ISSN 0{05-8517

A CONSTRUCTIVE APPROACH
TO COMPILER CORRECTNESS

by

Peter D. Mosses

DAIMI PB-118
April 1980

Computer Science Department [T ' lim
AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55

TE]
=5
|

A CONSTRUCTIVE APPROACH TO COMPILER CORRECTNESS *

Peter Mosses

Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Aarhus C, Denmark

Abstract
It is suggested that denotational semantic definitions of programming

languages should be based on a small number of abstract data types,
each embodying a fundamental concept of computation. Once these
fundamental abstract data types have been implemented in a particular
target language (e.g. stack-machine code), it is a simple matter to
construct a correct compiler for any source language from its denota-
tional semantic definition. The approach is illustrated by constructing
a compiler similar to the one which was proved correct by Thatcher,
Wagner & Wright (1979). Some familiarity with many-sorted algebras

is presumed.

1. INTRODUCTION

There have been several attacks on the compiler—~correctness problem: by McCarthy
& Painter (1967), Burstall & Landin (1969), F.L.. Morris (1973) and, more recently,
by Thatcher, Wagner & Wright, of the ADJ group (1979). The essence of the ap~
proach advocated in those papers can be summarised as follows: One is given a
source language L, a target language T, and their respective semantics in the form
of models M and U. Given also a compiler to be proved correct, one constructs an

encoder: M = U and shows that this diagram commutes:

compile
L T
semantics l lsemanﬁcs
encode
M = Ul .

*) An earlier version of this paper is to appear in Proceedings of a Workshop on
Semantics-Directed Compiler Generation, Aarhus, 1980 (Springer-Verlag).

It is assumed that the semantic and compiling functions are "'syntax~directed!. This
amounts to insisting on denotational semantics in the style of Scott & Strachey (1971):
"The values of expressions are determined in such a way that the value of a whole
expression depends functionally on the values of its parts'. ADJ (1979) reformulated
this in the framework of initial algebra semantics, where the grammar, say G, of L
is identified with Uthe!! initial G-algebra, The advantage of this is that a semantic
function: L # M can be seen to be a (by initiality, unique) homomorphism from L to a
G-algebra based on the model M. Similarly, a compiling function: L =+ T is a homo-
morphism from L fo a G—-algeb‘r‘a derived from T, and then the semantics: T # U in-

duces a G-algebra based on U,

So L, M, T and U can be considered as G-algebras, and the two semantics and the
compiler are homomorphisms. A proof that encode: M - U is a homomorphism then
gives the commutativity of the above diagram, by the initiality of L., (Actually, to
interpret this as ""compiler correctness!’, one should also show that encode is in-
jective, or else work with decode: U~ M,) ADJ (1979) iliustrated the approach for
a simple language L, including assignment, loops, expressions with side-effects

and simple declarations., T was a language corresponding to flow charts with instruc-
tions for assignment and stacking. Their semantic definitions of L and T can be re-
garded as 'standard! denotational semantics in the spirit {though not the notation!)

of Scott & Strachey (1971). They succeeded in giving a (very!) full proof of the

correctness of a simple compiler: L » T,

We shall take a somewhat different approach in this paper. The semantics of the

source language L. will be given in terms of an abstract data type S, rather than

a particular model, The target language T will also be taken as an abstract data

type. Then the correct implementation of S by T will enable us to construct a correct
compiler (from L to T) from the semantic definition of L.. The compiler to be con-
structed is actually the composition of the semantics and the implementation, as

shown by the following diagram:

semantics compile

The models M and U are not relevant to the proof of the correctness of the implemen-

tation: S » T, but may aid the comparison of this diagram with the preceding one.

As with the earlier attacks on the compiler correctness problem, we shall regard
the semantics and the compiler as homomorphisms on G-algebras, where G is the
grammar of L. However, a crucial point is that with the present approach, the im-
plementation of S by T can be proved correct before making S and T into G-
algebras (one need only make T into an algebra with the same signature as S). Thus
the proof is completely independent of the productions of G, in contrast to that of
ADJ (1979). This allows us to generate correct compilers for a whole family of
source languages - languages which are similar to L., in that their denotational se~
mantics can be given in terms of S - without repeating (or even modifying) the proof

that the implementation of S by T is correct.

The abstract data types S and T will be specified equationally, enabling the use of
the work on initial algebras, such as that by ADJ (1976), in proving our implemen-
tation of S by T correct. [t is important to establish the "correctness!' of these
equational specifications, in order to see that the semantics: L. + S is the intended
semantics. However, this problem will be considered only briefly here, as it is

independent of the proof of correctness of our implementation.

The main concern of this paper is with the compiler~correctness problem. However,
it is hoped that the example presented below will also serve as an illustration of
on-going work on making denotational semantics 'less concrete!' and "more modular'',
It is claimed that there are abstract data types corresponding to all our fundamental
concepts of computation - and that any programming language can be analyzed in
terms of a suitable combination of these. '"Bad!l features of programming languages
are shown up by the need for a complicated analysis - so long as the fundamental
concepts are chosen appropriately. Of course, only a few of the fundamental concepts
are needed for the semantics of the simple example language L. (they include the se-
quential execution of actions, the computation and use of semantic values, and dy-
namic associations). An ordinary denotational semantics for I would make use of

these concepts implicitly — the approach advocated here is to be explicit,

The use of abstract data types in this approach encourages a gr‘eater modularity in
semantic definitions, making them - hopefully - easier to read, write and modify.

It seems that Burstall & Goguen's (1977) work on ''putting theories together!" could
form a suitable formal basis for expressing the modularity. However, this aspect of

the approach is not exploited here,

It should be mentioned that the early paper by McCarthy & Painter (1967) already
made use of abstract data types: the relation between storing and accessing values
in variables was specified axiomatically. ADJ (1979) also used an abstract data

type, but only for the operators on the integers and truth-values.

The approach presented here has been inspired by much of the early work on ab-
stract data types, such as that of ADJ (1975, 1976), Guttag (1975), Wand (1977) and
Ziltes (1974). Also influential has been Wand's (1976) description of the application
of abstract data types to language definition, although he was more concerned with
definitional interpreters than with denotational semantics. Goguen's (1978) work on .
distributed-fix!! operators has contributed by liberating algebra from the bonds of

prefix notation.

However, it is also the case that the proposed approach builds to a large extent on
the work of the Scott-Strachey !"school! of semantics, as described by Scott &
Strachey (1971), Tennent (1976), Milne & Strachey (1976), Stoy (1977), and Gordon
(1979). The success of Milner (1979) in describing concurrency algebraically has

provided some valuable guidelines for choosing semantic primitives.

The rest of this paper is organized as follows, After the explanation of some nota-
tibnal conventions, the abstract syntax of the ADJ (1979) source language L_ is
given. A semantic abstract data type S is described, possible models are discussed,
and the standard semantics of I_ is given. The next section presents a '"'stack™
abstract data type T, which needs extending before the implementation of S can be
expressed homomorphically. The proof of the correctness of the implementation is
sketched, and a compiler - corresponding closely to ADJ's ~ is constructed.

Finally, the application of the approach to more realistic examples is discussed.

2. STANDARD SEMANTICS

The notation used in this paper differs significantly from that recommended by ADJ
(1979) by remaining close to the notation of the Scott-Strachey school, This is not

just a matter of following tradition. There are two main points of contention:

(i) The use of the semantic function explicitly in semantic equations. Although
technically unnecessary, from an algebraic point of view, this allows us to regard
the semantic function as just another equationally~defined operator in an abstract
data type, and to forget about the machinery of homomorphisms and initial algebras
(albeit temporarily!). Perhaps more important is that we apply the operators of the
abstract syntax only to syntactic values, whereas in the pure algebraic notation,
used by ADJ, one applies the semantic versions of the syntactic operators to se-

mantic values — thereby hindering a '"naive!' reading of a semantic description.

*
(ii) The use of mixfix() notation for the operators of the abstract syntax. Mixfix

hotation is a generalization of prefix, infix and postfix notation: operator symbols

(*) called "distributed-fix!'' by Goguen {1978).

can be distributed freely around and between operands (e.g. if-then-else). ADJ
used infix and mixfix notation (f° g, [f,g,h]) freely in their semantic notation, but
stuck to postfix notation ({x)f) for the syntactic algebra. This made the correspon-
dence between the abstract syntax and the "usual'l concrete syntax for their lan-
guage rather strained. Whilst not disastrous for such a simple and well-known
language as their example, the extra burden on the reader would be excessive for

.more realistic languages.

Notational Conventions

The names of soris are written starting with a capital, thus: A, Cmd. Algebraic

variables over a particular sort are represented by the sort name, usually decora-

ted with subscripts or primes, A, A?’ A'l, Operator symbols are written with
lower-case letters and non-alphabetic characters: tt, even(), +, if then else.

Families of operators are indicated by letting a part of the operator vary over a

set, e.g. id := (id € Id) is a family of prefix operators indexed by elements of Id.

It,is also convenient to allow families of sorts (indexed by (sequences of) domain

names from a set A; lower—case Greek letters (6, o, 7) are used for the indices.

The arity and co-arity of an operator in a signature are indicated by the notation

S <= f(S;,...,S,)

- here, the arity of f is 51 aee Sn’ the co-arity is S. Mixfix notation can be used

here for the operator symbol, giving a pleasing similarity to BNF, e.g,
Cmd <= if BExp then Cmd else Cmd.

The term "theory'! will here be used synonymously with "abstract data type'!'. So

much for notation.

Abstract Syntax {L.)

The abstract syntax of the source language | is given in Table 1. It may be com-
pared directly with that of ADJ (1979), although, as explained above, we shall not
restrict ourselves to postfix notation for syntactic operators here. Id is taken to
be a set, rather than a sort, following ADJ - in effect, this gives a parameterised

abstract data type, and we need riot be concerned about the details of id.

Table 1. Abstract Syntax of L

sorts Cmd - commands

AExp ~ arithmetic expressions

BExp - Boolean expressions

id - unspecified set of identifiers
operators indices

Cmd <= continue

id 1= AExp id € id
if BExp then Cmd else Cmd
Cmd; Cmd
while BExp do Cmd
AExp <= aconst aconst € {0, 1]
id id € Id
aop T AEXp aopl € {-, pr, suf
AExp aop2 AEXp aop2 € {+, -, x|

if BExp then AkExp else AEXxp
Cmd result AEXxp

let id be AExp Tn AEXp id ¢ Id

BExp <= bconst bconst € | tt, ff}
prop AEXxp prop € {even
AExp rel AExp rel €=, =, eq}
bop 1 BExp bopl € {—
BExp bop2 BEXp bop2 € {A, V|

Standard Semantic Theory (S)

The standard semantic theory presented in Table 2 may seem a bit daunting at first.
Actually, the operators themselves (left-hand column) are quite simple, but the
"book~keeping!' concerned with indices (6, o, T) of the sorts is somewhat cumber-~

some.

Table 2 could be regarded as a.-‘theor‘y schema, or as an instantiation of a parameter~
ised theory, where A is a formal parameter (as is Id). Whichever way one looks at
it, the use of A gives a hint of modularity, as well as avoiding undue repetition in

the specification.

Table 2, Semantic Theory S
sorts (indices: 6 € Ay 0,7 € A*, where A= {T,2Z1})
A - actions, with source g A and target T A
Y - variables over actions, with source g VY and target rY
\V - values, with domain 6V
X ~ variables over values, with domain 6X
operators (indices: id € Id; n€ {0, 1,...})
actions A source gA target TA
A <= skip () ()
Al L GA! « gAll TAL . AN
V! () 6\
X, A! OXegAl TA!
Al e AN oAl sl tle AN
N where gAll = 1“'d +s!, and 'rA‘:dlowd o t!
tt? Al /ff7 Al TegA! n | rAl n
where gA" =gAl, and TA!l = 1Al
fix Y. Al oY | vy
“where gA! =gV and 7A=Y
Y a¥Y TY
contents, () z
update;d 4 ()
action variables Y source gA target 7Y
Y <= a () ()
a, () ()
values V domain 8V conditions
Vo= X dx
aconst Z
aop!l V! z vt =2
V! aop2 Vi Z AVARE AV 4
bconst T
prop V! T ov! = Z
Vrel W T 5\/‘ ={ylt = 7z
value variables X domain §X
X «= z ‘Z
z Z
n

The following informal description of S may help the reader.

The basic concept is that of actions (A). Actions not only have an Heffect', but may
also consume and/or produce sequences of values (V). These values can be thought

of as belonging to the "'semantic domains'' in A, i.e. T and Z. The book-~keeping

referred to above mainly consists of keeping track of the number and sorts of values

consumed (o, for source) and produced (T, for target). Note that a raised dot (+)

stands for concatenation of sequences in A* and () is the empty sequence.
P

Variables {X) are used to name computed values and to indicate dependency on these

values (by actions and other computed values). VVariables over actions (Y) allow the

easy expression of recursion and iteration.

Table 2 continued

equations

1. skip ; A = A

2. A skip = A

4, Vo= (X, A) =A {Xe Vi

5. (Vv ,A])>- A2=A”>]:1(\/1>7A2)

6. tt] o> (1t ? A]/ff?/i\2)=f4\1

7. fiL o~ (112 AL/ FF7 AL) = A,

8. X Y. A=A VY fixyY. Al

9, (V) > updateid) ; contents, | = (V1 > updateid) R
10. (V! > updateid) ; contents, | = contents, . ; (

d
(

—_
—

i
Ay vl =Vl A forTA =()

d 2 d

2

Vi > updateid) for id# id!

A3)
A3)
2

; and oA, =()

12. X, A =X, A {X+ X} for X' not free in A

13, (tt? AT/ff?Az);A3=tt?(A];A3)/ff?(A2‘,

14, Ay (e Az/'ff? A3)=tt?(A];A2)/ff?(A1;

15. (. A1) ; Az = X, (A1 ; Az) for X not free in A

16, A1 3 (X Az) =X, (A1 ; AZ) for X not free in A

17. A2 (A1 > X, Az) ='A1 > X, (V! AZ) for X not free in V and TA, =
18. contents, ;> X, tt7 A, /2?2 A, =tt? contents,

> XA Jff? contents,

(6¢)

X Ay

We consider the value operators first. They are taken straight from the 'under-

lying'" data type of ADJ (1979). It is assumed that bconst, prop, etc. vary over the

same sets as in Table 1, thus giving families of operators. The Boolean operators

(=, A, V) are not needed in givihg the semantics of L, and have been omitted from S

(as have variables over truth values).

There is a domain name 0 € A associated with each value of V; also, the domain name

7 is associated with the variables used to name values in the sort Z. (This would

be of more importance if we were to include variables naming T-values as well -

the idea is just to make sure that a sort-preserving substitution can be defined.)

The action operators are perhaps less familiar. A <= skip is the null action, it is

an identity for the sequencing operator A <= Al ; A, Note that sequencing is addi-
tive in the sources and targets. For example, if Al and A" both consume one value,

then A' ; A" consumes two values.

The most basic action operator producing a value is A <= \V/! . The consumption of a
value is effected by A <= X, A', and X is bound to the consumed value in A', To
indicate that n values produced by one action are consumed by another, we have the
operator A <= Al >F1 Al and it is the first n values produced by A'! which get con-
sumed by A'l, (>ﬁ will be written simply as > when the value of n can be deduced
from the context.) For example, consider V! > X, A!. The value V is produced
(by V1), consumed (by X. A') and then bound to X in A!, Free occurrences of X in
Al-just indicate where the consumed value is used.

In (\/11 ; vzl)
and bound to X

S X]. Xz. (Xz.! 5 ><1!), the values Vs \/? are produced, consumed

1 ><2 and then produced again in reverse order - thus the net effect

of the whole action is to produce two values.

A<= tt7? Al / f£7 All is a choice operator: it consumes a truth value (it or ff) and

reduces to A' or A", The sources and targets of A! and A" must be identical.

A <=fix Y. Al binds Y in A! and, together with A <=Y, allows the expression of
recursively~defined actions. Actually, it is used here (in describing L) only in a
very limited form, corresponding to iteration: A <= fix a. (A' > 1t? Ay a /ff? skip),
where A' produces a truth-value, and the action variable, a, does not occur free

inn Al or All,

Finally, there are two families of operators for storing and accessing computed

values: A <= update and A <= contents for id € Id. Only integer values may be

id? id’?

stored. Note that updateid consumes a value, contentsj produces a value,

d
Now for the equations of Table 2, specifying the laws which the operators of $ are
to satisfy. ADJ (1979) gave equations for the value operators - they are much as
one might expect, and are not repeated here. The novelty of & lies in its action

operators.

To avoid getting bogged down in irrelevant details, the equations for the binding
operators of S (A <= X. A and A <= fix Y. A') are given with the help of notation
for syntactic substitution: for any action term A of S, A{X « /| is the term with all
free occurrences of X replaced by the value term V {and with uniform changes of
bound variables in A to avoid "capturing!' free variables in V). Similarly for

AfY + A'l . This syntactic substitution could have been added as an operator to S,

and specified equationally. (This is not immediately obvious, because one cannot
define an operator in S to test whether a variable is free in an action. Fortunately,
Berkling's (1976) idea of adding an ""unbinding! operator to the A~calculus leads to
an equational specification of syntactic substitution in S.) Another way of treating

binding operators will be discussed below.

The equations should now be self-explanatory. What might not be obvious is that they
are the !''right!! equations, and are neither inconsistent nor incomplete. It would
delay us too much to go into all the details here, but the idea is to use a Scott-model
for S to show consistency, and a so-called canonical term algebra to prove compliete-
ness., The canonical term algebra in effect specifies (possibly infinite) "normal
forms!! for arbitrary actions in S, and we are satisfied when these normal forms
correspond to Yfully evaluated' actions. (The potential infiniteness of actions
suggests that the rational theories of ADJ (1976a) are the right setting for the meta-
theory of abstract data types like S. The operator fix of S corresponds closely to

the dagger of rational theories — when 0 is substitution.)

The "obvious! Scott-model for S (corresponding to the M of ADJ (1979)) has a
carrier for sort A, with cA = d1 »ee d_ and TA = d1' dn‘ (di’ di' €{T,z1), the
domain of continuous functions

[Envx dyx oo xd = Envxd;'x s xd ']

1
where Env = [d »+ Z. (Of course, one could also take a continuations~based model,

or one with both static and dynamic environments, if preferred.)

However, S has binding operators, and terms can have !'free!' (semantic) variables.
This raises the question of whether a modelling function from S to the Scott-model
above could be expressed as a homomorphism, or whether one must allow the func-
tion to take an environment (giving the values of the semantic variables, not of the
program variables). Robin Milner (1979) has suggested that one can regard a binding
operator as a notational means for representing a family, indexed by the values
which may be substituted for the bound variables. E.g. X. A represents the family
<AfX « v} > VEBX?

enables the modelling function te be given as a homomorphism. One might wonder

and in V! > (X. A), the second operand of > is a family. This

whether the introduction of operators acting on (in general) infinite families under-
mines the whole algebraic framework, but Reynolds (1977) shows that this is not the
case. Anyway, modelling is not our main concern in this paper, so let us leave the

topic there.

Semantics (sem)

The ""standard! denotational semantics of L. in terms of the abstract data type S Is

given in Table 3, The use of the 'semantic equations! notation, with the explicit

definition of the semantic function, was defended at the beginning of this section.
To allow the omission of parentheses, it is assumed that the operator '.! binds as
far to the right as possible (as in A -notation). As in the specification of S, it is as-
sumed that bconst, prop, etc. vary over the same sets as in Table 1, thus giving

families of equations.

Note that sem[ﬂ can be considered either as an operator in an extension of the
theories L. and S, or else as a homomorphism from L to a derived theory of S.
Under the latter view, the composition of sem with the modelling function (from S to
the Scott—-model mentioned above) yields the semantics which ADJ (1979) gave for L.,
The differences in appearance between ADJ's semantics and ours are due largely to
ADJ's reliance on the operators of algebraic theories (tupling, projections, compo-

sition, iteration), whereas our S provides us with binding operators.

Table 3. Standard Semantics for L using S

operators A <= sem[[Cmd] gA=1{(), TA=()
A <= sem[AExp]’ oA =(), TA=Z
A <= sem[BExp] gA={(), TA=T

sem[Cmd]} equations (id € 1d)

sem[continue]] = skip

sem[id := AExp]] = sem[[AExp] > update,
sem[[if BExp then Cmd, else Cmd,] = sem[BExp] > tt? sem[[Cmd] / ff? sem[Cmd,]
sem[[while BExp do Cmd] = fix a. sem[BExp] > tt? sem[[Cmd] ; a / ff? skip

sem[AExp] equations

sem[aconst]] = aconst !
seml[[id]] = contents.
sem[aop! AExp]] = sem[[AExp]] > z. (aopl z) !

sem[[AExp1 aop2 AExp,] = sem[AExpd} >z, sem[[AExpz]] > z,. (z, aop2 z,) !

sem[if BExp then AExp, else AExp,[] = sem[BExp]} > tt? sem[[AExp (| /12 sem[[AExp,]
sem[Cmd result AExp]] = sem[Cmd] ; sem[[AExp]]

sem[let id be AExp, in AExp,] = contents; > z,. (sem[[AExp | > update, ,);

z

sem[[AEpo]] >z, (z1 Q- updateid); 9 !

sem|[BExp]] equations

sem|[[bconst]] bconst !

sem{[prop AExp] = sem[AExp]] > z. (prop z) !

sem[AExp, rel AExpzﬂ = sem[[AEpr] >z, Sem[[AExpz]] >~ z,. (zg rel z,) !
sem[2 BExp] = sem[BExp] > tt? ffl / ff? ttl

sem[[BExp1 A BExpzﬂ = sem[[BEXpJ} >— tt? sem[{BExpzﬂ / ff7 £fl

sem[BExp, VBExp,] = sem[BExp,] > tt? ttl / 7 sem[BExp,]|

3. STACK IMPLEMENTATION

We now take a look at the target language T for our compiler. Like the target lan-
guage taken by ADJ (1979), T represents flow-charts over stack-machine instruc-
tions. The abstract syntax of T is given in Table 4.

Actually, our T is not as general as ADJ's: they considered flow~charts of arbitrary
shape, whereas we shall make do with "regular! flow-charts, corresponding to the

Nalgebraic!! flow diagrams of Scott {1970). This loss of generality doesn't seem to

matter in connection with compiling L, which has no goto~command.

Table 4, Stack Theory T
sorts (indices: § € Ay T € A*, where A={T, z2})
A -~ actions, with source oA and target TA
Y - variables over actions, with source g¥ and target 7Y
\Y% - values, with domain 0V.
operators (indices: id € I.d; né {0,1,...})
actions A source gA target TA
A<= skip () ()
Al -, AH O'A‘ . O"A“ TA‘ ° 'T'A”
Vi () v
Al = Al gAl « st th e TAU
N Whereo“A”=d1-~°d .SII’ and 'T'A"—‘t" dnnuud1
tt? Al /ff2 Al T« gAl n | TA!
where gA'! = gAll and TA!' = TAl
fix Y. Al oV | TY
where gA! =gV and TA!' =7Y
Y ' TY
contemsid () yd
updateid Z ()
switch Z Z Z e Z
prop Z T
rel Z - Z T
aop! Z Z
aop2 Z Z Z
action variables Y source gV target 7Y
Y <= a () ()
a () ()
n
values VV domain 6V
V <= aconst Z
bconst T

A comparison of Tables 2 and 4 shows that T is rather similar to S. However, this
should not be too surprising: many of the same fundamental concepts of computation
are being used, e.g. sequencing of actions, storing of values. Note that A <= Al ;; Al
in T corresponds to A <= Al >ﬁ A in S, but it is the last n values produced by A
which get consumed (in reversed order), by A" in T. Also, the value terms \V in T
are restricted to be constants, and A <= V! represents pushing V onto the stack.
The value operators (prop, rel, aopl, aop2) of S have become actions operating on
the stack in T. A <= switch interchanges the top two values on the stack. Finally,

there are no value variables X in T - and hence no A <= X. A! either.

However, T is to be more than just a language: it is to be an abstract data type!
There are equations, very similar to those for S, which the operators of T must

satisfy. The one equation which is crucially different is

(4.) (A5 Vi) 2 Ay = AL 40 (VI i AL)

expressing a sort of associativity for @, something which is lacking for > in S. In
fact it is this property which allows us to think of terms in T as representing ordi-

nary flow-charts.

So the problem is now to implement one abstract data type (S) by another (T), and
show that the implementation is correct. If imp: S =+ T, then let us say that imp is a

correct implementation of S by T if it is an injective homomorphism (into the implicit

derived algebra of T with the same signature as S). |n other words, imp respects
the equations of S: for any s,s' inS, imp[[s] = imp[[s'] iff s = s'. Having found

such an imp, the composite impo sem: L. » T is a correct compiler from L to T.

Unfortunately, it is actually impossible to implement S correctly by the T of Table 4!
To see why, consider a term of S with free (value-) variables, such as z! . What
could imp give in T as the implementation of this term? If one tries to answer this
question, one discovers that free variables in S correspond to values at an unknown
depth on the stack in T - and that there is no way of representing such values. (Con-
sidering binding operators as a means for representing families bf terms without free

variables doesn't help, as there is no means of representing such a family in T.)

This is annoying, because one can easily implement the closed terms of S by T: one
knows the positions of all the values on the stack. Moreover, only closed terms were
used in giving the semantics of L. One could argue that we could make do with an
implementation of only the closed terms of S, and proceed with our compiler construc-
tion. However, to show that the implementation (and hence the compiler) is correct,
we need it to be a homomorphism - and that means considering all the terms of 5, in-

cluding those with free variables,

Thus we are forced to extend T, before we can use it to give a homomorphic imple-
mentation of S. The most natural extension to take seems to be Tx, given in Table 5.
The. action A <= X, A! can be thought of as removing the top item from the stack and

binding it to X in Al

Table 5, Extension of T to Tx

sorts X - variables over values, with domain 6V
operators

actions A source gA target TA
A <= X, AL dX » gAl TA!

values V domain 6V
VvV <= X &%

value variables X domain 6X

X <= ¢ T

t T

zm Z

z Z

n
equations
1. V2 (X.A) = A{Xe Vv
; = . i

2. switch Z40 Zye (22. ; Z1')

Now we are able to give a hormomorphic implementation of S by Tx, and prove it
correct. But how does that help us in constructing a compiler from L to T (rather
than to Tx)? Recall that only closed terms of S are used in the semantics of LL -
and that they are implemented by closed terms in Tx. [t just happens that any closed
term of Tx is equivalent to a term of T, i.e. one without any value variables at all!

This ensures that our compiler from L. to Tx can be converted to one from L. to T.

Actually, that is not quite true. We need to add a few derived operators to Tx:
generalizations of A <= switch, for permuting the top values on the stack. (This is
analogous to adding the combinators (S, Ky etc.) to the A-calculus, in using them to
eliminate A —abstractions.,) The exira operators, extending Tx to Tx', are given in
Table 6. It turns out that they do not occur in the compiler we construct for L., be-
cause of the lack of exploitation of the generality of S in giving the semantics of L.
Table 6 also gives the (derived) equations which are used in converting closed terms

in Tx! to ones without value variables, Note that these equations simplify considera-

bly when the sources or targets of actions are empty: up

and may be removed.

(

d) and down?) have no effect,

Table 6. Extension of Tx to Tx!
operators (indices: d, di € A)
actions A source gA target TA
A <= pOp d ()
copy d de d
d
uDd1--ad dn...d].d d1...dn.d
dovvnd.“d d'dn”'dl d"di'"’dn
1 N
flip'
d1“'dm dm'“dT dn+1“'dm'dn”°d1
eqguations where ><(.) = t(l), if d(i) =T
z(l), if d(i) = Z
1. i
pOpd . skip
copy = X (<! 5 x!)
d
= i i |
Upd1'--dn Xowws X X (><1 ; R =)
d P f i
4, dovvnd1 . d Ko X ST (x! 3 x4t ; xn,)
N = | P 1 i
5. ﬂlpd1-~-d Roe e X (><n_H ; pox by kb ; xT.)
X. (XI = A) = A when X not free in A
6%
><1;A=><!~!dovvn6A~>A
dXx 24
. 1 = 1
8. A ; Xl X."dOWhGA"*A”’?upTA
9, X! =4 (X! =»+A) = X! - COpyéx"VA
6% 5
| = | - -+ e
10, A] -+ (X! ~eA2) X dovvnUA1 A.l upTA1 Az
11,17 (X2 AL /(XL AL = X »—?dovvn?rxw (tt? A / 72 A,)
&%
1 | == | i »
12, fix Y. (X! =+ A) XE = (fix Y. copygy, ? A) 7 Up iy P POPg
13. A = X! - (po%x; A)

Our implementation of S by T seems to have two rather independent aspects: (i) the

Userialization!" of value terms in S into action sequences in T, (i) the representation

of the binding action A <= X. A! of S in T. The second part caused us considerably

more trouble than the first. Whilst it might be tempting to use this as an excuse to

throw the binding operators out of S, it would be prefereble to find a way of imple-

menting binding more systematically than by the introduction of combinators.

At last we can implement S, by Tx!. The implementation function, imp: S =+ Tx!', is
defined in Table 7, using the same notation as was used for defining the semantics

of L. S-operators now occur inside [1 (in contrast to Table 2). As one can see,
the implementation itself is really quite trivial: most of the operators go straight
over from S to Tx'. The exceptions are value transfers A <= A! > All| which cause
some ''shuffling" on the stack; and the production of compound values A <= \/!, which

get sequentialized.

Table 7. Implementation of S by Tx!

operators A <= imp[A'] oA = gA', TA = TA!
Y <= imp{Y'] oVvV =g¥Y', 1Y = T1Y!
A <= imp[V] oA = (), TA = 0V
X <= imp{X'] 60X = oX!

imp[[Al equations

imp[[skip] = skip

imp[[A1 ; AZB = imp[Aﬂ} H imp[[AZ_ﬂ

imp[VI] = imp[[V]

imp[X. A = imp[XT]. imp[AT]

. ' . . N . -

imp[[A > AT = imp[A] -+ﬂrpTA1 2 imp[[A]

imp[tt? Ay /FE2 AT = t1? imp[[ALT /7 imp[[A,]]
imp[[fix Y. AT = fix imp[Y]. imp[AT]

imp[[YT = impl Y] (the Y on the left is an action)
imp[[contemsjd] = contents.
lmp[updateidﬂ = update,

impl[V] equations

imp[[X] = X!

imp[[aconst]] = aconst!

imp[laop V] = imp{[V] 2 aopl

imp{[\/1 aop2 V,] = (imp[[\/ﬂ] ; imp[[\/zj]) 4 aop2
imp[[bconst]] = bconst!

impllprop VI = imp[[V] '~1b prop

Imp[[\/] rel \/zﬂ = (imp[\/ﬂ]; imp[\/z'_ﬂ) 3 rel

(imp[[X1}, imp[[Y] are identities~ equations omitted)

The rest of this section sketches the proof of the correctness of imp, and justifies
the claim that value variables can be eliminated from closed terms of Tx'. The next

section goes on to construct a correct compiler from L to T.

The proof of the correctness of imp: S + Tx! is quite routine, but unfortunately no
shorter than that of ADJ (1979). Recall that we are to prove that for terms s,s! in

S, imp[s]] = imp[s'] it and only if s = s!', The "if!! part is the simpler: it is suffi-
cient to show that for all equations s = s' in the specification of S, imp|s] = imp[[s']

can be obtained from the equations of Tx!,

The Yonly if!" part says that imp is injective. The easiest way to prove this seems to
be to define an inverse for imp, abs: Tx' + S, This is just as simple as defining imp,
and only the few non-trivial cases of the definition are given in Table 8. Using the
equations of S, one can show that (abs o imp)[[s] = s for all terms s in S. Further-
more, it can be shown that for all terms t,t' in Tx', abs[[t] =abs[[t']] if t = t' ~ this
is just like the '"if!! part already proved for imp., But then, taking t = imp[[s] and

t' = imp[[s']], it follows that s = s' if imp[[s] = imp[[s']], which is the desired result.

Table 8, Abstraction from Tx! t0 S

<= abs [[A!]] oA = gA', TA = TA!

operators A
Y <= abs [[Y'] oY =gV¥Y', 1Y = TY!
VvV <= abs [[V'] dv = O\V!
X <= abs [X'] 6X = X!

abs [[A] equations (examples)

- n —
abs[[A1 2 AL = abs[[A] > ﬂOpTA1 > abs[A,]

where 'fIOpQ}H.dm=><m...x1. (><11 by X by b
abs[[V!] = abs[[V]!
abs[[aop1]] = z. (aopl z) !

° 1
»

abs{[aop2]] = z,. z,. (zy2@0p z,) !
abs|prop] = z. (prop z) !
absfrel] = Zyo 2y (zyrel z) !

As for the elimination of value variables from closed terms of Tx!, there is an algo-
rithm, resembling the standard one for converting A-calculus expressions to combi-
nators. The algorithm proceeds as follows. Let A be a closed action term of Tx!, If
A does not contain any occurrences of X. A', then It cannot contain any occurrences
of X (by closedness) and we are done. Otherwise, consider an innermost occurrence
of X. A' in A. If X does not occur free in A', then X. A'! can be replaced by POP g5
A', by the equations in Table 6, and so this occurrence of X, Al has been eliminated,

On the other hand, if X does occur free in A', it must be as an action: X! . The

equations of Table 6, interpreted as left-to-right replacement rules, allow A' to be
transformed to the form X! =+ A', where X does not occur in A''. But then X, Al can
be replaced by A", and again the occurrence of X. A' has been eliminated. As no
extra occurrences have been introduced in the process (thanks to the use of the
"combinators!t pop, copy, up and down) the iteration of this process removes all

occurrences of X, A! from A.

4, COMPIL.ER CONSTRUCTION

We are now able to construct a correct compiler from L. to T -~ or for any other
source language whose semantics is given in terms of S. All we need to do is to
take comp: L + Tx! as imp 0 sem, and, using the fact that imp: S =+ Tx! is a homomor-
phism, combine the definitions of imp and sem to a definition of comp. The correct-
ness of comp comes from the correctness of imp. This correctness is preserved
under transforming the terms in Tx! in the definition, to terms of T, using the algo-

rithm of the previous section. The finished product is shown in Table 9.

The process of transformation is not as painful as the equations of Table 6 (used

as replacement rules) might suggest. This is because the only action sorts used in
giving the semantics of L. have an empty source and an empty or singleton target.
Moreover, Al >~ Al is only used for n = 1. It can be shown from the equations of Tx!
that flip; can be omitted from the definition of imp, and that dovvhc(l) and up((j) are un-
necessary in the equations in Table 6. In addition, upi is equivalent to switch.
These simplifications make the transformation from Tx! to T quite straightforward,
and the only extra step necessary to obtain Table 9 is the removal of a couple of

occurrences of switch; switch.

Conclusion
By using a form of denotational semantics based on abstract data types, we have
seen how to construct correct compilers for a whole family of source languages di-

rectly from their semantic definitions.

For realistic source languages (such as Pascal, Clu, Ada), the feasibility of the
approach presented here depend‘s on the extent to which their denotational semantics
can be given in terms of a small number of fundamental abstract data types. On the
other hand, going to more realistic target languages should not present any major
problems — except that it might prove rather difficult to exploit the ""richness'' of

some machine codes!

Table 9, Compiler from L 1o T

operators A 2= comp[[Cmd] oA =(), 7TA=()
A <= comp[[AExp] cA=(), TA=2Z
A <= comp[[BExp] gA=(), TA=T

comp[Cmd] equations

comp[[continue]] = skip
complid := AExp] = comp[[AExp] - update,

d
comp{ if BExp then Cmd, else Cmdzj] = comp[[BExp] ~ tt? comp[Cde_ﬂ / ff? connp[{Cmdz]
comp[Cmd, ; Cmd,] = comp{[Cmd,] ; comp[Cmd,]]
comp[[while BExp do Cmd]] = fix a. comp[[BExp]| =+ tt? comp[[Cmd]| ; a / ff? skip

comp[AExp] equations

comp[aconst] = aconst!
compl[id] = contents.
comp[aop! AExp] = comp[[AEXp] - aopl
comp([AExp1 aop?2 AExpzﬂ = comp[[AExpTE ~*comp[AExp2]} + aop2
compl] if BExp then AEXp elsie AExpzﬂ = comp[[BExp] = tt? comp[AExpd] /fF? comp[AExpzﬂ
comp[Cmd result AExp]] = comp[Cmd] ; comp[[Aexp]
comp[let id be AExp, in AEXDZ] = contents, = compﬂfAExpjﬂ = update, ;

comp[AExpzj} + switch = update

comp|[BExp] equations

comp[[bconst]] = bconst!

comp[prop AExpT = comp[AExp] - prop

corm:;ﬂ—rAExp1 rel AEpo] = comp[[AEpr] - comp[{AExpzﬂ -+ rel
comp[" BExp] = comp|[BExp] = tt? ffl / #f7 tt!

compWBExp1 A BEpo] = COmpHBEXp1I‘ 4 tt? comp[irBExpz—j / $52 ffl
comp[[Bf.—__xp1 v BEpo] comp[(BExp1ﬂ - tt? ttl /ff? comp{[BExpz]]

it

Finally, why did our constructed compiler turn out to be so similar to the one proved
correct by ADJ (1979)? One might suspect that our construction was '"rigged" to deal
with just this example ~ but that is not the case. Another possibility is that ADJ
themselves constructed their compiler systematically ~ albeit informally -~ from their
semantic definition. It may also be that there is essentially only one correct compiler
from LL to T! In any case, for-realistic source languages, one could conjecture that
any compilers proved correct using the approach of ADJ (1979) will reflect the
structure of the semantic definition of the source language, and in general be con~

structible by the method outlined here,

References

ADJ

(< {J.A. Goguen, J.W. Thatcher, E.A. Wagner, J.B. Wright |)

(1975) !initial algebra semantics and continuous algebras',
IBM Res. Rep. RC~5701, 1975. JACM 24 (1977) 68-85.

(1976) "An initial algebra approach to the specification, correctness, and
implementation of abstract data types!, IBM Res. Rep. RC-6487,
1976. Current Trends in Programming Methodology [V (r. Yeh, ed.),
Prentice.Hall, 1979,

(1976a) "Rational algebraic theories and fixed-point solutions'',
Proc. 17th |IEEE Symp. on Foundations of Computing, Houston, 1976.

(1979) !"'More on advice on structuring compilers and proving them correct!
p p ’
IBM Res. Rep, RC-7588, 1979. Proc. Sixth Int. Coll. on Automata,

L_anguages and Programming, Graz, 1979.

Berkling, K.J.

(1976) "A symmetric complement to the lambda-~calculus',
Interner Bericht ISF-76-7, GMD~Bonn, 1976.

Burstall, R.M. & Goguen, J.A.

(1977) "Putting theories together to make specifications!,
Proc. Fifth Int. Joint Conf. on Artificial Intelligence, Boston, 1977.

Burstall, R.M. & Landin, P.J.

Goguen,

Gordon,

Guttag,

(1969) "Pr‘ograms and.their proofs: an algebraich approach!t,
Machine Intelligence 4, 1969,

J. AL

(1978) "Order sorted algebras: exceptions and error sorts, coercions and
overloaded operators!', Semantics and Theory of Comp. Rep. 14,
LCLA, 1978,

M. J.C.
(1979) The Denotational Description of Programming Languages,

Springer-Verlag, 1979,

J. V.
(1975) UYThe specification and application to programming of abstract data

types'', Tech. Rep. CRSG-59, Toronto University, 1975.

McCarthy, J. & Painter, J.

Milne,

Milner,

Morris,

Scott,

Scott,

(1967) !'"Correctness of a compiler for arithmetic expressions',
Proc. Symp. in Applied Math., 19 (1967) 33-41.

R. W, & Strachey, C.
1976) A Theory of Programming L.anguage Semantics,
Chapman & Hall (UK), John Wiley (USA), 1976.

R. .
(1979) Algebraic Concurrency, unpubiished lecture notes.

. L. _

(1973) "Advice on strudtdring compilers and proving them correct',
Proc. ACM Symp. on Principles of Programming LLanguages,
Boston, 1973.

D.s.
(1971) "The lattice of flow diagrams', Tech. Mono. PRG-~3, Oxford Univ.,

1971. Lect. Notes in Maths. 182: Semantics of Algorithmic Lan-
guages (E. Engeler, ed.), Springer, 1971,

D.S. & Strachey, C.

(1971) "Toward a mathematical semantics for computer languages',
Tech. Mono. PRG-6, Oxford Univ., 1971. Computer and Automata
(J. Fox, ed.), John Wiley, 1971,

Stoy, J. E.
(1977) Denotational Semantics, MIT Press, 1977,

Tennent, R.D.
(1976) "The denotational semantics of programming languages!',
CACM 19 (1976) 437-453.

Wand, M.
(1976) '"First order identities as a defining language!!,
Tech. Rep. 29, Indiana University, 1976, {revised: 1977).

(1977) "Final ailgebr“a semantics and data type éxtensions”,
Tech. Rep. 65, Indiana University, 1977. JCSS 19 (1979) 27-44,

Zilles, S.N.
(1974) UVAlgebraic specification of data types!,
Computation Structures Group Memo 119, MIT, 1974,

	20051013155516_Page_01_Image_0001.tiff
	20051013155516_Page_02_Image_0001.tiff
	20051013155516_Page_03_Image_0001.tiff
	20051013155516_Page_04_Image_0001.tiff
	20051013155516_Page_05_Image_0001.tiff
	20051013155516_Page_06_Image_0001.tiff
	20051013155516_Page_07_Image_0001.tiff
	20051013155516_Page_08_Image_0001.tiff
	20051013155516_Page_09_Image_0001.tiff
	20051013155516_Page_10_Image_0001.tiff
	20051013155516_Page_11_Image_0001.tiff
	20051013155516_Page_12_Image_0001.tiff
	20051013155516_Page_13_Image_0001.tiff
	20051013155516_Page_14_Image_0001.tiff
	20051013155516_Page_15_Image_0001.tiff
	20051013155516_Page_16_Image_0001.tiff
	20051013155516_Page_17_Image_0001.tiff
	20051013155516_Page_18_Image_0001.tiff
	20051013155516_Page_19_Image_0001.tiff
	20051013155516_Page_20_Image_0001.tiff
	20051013155516_Page_21_Image_0001.tiff
	20051013155516_Page_22_Image_0001.tiff

