

Expression Dags

An alternate approach, described in [LRS74] and implemented in [Mad80b],.
can yield significant space savings over the method above, and avoid the complexity
or incompleteness of known tree traversal algorithms. The parse tree T is not

stored at ally instead an expression dag is built during parsing. This has at most

one. node for each attribute of each node of T. Let a be an attribute of some node of

T. Then there will be an expression a = ex(_a_l, ce ,g_n) giving the vaiue of a in terms
of the attributes of other nodes (n equals 0 for constant or lexically supplied attri-

bute values). Node a in the dag will be labelied with "ex!!, and there will be an or-

dered sequence of edges from a to EPPRRIE- W This graph will be acyclic for any T,
since we have assumed the AG to be noncircular.

Clearly the dag may be easily constructed during parsing. It may be compacted
during construction by using the previously allocated node whenever an identity
attribute expression occurs. Another savings lies in the fact that dag nodes only
need be allocated for unknown attributes. Figure 3 contains an example dag for the
AG of Figure 1 (an unrealistic example since all attributes in Figure 1 may be
evaluated during parsing!).

Attributes may be easily and efficiently evaluated while parsing by a recursive
algorithm (essentially a depth-first search).

The parsing algorithm as described will be bas€d on the dag model, but is

easily modified to work with attributed derivation trees.



OK 1 and OK2

—tme OK and VAR € SET

-

5K and VAR € SET Ltzn 3

Ltrue L XX

. OK and VAR ¢ SET/.~"

SET U {VAR]

Figure 3. Dag for '"declare X declare VY use X use Z"

AN ATTRIBUTE-EVALUATING PARSER

An attributed parse configuration is a pair
(5550%0%0 " Snet Smet

where each Sj is a parse state, each ><j is a grammar symbol, and for 0= j<m

Xm_1 ><m_1 Sm, ai...an$)

§J_ is a record containing

a) the values of the known attributes in IN(Sj)

b) pointers to dag nodes for the unknown attributes in IN(Sj)

?j is a record containing

a) the values of the known synthesized attributes of ><J.

b) pointers to dag nodes for the unknown synthesized attributes of XJ.

The behaviour of the parsing algorithm is determined by the choice of the

known attribute set, K.



PROCEDURE Farse:
BEGIN

Configuration := (SO , a1...an$);

Dag

= emply;

DO FOREVER

oD
END

LLet Configuration = (SOS X S , a.... an$)',

0" "m=1"m i
action := ACTlON[Sm,ai]; {ACTION = parse table}
IF action = conflict THEN action := CASE {use disambiguating predicate}
pr*edlz action1
pr*edn: actlonn
ESAC
IF action = accept or error THEN ESCAPE;

Compute values of known attributes in ln(Sm);
Create new dag nodes for unknown attributes ln(Sm);
Push Sm = record containing these values and node pointers,
IF action = shift S
THEN [X i=a;; pop a; from input]
ELSE |Let action be reduce X =+ ¢,

k:=|a|; S:= GOTO(Sm_k,x);

Pop Configuration dow_rlto (SO. .. Sm—ksm—k T an$);
Let Configuration be (SO' . .SpSp IR an$);
Compute known synthesized attributes of X;

(from lexical analysis if X is terminal)

Create new dag nodes for unknown synthesized attributes of X;

X := record containing these values and node pointers,

Configuration := (SO. . .SpSpXXS , aj. . .an$)

Figure 4. Attribute Influenced Parser

Remarks on the parsing algorithm.
1.

Correctness and efficiency of the algorithm are affected by the choice of K,

the set of known attributes. For correctness K should be small enough so

that whenever an attribute value is computed, all values it depends on are

available on the stack (this may be trivially accomplished by setting K = 0

so that all attributes are evaluated via the dag). For efficiency K should be

as large as possible,




2. If an unknown attribute is copied in an AG rule, a new dag node need not be
created.
3. Attribute values in In(Sm) will not be used if action[Sm,ai] = reduce X = @

with @ # €. A test could be inserted to bypass this computation.

4, The algorithm could be extended to handle some right dependencies as follows.

A state transition goes from a state S to state
S! = CLOSURE ({A2agX.8 | A2 a.XBE€S})

Once the known synthesized attributes of X are computed it may be possible

to evaluate some new inherited atiributes of symbols in&X. In addition the dag
evaluator might be called at this point to evaluate the synthesized attributes
of any symbol Y of @X whose inherited attributes of Y have now all been
evaluated. It appears that these possibilities can be handled by extending our

methods, but at the cost of a considerable increase in complexity.

CHARACTERIZATION OF KNOWN ATTRIBUTES

To do this we analyze the information available to the parsing algorithm when

computing a known attribute a. Three cases arise:

1. a is a synthesized attribute of a terminal. The value of a is given by lexical
analysis.
2. a is a synthesized attribute of a nonterminal A, Then a is computed whenever

a reduction by an AG rule A =» ¢ is performed. It is a characteristic of LR
parsers that the symbols of g will be on the stack top (between the states), so

all information a depends on is potentially available.

(]

a is an inherited attribute of a symbol A and the items of Sm with an A following
the dot are B, - ggi.ABi (i=1,...,n). Another LR parser characteristic is

that for all i, either o, is a suffix of aj or vice versa. All the attributes of

a1, cees O and the inherited attributes of Bi’ ooy Bn are thus potentially
available; however no attribute of ;31, ‘. ’Bn and no synthesized attribute of

A is available. Further, if there are be two indices i,j which cause a to re-

ceive different values .then a cannot be computed during parsing.

Suppose now that K is such that the algorithm evaluates every known attribute
correctly., Then all information needed to compute any known attribute is available
during parsing. This immediately implies two properties of the set K of known

attribuies:
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1 If a € K and g=ex(§1,...,gn) by AG rule A = g, then_a__1,...,gn€ K.

11 No a € K is right dependent. We define a to be right dependent if it

is an inherited atiribute of some nonterminal A, and there is a rule

B -+ wAB which defines a = ex( ,gn) where at least one a; is

a synthesized attribute of some symbol appearing in AS.

RPN

To completely characterize K we also need to account for the last sentence of
case 3 above. This is done by finding a symbolic description of the set of values
assumed by a € In(S) as we range over all parse trees.

Recall (e.g. [AhU77]) that each parse state is of the form
S = CLOSURE(BASIS(S)) where BASIS(S) is either the initial basis {Start -+ . S},

or is of the form
BASIS(S) = {AraX.B | A2 a. XB € S']

for some state S!'. All atitributes in In(S) must ultimately come from those of

BASIS(S). Thus we let the defining attributes of S be those available on entry into

state S
a) inherited attributes of A such that A =+ @.8 is in BASIS(S)

b) synthesized attributes of symbols of a longest & such that A @+ @.8 is
in BASIS(S).

Note: Every attribute of every symbol ing is considered distinct, even if symbols
are repeated.

Every item in S = CLOSURE(BASIS(S)) is the last term of a sequence
AO o AL A cASBosee Ay WA B where Ag i AR € BASIS(S).
Each inherited attribute of Ai is a function of the defining attributes of S. An ex~
pression denoting this function may be obtained inductively from the expressions for
Ai-1

tion

attributes. The set of all such expressions for S may be described as a func-

&_: In(S) U defining

s Sets of expressions in

attributes of S defining atiribuies of S

& __ is defined recursively by:

S
a) egla) =a if ais adefining attribute of S
b) egla) = §ex(e1,. core) | S contains an item B + @.AB, a
is an inherited attribute of A defined
by a = ex(§"1""’§-n)’ and
e € 8S(§—i) for i=1,...,n}

if a € In(S)




We give some examples,

1. Figur‘eTWithS={pg~bdc.st, st+., st .st usev}

E(stl SET) = {dc t1SET}

sl
2. AG rules: <A la> =+ 0 <Bla+ 1> 0
<Ala> =+ 0 <B!la+2> 1

<B | b> =+ 2
State: S = {A20.B0, A=0.B1, B~ .2}

Expressions for S:
eglb) ={a+1, a+ 2}

3. AG rules: <Al a> =+ 0 <Bla+ 1>
<B | b> =+ <B ! b+2> 1

<B | b> = 1
State: S ={A+0.B, B=*.B1, B2 .1}

Expressions for S:

S(g)={_§+ L@+ D+2, (a+ 1)+2) +2, ...}
In examples 2 and 3 the possibility of multiple values implies that b cannot be
computed during parsing. We can at last state the third property of the set K of

known attributes:

I If a€ KN In(S) for some state S, then €s(a) contains only one

expression,

Conversely it may be seen that if I, Il and 11l are satisfied then every known
attribute will be evaluated correctly during parsing. We define the AG to be

LR-attributed if K = fg | a is any attribute |} satisfies Il and 1ll, so every

attribute may be evaluated during parsing. Note that this implies the AG is L.—

attributed.

COMPUTATION OF KNOWN ATTRIBUTES

We now describe a reasonably efficient method to find a maximal set of known
attributes. Let U be the set of unknown attributes. Properties I, Il and Ill may be

restated as asserting that U2 f'(u), where
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f(U) = U U U, U {a | AG rule A »a witha = ex(ay,...,a,)and 3ia; € Ut

U, = {a | aisright dependent }

U, {a| 35 a€ In(S)and Hela) > 1}

We want a maximal K and so a minimal U which satisfies U= f(U). The unique

solution is the minimal fixed point of f, namely o fn(¢). This is easily computed by
n=0
a simple marking algorithm, given UI and u”. L_Jl can be found by scanning the

AG rules. To compute U , we replace 85 by the following finite version which is

11
just as good for our purposes:

65(5'1) if #85(9_) <1

? otherwise

To compute €_! we use the bottom-up algorithm which naturally corresponds

S
to the recursive definition of 85, modified as follows: whenever a set with more

than one element would have been obtained, replace it by 7 .

Remarks
1. The parser step !'compute known attributes in In(Sm)“ amounts to evaluating
{85(9_) | a€ ln(Sm)} . Duplicated attribute expressions in this set need only

be evaluated once. A typical example where this saves attribute copying is

the following in which only one copy of attribute a is needed:

AG Rules: <A | a> = <E | e>
<E le> @+ <El e>+<T 1| e>
<E l e> =+ <T | e>
<T lt> = €T | t> *<ID>
<T 11> = <ID>

State: S={A4.E,E+.E+T,E~+.T, T*+.T %D, T~.ID}

Expressions for S:

legla) | acins)) = {a}
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2, It could be argued that the 85'(a) computation is expensive since the repeated
substitution could biow up the expression's size. However an appropriate and
efficient way to do this is via expression dags, used as in [Ahu77] to remove

common subexpressions.

3. Note that the AG is LR atiributed iff L,Il = U” = Q.

Extension of the Method

A more powerful analysis can be done (and is done in [MadSOa]) by classifying
each occurrence of an attribute In an item of a parser state as known or unknown
(so the same attribute may be known in one state and unknown in another). This
classification may also be used to split the LR states. This approach can compute
more attributes during parsing than the one presented here, but involves a more

complex AG analysis.

CONCLUSIONS

We have described methods which make it possible, when given an attribute
grammar and an LR parser generator, to produce an augmented parser which
evaluates a great many attributes during parsing (all of them, if the AG is LR~
attributed). This achieves by automatic means the effect of the introduction of copy
rules. The classification of attributes into '"known!" and "unknown!' should greatly
facilitate rule splitting. Given a conflict parse table eniry and a list of known attiri-
butes, construction of the appropriate disambiguating predicates should be straight-
forward (provided the known attributes make this possible).

The method is not restricted to L-atiributed grammars, although right depen-
dencies give rise to unknown atiributes. Further the class of LR-~attiributed AGs
seems quite large compared to previous classes. It extends Rowland's method
[Row??] by noi treating all inherited atiributed of left corner symbols as unknown,
It also extends [Wat??a] and [F’uB?Q] by allowing non~trivial attribute expressions
in places where copy rules would cause conflicts, as in example 2 after the defini-
o+ Every RA-attributed AG as defined in [RaU80] is both LR(k) and LR-
attributed since condition (RA3) there implies that #SS(a) < 1 for all S,a. The LR-

tion of &

attributed class is larger since the last example of [RaU80] is LR-attributed, even
with F =+ (E).
The AG analysis and parser construction algorithms are relatively simple and

appear likely to be quite efficient in practice.
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