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Abstract
Restricting the size of attribute values, relative to the length of the string

under consideration, leads to a model of attribute grammars in which
grammars with both inherited and synthesized attributes can be significantly

more economical than grammars with synthesized attributes only.

1. Introduction

When Knuth introduced the notion of an attribute grammar ([Knu]) as a formal-
ization of the concept of assigning meaning to strings generated by context-free
grammars, the definition allowed any collection of sets as attribute values and any
collection of functions over these sets as semantic functions. This generosity has
the immediate consequence that there is no real need for inherited attributes, be-
cause any translation defined by an arbitrary attribute grammar can be defined by
another attribute grammar which uses only synthesized attributes. Although this is
a correct observation, one has the feeling (as also pointed out in [Knu]) that it
doesn't tell the whole story and that there are many situation - handling declarations
in a programming language for example - where the use of inherited attributes is
both natural and advantageous. One way of turning this feeling into mathematical
results is to restrict the use of semantic domains in such a way that one cannot
"drag along'' the whole derivation tree as an attribute value, and then apply a func-
tion at the root which maps the tree into whatever translation is wanted (this is the
argument that makes inherited attributes . obsolete).

There are several papers where this approach has been taken - we know of
[Dus], [EF], [LRS] and [Ri], where translations defined by attribute grammars
over fixed domains are analyzed and compared. It is common to these approaches
that the restrictions on the domains are !syntactic! in nature, exemplified by [ EF],
where the main concern is with domains whose values are strings or trees, and
whose operations are string-or tree-concatenation. We shall also restrict attention
to domains whose values are strings, but instead of r-est‘r*icting the semantic func-
tions, we take a more information theoretic approach in which we bound the size

of the attribute values relative to the length of the word under consideration.
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Inspired by the definition of spacebounds in complexity theory, we call an attribute

grammar S{n)-spacebounded if there exists a constant c,such that for any word w

generated by the underlying context-free grammar, all attribute values in all deriva-
tion trees for w are of length at most ¢ S('w\ ). We repeat that attribute values are
strings.

It follows that if the spacebound is sublinear, then the '"drag along the whole
tree!'-approach to elimination of inherited attributes can only be used at the cost of
expanding the bound. The question then becomes whether there is anothen less ex-
pensive,way of eliminating inherited attributes. We answer the question by showing
that if the attribute grammars are what we call determinate, then there exisis a
simple language, generated by a logn-bounded attribute grammar with inherited attri-
butes, which requires more than space n/log N in any attribute grammars with syn-
thesized attributes only. The logn-bounded grammar is L.-attributed ([LRS]) and is
the "natural® attribute grammar for the language.

The determinacy-requirement ensures that-if a string has several derivation
trees, then the attribute values in all the trees '"make sense!'. This means that de-
terminate grammars can't be used in a '"guess-and-check!' fashion, and this restric-
tion is vital for our argument.On the other hand, the class of determinate attribute
grammars is sufficiently large to include all well-defined grammars (in the sense of

[Knu]) whose underlying context-free grammar is unambiguous.

2. Space-restricted attribute grammars

We follow [EF] in the definition of attribute grammars.

A semantic domain is a pair (Q,®) where Q is a set of sets (the sets of attribute

values) and & is a collection of mappings (the semantic functions) of the form

f: V1 xvzx xvm-+VO where m = 0 and vi cENfor0<i=m.

An attribute grammar A over semantic domain (Q,®) consists of 1)-4) as follows:

1) A reduced context-free grammar G = (N,Z,P,S) called the underlying context—

free grammar of A.

2) Each nonterminal F in G has two associated finite sets, Sy(F) and In(F),
called the synthesized and the inherited attributes of F, respectively. The
startsymbol S has no inherited attributes, and one of its synthesized attributes

is designated to hold the value or translation of the tree under consideration.

3) With each attribute a is associated a set in ), which contains a's values.
4) With each production in G of the form
p: F - VOD1V1 .o Dmvm

where F,D4,...,0,, are nonterminals, is associated a set of semantic rules

m
which define the values of p's applied attributes Apl(p) = Sy(F) U (./1 ln(DJ-),
J=
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in terms of the values of p's defining attributes Def(p) = In(F) U U Sy(DJ.).
A semantic rule is of the form j=1

a « f(a a )

]’ LR | m’ -
where a € Apl(p), f is a semantic function and the ai‘s are either domain values
or attributes from Def(p). There is exactly one semantic rule for each applied

attribute in every production.

In the following, whenever we refer to G, we always mean the underlying context-
free grammar of the attribute grammar under consideration.

In what follows we are interested in viewing attribute grammars as language
generators, and of all the different ways in which we can define the language gene-
rated by such a grammar (see [Ri]), we take the approach where the semantic rules
associated with the nodes in a derivation tree, t, are viewed as a set of equations,

E in which the attributes are the unknowns. If we assume that the designated syn-

t ?
thesized attribute of the grammar's startsymbol has only two values (which we can

denote by true and false), then the language generated by the grammar can be de-

fined as follows.

Definition 1 Let A be an attribute grammar over a semantic domain (Q,qn) and
assume that the value-set associated with the designated synthesized attribute of the

startsymbol, d(S), is (true,false). The language generated by the grammar is

L(A) = {w l w € L(G) and there exists a derivation tree for w, t_, such
that Etw has a solution in which d(S) = true } -

This definition allows for the possibility that a word in the language can have
several derivation trees, some of whose equations have solutions where d(S) =true,
some where d(S) = false and some where there are no solutions. As. men-
tioned in the introduction, we shall restrict attention to the case, where it is suf-
ficient to analyze just one derivation tree of a string, in order to find out whether
the string is generated by the attribute grammar. Formally, we define the class of
determinate attribute grammars, dAG, to be the class of grammars where, for each
word w generated by the underlying context-free grammar, 1) each Etw has exactly
one solution, and 2) the value of d(S) is the same in the solutions to all E_ 's.

tu
The difference between dAG's, general AG's and socalled unambiguous AG's

is discussed further in [Ri]. We now restrict attention to semantic domains (QS,CID)

where QS is the set of all strings over some finite alphabet.

Definition 2 Let( be a class of attribute grammars and let S: R+ - R_l_'be a

function mapping nonnegative reals to nonnegative reals. An attribute grammar A
(over some domain (Qs,cb)) belongs to G(S(n)) if A is in(, and there exists a constant
¢ such that for every word w € L(G) and every derivation tree for w, tw’ alt attri-

bute values, v(a), in all solutions to E, satisfy |v(a)| = cs(|w]).
W
-
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In the rest of the paper we are only interested in the following two simple

classes of attribute grammars:

S-AG: the class of grammars whose nonterminals have no inherited

attribuies.

L~-AG: the class of grammars where an attribute associated with a non-
terminal on the righthandside of a production does not depend on

any attribute to its right (see [LRS]).

3. Space-restricted L-dAG's and S-dAG's

As described above,we now consider semantic domains (Q_,®) where Q_ con-
sists of strings over some finite aiphabet. The following theorem shows that inher-

ited attributes add power to space-restricted determinate attribute grammars.

Theorem 3 There exists a language LO such that
a) Lo is generated by an attribute grammar in L-dAG(logn)
b) LO is not generated by any attribute grammar in S—dAG(n/Iogn)
O
Ly consists of sirings of the form $21$. .. $Zn $ where Zi€ {0, 1} *. Each such

string is interpreted as a sequence of binary numbers where the substring z; re-
presents the number Ei whose binary representation is 1zi . Lg is defined as follows
L= N N
Lo =§$z1$...$zn$ln2 2, neven, z€ fo, 1} *, #1{i| 2 >—2-} > E}
i.e. the language consists of sequences of integers,at least half of which are greater

than half the length of the sequence (# M denotes the number of elements in the set M).

Proof of Theorem 3a)

Let A be an attribute grammar (over a domain to be specified later) whose
underlying context—free grammar generates the language (${0, 1}1*${0, 1} *)+$ in

such a way that the derivation tree for the word z = $z1 $... $Zn $ looks as follows

F/S\$

F tn— 1

$Zh—l



[d)

We can specify the semantic rules implicitly by the following top-down left-to-right

pass over the tree,which evaluates the attributes.

1. Count the number of trees bt e o e by using inherited attributes for
F and D.
- n
2. Check whether z, is greater than 2. Each time such a z is found,

increase a counter (which is a synthesized attribute of D, F and S).
n
3. Set d(S) = true if the value of the counter is at least 5, otherwise set

d(s) = false,

[t should be clear that we have specified an L-attributed grammar over some domain
(QS,(IJ) where & contains functions which can compare two values, increase a value
by 1 etc. It is also clear that the largest value of the counters is n, and since in
step 2 only the [log n| most significant bits of z, are needed in the comparison, no
attribute in the tree requires more space than [log nl. Since the length of the word
z is at least n and since the grammar is obviously determinate, we have shown that

L. is generated by an attribute grammar in L-dAG(logn).

0 O

Notice that the reason attribute values could be kept small in the above gram-
mar is that the total number of zi‘s is known when !'"processing'!' each z, locally.
The proof of the second half of the theorem amounts to showing that, when inherited
attributes are ruled out and when "guessing' is impossible (this is what determinacy
prevents), then the nonterminals in the grammar have to ""remember! which substring
they generate. The proof is rather lengthy and we present it in the form of a se~
quence of lemmas.

First, we introduce the following notation. Let z be an arbitrary string of the
form z = $ZI$22' .. $Zn $ (where n=2). We shall refer to such strings as
sequences, to the z i'S as words in z and to the Ei 's as the numbers in z. Since we
want to abstract away from the order in which the numbers in z occur, we define

the characteristic vector of z to be the vector

-

v (z) = (v1(z),v2(z), e ,v-ﬁ-q(z))
where m = max %Ej} and Vi(Z)F#{j \ Ej =i}. Hence vi(z) is the number of j's such
1<j=n
that Ej = i. Using ?/(z), we can characterize the elements of our language L.O as the
set of sequences z, for which
m N
? vi(z) z 3
I=E+ 1

Because of this characterization we are also interested in the accumulated charac-

teristic vector of z, which is denoted by g(z) = (so(z), . ’Sn—q—l(z)) and defined by

m
sdz) = & v.iz) for 0<i<m-1
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Now, let, for some S(n), A be an attribute grammar in S-dAG(S(n)) which gene-

rates l_o. Because spacebounds are defined up to a constant factor, we can assume

without loss of generality that A's underlying context—free grammar G only has pro-
ductions of the formF + DE, F +d, F 2+ X where F, D, E are nonterminals, d is a

terminal,and X is the empty word. Since our proof is basically a pumping argument,
we need the following Ytypical!! constants. Let m be the number of nonterminals in

Om+1

G, r the number of productions, k_ = 2 and let k = [(9m+1)k

G be fixed for the

el
rest of the paper.

We now introduce a structured subset of L_.0 for which we can show that the
atiributes in the grammar must be used to distinguish many words with different cha-
racteristic vectors. Let, for each n which is a multipie of k and for which

[1og3 + logn = [log4 + logn], K, be the set
= - S < i
K, {$z1$...$22n$]3n<zi_4nfor1£|§2nf

i.e. Kn consists of sequences of length 2n in which each number lies between 3n
and 4n. It is clear that Kn is a subset of LO and it follows from the construction that
all words in sequences in Kn are of length [logn]+1. We shall call sequences

Z1,2, € Kn separable if there exists an i =z 0 such that
|sik(z1) - Sik(zz)‘ > 2 (1)

i.e. if there is a component (which is a multiple of k) in their accumulated charac-
teristic vectors where they differ by more than 1. The following lemma shows that

there are many separable vectors in Kn (the proof is outlined in the appendix).

Lemma 4 There exists an integer ny and a constant < > 0 such that for aii

. . C
n= n1,the number of mutually separable sequences Iin Kn is at least 21",

O

The reason for calling sequences z, and z, in (1) separable should become
clear when we now show that there exists a derivation in the grammar G of the form
*
S = @ =sFt (s and t are possibly empty terminal strings and F is a nonterminal)

such that 1) sFt generates many mutually separable sequences, and 2) if z,=sw 1t
and z,= swzet are separable then we can pump within s and t to obtain two words
s'wZl t! and s'wzgt', exactly one of which belongs to L_O.

We construct the form g = sFt iteratively as the Iimit of a sequence

a1,ggz, ceesliyee in the following way.
1. o, = S, where S is the startsymbol of the grammar.
2. Assume that PR PYRRERT ¥ has been constructed and let o; = SiFiti' Let

z be a sequence in Kn generated by PP and assume the derivation [ooks

. B p % _
like o = SiFiti = SiDEti = SEWDWEti Siwzti
the p'th production in G (1< p < r). Let us for any such z define its

= z,where p: Fi -+ DE is

cutpoint to be the length of w and denote by M(p, c) the set of mutually

D’
separable sequences in Kn which have cutpoint ¢ and which are generated
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by o in the above way (i.e. p is the first production used). Remove

from the total collection of sets M = {M(p,c) ] p is an Fi—production,
0< CSIWZ‘ | all sets for which ¢ =0 (c = |WZ|) and the form s.Et.
(SiDti) already occurs in the sequence O qsQnse e s0e L.et the remaining

collection of sets be M! and choose among these a set M(p, c) which con-
contains as many elements as any other set in M!, Let p(i): Fi - DE and

c(i) be the production and cutpoint associated with the chosen set.

3. There are three cases to consider
a) c(i) = (k‘ +1) (1+[lognl). The sequences in M(p(i), c(i)) are of the
form s, WoWet; where ]w | = c(i). Choose W such that s WhEL,
generates as many sequences in M(p(i), c(i)) as for any other choice
of WD and let Oipq = SiWDEti' If SiWDti contains more than
(9m+1)kG $'s then halt, otherwise go back to step 2.

b) c(i) = ]wz‘ - (kG+1) (1+[ logni).. The situation is analogous to a)
with C and D interchanged.

c) (k +1)([logn1+1) < c(i) < |w,| - k +1)(1+{ tognl). Again the se-

quences in M(p(i), c( 1)) are of the for‘m s, WDWE . Choose among all

1 ! i
WD s and WE s the one for which SIWDEti or SiDWEti generates

most sequences in M(p(i),c(i)). Assuming the one chosen is a w

D’

let o S.W Eti and halt.

i+1° °i"'D
Let us say that the above procedure terminates normally if one of the halt-instruc-

tions in step 3 is executed.

Lemma 5 There exists an integer N, and a constant C, > 0 such that the pro-
cedure terminates normally for all n > n2 and furthermore the resulting o = sFt
generates at least 2¢=" mutually separable sequences in K O
Proof

Let f(i) be the number of mutually separable sequences in K generated by a .
It is clear that any such sequence z = Siwzti belongs to at least one of the sets in
the collection M in step 2 (provided ]WZ] > 2). It is also easy to see that it belongs
to at least one of the sets in M!, because removing elements with cutpoint 0 (or |WZ|)
whose '"corresponding' sentential form already appeared in the sequence
g¢1,ggz, “ o ,ai just amounts to eliminating useless derivations of the form sth.); sk t.

Since no cutpoint can be larger than 2n(| logn1+3) and since the grammar has
f(i)

2rn(f logn]+3)

is of length at most

at most r productions, the set M(p(i), c(i)) above contains at least

elements. If step 3a) or 3b) is executed, the string w_ (w

D E)
(kG+1)( 1+[ logn1) and since there are only 3 terminal symbols in the language, it

follows that



(i)
2rn(! logn| +3) - 3

fli+1) = .

for some c < (kG+1)(1+rIogrﬂ). If step 3c) is executed we '"loose!' at most the square-

root of the sequences in M(p(i), c(i}), hence

f(i+1) = (1) 1/2
2rn(| tognl +3)

Since step 3a)or 3b) is executed at most imax = m[(9m+1)kG ([logn]+1) times, and
step 3c) at most once, we conclude that if the procedure terminates normally then

the resulting ¢ generates at least

(1)  1/2

i e (2)
[(2en(] lognT+ 3) 3C] 'max

mutually separable sequences in K _. The dominating term in the denominator is of

|
3'09"‘)C logn for some constant c!. But since we know from

the form (nlogn -
Lemma 4 that f(1) is (asymptotically) of the form 217 then it follows that (2) is

also asymptotically of the form 22" for some €y 2 0. Since this implies that each
o, generates lots of separable sequences, we have in fact also shown that the pro-

cedure terminates normally. -

Next we show that if z,= swzt and zy = sw, t are separable sequences from
2
Kn generated by sFt then we can Y'pump within s and/or t" in such a way that exactly

one of the resulting words s'va t! and s'wz t! belongs to L_O.
1 2

Assume that the iterative procedure above stopped in step 3a) or 3b). We know
that st contains at least (9m+l)kG $'s and since no step in the construction intro-
duced more than kG $'s (otherwise we would have stopped in step 3c)) the path
S = FPFZ, .o ,Fi = F from the startsymbol to F contains at least 9m+1 nonterminals
each of which generates $'s. Among these nonterminals there are at least 10 occur—
j+1""’Fi =F

contains 10 occurrences of the same nonterminal (generating $'!'s). This piece of the

rences of the same nonterminal. Choose the largest j such that F.,F
J

path is of the formB,...,B,...,F where B is the ""repeating' nonterminal. Hence

we have a derivation of the form
* *
S = uBy = uvBxy X uvwlFwlixy = sFt

where vx contains at least 9 and at most (9m+1)kG $is.

In the case where the iterative procedure stopped in step 3c), the string W

added in the last step is itself sufficiently long to allow pumping within the subtree

generated by the derivation D = w The argument is similar to the one just given,

o
which is in fact a trivial extension of the proof of Ogden's lemma found in [ AU].

In the last situation we have a derivation of the form



* *
S = UBYFt & uvBxyFt = uvwxyFt = sFt (3)

where we now know that vx contains at least 9 and at most kG $'s.

In the following we shall assume that the derivation looks like (3), the argument
in the other case being similar. Let g = uvwxyFt be the sentential form generated in
(3) and consider for arbitrary i 2 0 the form

ali) = uv'+2w x[+2yF‘t

which is also generated by the grammar. We know that vx contains at least 9 $'s
and we shall assume that both v and x contain at least one $, the argument in the
case where only one of them contains a $ is similar. If we write v and x in the form
v=an $d, x=bd $e where 1,06 € (${0,1}*)%¥ and a,b,d,e € {0, 1] * then a(i) looks
like

uan $d (an $d)ian $dw bd$e (bC)f‘:Se)i bd $e v Ft
which we can rewrite as

ua [n $d(an $d)ia]n$dw b[6 $e (b6$e)ib]6$ey|:t (4)

This string is equal to g with the brackets "inserted''. We shall show that by
choosing i appropriately and by pumping/contracting within the individual pieces

an $d ... bd $ e,we can distinguish any two separable sequences from Kn generated
bya. Let z, and z2 be two such sequences and let io = ik be the index for which

|s. (z,) - s. (z,)] = 2. Assume wlg that
o 1 o 2

510(21) > sio(zz)+1 (5)

and consider the equations

s. (z,)+p =i,
in 1

(6)
2n+p +qg = 2i4

L.et us call a number which is greater than iy a big number and a number which

is smaller than or equal to iy a small number. [f the derivations of z, and z, are as

follows
* *
S = uvwxyFt = uvwxyw1t =z
* * (7)
S = uvwxyFt = uvwxywzt =z,

and if we can choose | such that the two pieces
Mm$d(an$dial and [6$e(bd$e) b]

together contain p+q words, then we only have to show that we can pump/contract
within each of the pieces an $d ... bd $e in such a way that (almost) p of the words
represent big numbers. Because then it follows from (6) that the resulting word

1 = ‘=
Z4 UVV ... vivwxxi. .. xlxywit belongs L_0 whereas z, UVVq. .. vivwxxi. . x1xyw2t
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does not. Notice that the second equation in (6) says that z,! contains 2n+p+q =2i,
numbers and that the first equation says that iy of these numbers are big. Taken
together this means that 21' € L‘O' zz', on the other hand, also contains 2n+p+q = 2i,
numbers but, because of (5), less than iy of them are large, i.e. zz' €¥ LO.

Now, the reason the difference in (5) has to be more than 1 is that we can't
quite obtain p big and g small words, but as the following lemma says we can do

almost as well (the proof is outlined in the appendix).

Lemma 6 There exists an integer ns and a constant C3 > 0 such that fof all
nzn,, if z, € K, 1s derived as in (7) and if p, q satisfy (6) then there exists a deri-
vation of a word 21' of the form le =Uvv,.. .vivwxxi. . x1xyw1t which contains
2ntp'+q' numbers, Sio(21)+pl of which are big, and such that p'+q' = p+q and

+1= p! = p.
ptl2p'=p O

Now we can finally prove Theorem 3b).

Proof of Theorem 3b)

Assume that the lanhguage I_O is generated by an attribute grammar in
S-dAG(n/logn). Let ¢ be the constant such that for all words w generated by the
underlying grammar, any attribute value v(a) in a solution to the equations E
satisfies |v(a)| < <o (| w]|/log(|w]|)). Let I(n) = 2n([logn1+2)+1 and choose n Iar‘g;er*
than any of the integers Ny» Ny, Ny in femmas 4, 5, 6 and such that cyn> colog(g)
(H{n)/1og(I(n))) where g is the size of the grammar!'s attribute-alphabet (recall that
attribute values are strings over a finite alphabet). Let @ = sFt be the sententijal
form from LLemma 5 which generates at least 2¢=" mutually separable sequences
from Kn. All these sequences are of length I(n), hence the attribute values v(a(F))

associated with the nonterminal F in all these derivations satisfy

C
| V(&(F)) | = g 1n)/togli(n) < 75y n

The total number of different values a string of length ‘v(a(l'—“))| can represent is
cAn
2

g]v(a(F))] < gIogg - p%2n

Hence there are at least two separable sequences in Kn’ z, and z, such that the

values of a(F) in the sets of equations Et and Et are equal. Now construct zl'
z z
1 2

(and 22')accor*ding to LLemma 6 and consider the corresponding equations E-t and
z !
1
E, . Since the grammar is S-attributed, the set of equations determining a(F) in
22|
Et (Et ) is the same as the set of equations determining a(F) in Et (Et )
z,! z! Zy Z3

because the subtrees with F as root are identical in the two cases. Hence the values

of a(F) in E and E are equal. Since the remaining equations in E and E
t_ t_ t_ t_
z, z, z, z,
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are identical, the values of the designated attribute of the startsymbol in the two
sets of equations are equal. But that's impossible because 21‘ is in the language
whereas zz' is not, and since the grammar is determinate the two values of d(s)
must be different. Thus we have reached a contradiction, which shows that no
grammar in S-dAG(n/logn) can generate Lo -

4, Conclusion

Theorem 3 is obtained under very weak assumptions about the semantic domains
involved. Indeed in the proof of part 3b) nothing is assumed about the semantic func-
tions. It is also relevant to consider the situation where we, in addition to the re-
striction on the size of the attribute values, require that the semantic functions
belong to some complexity class. The first steps in this direction has been taken in
[Je], where semantic functions were measured in terms of the complexity of the

RAM-programs used to implement them.

5. Appendix

Here we outline the proofs of Lemma 4 and Lemma 6.

Proof of Lemma 4

Each sequence z in Kn consists of 2n numbers in the range from 3n to 4n.
P
Hence v{(z) has at most n honzero compohents, and the total number of vectors of
this form can be computed as the number of ways to distribute 2n balls over n boxes,

which is equal to

3n-1
( n—1> (8)

Let!'s say that the accumulated characteristic vectors associated with 2152y € Kn
are similar if s, (z,)= Sik(zz) for i =z 0. Given an arbitrary sequence z € K, the

. - -~ -
number of vectors similar to S(z) is

K o
I ps:‘j;‘) (9)
i=1 n
k
where p; = S(i—1)k(2) - Sik(Z)’ (i.e. iE1 p, = 2n).
(9) is maximal when Py =Py~ ... =P = 2k, which means that the maximal number
of vectors similar to any gi‘ven vectorl‘< is

N

(3E::> K (10)
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-
! imi i -
Let!'s say that S(Zl) and s(zz) are almost similar if \sik(zl) sik(zz) | <1 for

i 2 0. We can bound the number of vectors which are almost similar to any given

vector by
n
. 3k-1} k
D, ( k—l> (11)
k
where Dn is a solution to the following difference equations
%
D =D +2C
n n-1 n-1 ‘
C, = Db, _;+C (12)
D, = C, =1

1 1
which are obtained by systematically analyzing the ways in which almost similar
vectors can be different at components which are multiples of k.
Dividing (8) by (11) gives a lower bound on the number of separate sequences
in K_. Since the solution to (12) is D~ (1 +/ 2)" and since we can shor\}/v (using
Stirling's Formula) that (8) divided by (10) is asymptotically equal to 3R, we find

that for sufficiently large n, the number of mutually separable sequences in Kn is
A

at least (—1—_37—2—) k which is equal to 2%1" for some cy> 0. O

Proof of Lemma 6

Assume that Z412Z95P and q satisfy (5) and (6). Since the sequences z, and z,
only contain numbers between 3n and 4n, any index i, for which their s-vectors
differ, satisfies 3n < iy <€ 4n. Furthermore, the sequences both contain 2n numbers,
which means that 0 < 530(21) < 2n. From this it follows that n < p € 4n, 4n < p+g < 6n
andgz % . Finally, since both n and iy are multiples of k, so is p+g. Now, consider

the piece
cee Veee Xewo = .. an $d... bbb Se... (13)

which can be pumped according to (3) and (7). Assume that (13) contains h occurren-
ces of a $. We know that 9< h < kg and since k = [(9m+1)kG]1, h is a divisor in k.

Hence there exists a | such that h+ j = (p+q), and it follows that the sequence

21' = uvvJ—lvwxxJ_1

contains 2ntp+q = 2iy words. Now we only have to show that we can make sure that

Xyw ,t (14)

exactly p! of the p+q added numbers are big, where p+1 = p! 2 p. This is shown by
observing that when n is large, then the distance between consecutive $'s in (13)
is large, and since the number of $'s in (13) is independent of n, we can pump within
the piece (13) without changing the number of occurrences of $'s.

To be precise, we can show the following observation, again by extending the

proof of Ogden's Lemma (see [ AU]).
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Observation Let G = (N,Z,P,S) be a context—free grammar with m nonterminals

whose productions are of the formF 4 DE, F #+d, F 4, and letT = 21 U Z, be a
partition of T (i.e. }31 nz,= @). If G generates a word of the form z = u'w'y! in

which the total number of occurrences of symbols from 22 is g, wleg 21'*, and
|w!| = 22mg+3 then z can be written in the form z = uvwxy, where vx € 21*, v (or x)

is a nonempty substring of w! and each word of the form uv'wxly (i = 0) is also gene—

rated by G. O

Using this observation, we can construct three new pumping pieces of the form

...ant$d ... b'6'$e!
one in which all words, except possibly a', d', b', e', are long (and thus represent
big numbers), one in which they are all short (and thus represent small numbers),

and one in which all but one or two are short. It is easy to show that we can replace

vJ_1 . ><‘|_1 ... in(14) by properly chosen copies of these three pieces in

such a way that p! words are long and the rest are short, and this proves the lemma.
Notice that when using the pumping piece with long words, we might obtain 2 short
words every time we get h=2 long ones. But since -gz %and h = 9, that many short
words are needed anyway (this is the reason for the occurrence of the number

9 in our various constants).

O
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