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Absiract

This paper discusses the use of Petri nets as a semantic tool in the design
of languages and in the construction and analysis of system descriptions.

The topics treated are:

L.anguages based on nets,

The problem of time in nets.,

Nets and related models,

Nets and formal semantics,

Parallel program verification and nets.

Introduction

The purpose of this paper is to discuss some experiences with the use

of Petri nets as a semantic tool. The material presented is from an

ongoing research project, described in [Jensen, Kyng and Madsen, 79c].
The material is thus still under development and subject to change. The
major part of the research project consists of the joint development of a
system description language and a formal semantics for the language by
means of a syntax-directed translation from system descriptions (programs)

into net-models.




Our system description language is based on the Delta-language developed
at the Norwegian Computing Center. The semantics of Delta was origi-

nally defined in a semi-formal way only, by means of an abstract interpreter
described in the language itself [Holbaek—Hanssen, Handlykken & Nygaard,
75]. In 1977 we defined the control-part of Delta (with minor restrictions) by
means of a semantics, which was based on extended Petri nets [ Jensen,
Kyng & Madsen, 79a], [Jensen, 78]. This produced a humber of proposals
for corrections and simplifications of the original design. It turned out

that many changes proposed to obtain simpler nets, also fulfilled the
original design goals more satisfactorily. The simplifications implied that

a stronger set of proof rules could be obtained. Moreover it would now be
possible to rewrite the original abstract interpreter to less than half of

its original size.

The work described above encouraged us to initiate a more radical redesign
of the Delta-language and to use a net-model as a tool in the design process.
This work is still in progress, and fragments of the evolving Epsilon-

language have been presented In [densen, Kyng & Madsen, 79b].

The present paper is divided into five sections. In section 1 we informally
introduce essential parts of Epsilon by means of an example and we discuss
the scope of the language. In section 2 we discuss different aspects of time
in nets in relation to language semantics. In section 3 we describe a net-
model called concurrent-systems. In section 4 we define the semantics of
some Epsilon-constructs by means of concurrent-systems. In section 5 we

discuss how to prove properties of systems described in Epsilon.

The aim of the present paper is to provide a short intuitive introduction to
our work on the five topics treated. Thus we focus on the presentation

of ideas, at the expense of technical details. Readers, being interested
further in particular aspects of our work, are referred to our more

detailed papers contained in the reference list.



1. A LANGUAGE BASED ON NETS

In this section we introduce by means of an example some of the essential
concepts of the system description language Epsilon. Epsilon is a

successor of the Deltadanguage [Holbaek-—Hanssen, Handlykken & Nygaard, 75].
An earlier version of Epsilon is described in [ Jensen, Kyng & Madsen, 79b].
The original Delta-danguage was developed without the use of net theory,

but most of the main ideas behind the language design coincide with the

system-view of general net theory.

System description

Epsilon is a system description language and not a programming language.
We shall thus not limit ourselves to algorithms in the usual sense, We
consider the much larger world of system description, where the systems

may contain human beings, machines, physical/chemical processes, etc.

Such systems may develop continuously over a period of time. Although some
systems cannot be adequately described using the classical time-concept,
there are many situations where the existence of a global, totally-ordered
time—-scale shortens the description and enhances its clarity. Thus we allow

the use of global time, but do not enforce it.

As already mentioned, Epsilon is not a programming language, and it is

in fact not possible to implement it on a digital computer system. Thus
efficiency of implementation is not a meaningful concern. We do not consider
how to execute individual steps in algorithms or how to solve the equational

systems specified in the language.

It is of interest to develop a programming language which is as far:as
possible consistent with the implementable parts of Epsilon. Together

the two languages could be used to specify an edp-system and its environment,
such as user-procedures and edp-department, and to program the edp-system
itself. To some extent this consistency exists between Epsilon and the Beta
systems programming language, [Kr‘istensen, Madsen, Mgller-Pedersen

& Nygaard, 79]. In [Kyng, 76] it is described how to simulate a limited class

of Delta systems on a computer.




Epsilon concepts

An Epsilon system consists of a humber of objects, which each executes

a sequence of actions. Objects may synchronize their actions via variables

(e. g. the predefined global variable "time!") or by means of direct com-

munication as in [Hansen, 78], [ Hoare, 78], [ Ichbiah et al, 79], and
[ Kristensen, Madsen, Mgller-Pedersen & Nygaard, 79].

Objects may execute two different kinds of actions called equational-actions

and event-actions. An equational-action is specified by an equation over

a set of variables together with a list of changeable variables. When a
number of objects concurrently execute equational-actions the corresponding
equations constitute a set of effective equations. The effective equations
deter*mme the values of the changeable vamables (i.e. the union of the
changeable variables associated with effec’uve equations). Equations may
involve (explicitly or implicitly) the predefined variable "time!. The set

of effective equations must be kept satisfied continuously as long as the
corresponding actions are being executed. Summing up, equational-actions
may involve continuous state transformations, the actual transformation may
depend on the actions executed concurrently with the one considered (but only
within the limits of the specified equation), an equational-action is executed
over a period of time and its termination may depend on the actions of other

objects.

An event-action is specified by a sequence of normal algorithmic statements.

It is indivisible and instantaneous (with respect to the variable "time!").

The effect of an event-action does not depend on concurrently executed
actions. However, in some cases two objects jointly execute one event-

action, this is illustrated in the example below.




Some language constructs: an example

The main language constructs to be discussed in this paper will be intro-
duced by an example describing four balis following a circular orbit. The
balls may move in both directions or stand stiil. Elastic collisions may
appear between the balls. Two balls which collide will exchange their
velocity (speed and direction). It is assumed that no external forces in-
fluence the system, i.e. no friction, no gravitation and no loss of energy.

All balls have the same mass.

positive
velocity

Figure 1.1

This system can be described in a number of different ways, depending

on e, g. the purpose of the description and the language used., One such
description has just been presented using normal english and a figure

(fig. 1.1). In fig. 1.2 we present a more formal description using Epsilon.
The purpose is to illustrate some language-constructs, and we will not dis-

cuss the specific choices made for this description.

The system described in fig. 1.2 consists of four ball-objects with identical
specifications (3-18). Each ball-object has four variables of type real (4),
which describe position, velocity, position of last collision, and time of

last collision. And two constant references, initialised to its left and

right neighbour respectively (5). After initialisation (6) each ball-object
executes a guarded-statement (7-17). The guarded-statement specifies (7)

an equation and a variable, pos, to be determined by the equation, when

the ball-object is moving without colliding with its neighbours. A collision
with the left neighbour is due to occur when the two balls are adjacently posi-
tioned (S: pos= left. pos) and when the velocity of the left neighbour is greater
than that of the object itself (9: vel< left.vel), cf. fig. 1.1. We allow more

than two ball-objects to collide at the same moment of time and we synchronize




1 system

2 ball{1..4):

3 object

4 pos,vel,poso,timeo: real;

5 left, right: ref ball constant := ball(this @ 1), ball(this @ 1);
6 initialisation of variables,

7 let pos = pos + vel x (time - timeo) determine pos

8 when

9 0 pos ~ left.pos, vel < left.vel, with left -

10 do vel := left, vel

1 end;

12 poso,timeo := pos, time

13 0 pos ~ right.pos, vel > right.vel, with right -
14 do vel := right. vel

15 end;

16 poso,timeo := pos, time

17 end let

18 end ball

19  end

Figure 1.2

their collisions pairwise (9: with left). When a collision occurs with the
left neighbour, the two boolean expressions in (9) are true and the object-
synchronization "with left!" is matched with the corresponding "with right!
in the left neighbour. Execution of the equational-action (7) is terminated
and the statements following the arrow are executed (10-12). The assign-
ment between ''do-end' (10-11) describes part of an event-action executed
jointly with the part described between '"do-end'" in the object which
matched the '"with left"" (i.e. the "do-end! (14-15) in the left neighbour).
The effect of the joint event-action is to exchange the velocities of the
two coliiding ball-objects. After this event—-action the object assigns to

pos, and timeo (12). Then the equational-action described by (7) is resumed.




The net of the bali-system

In the net-semantics, which we describe further in section 3, execution

of event-actions corresponds to the firing of transitions. Each tran-

sition has an attached expression containing a guarding boolean expression
(prefixed by "'when') and an assignment (prefixed by ”d_o”). This is

similar to the approach in [Keller, 76] and [Mazurkiewicz, 77]. Execution
of equational-actions is represented by tokens on the corresponding places
(e.g. a token on the place "MOVE" in fig. 1.3). Each place has an attached
expression specifying an equation and a list of variables to be determined
by the equation. The equation is prefixed by "let" and the variables by
'det! (for ''determine!'). By default omitted guards and equations are al-

ways satisfied. Omitted assignments are dummy-actions.

In section 4 we discuss how to translate an Epsilon description into a net.
In this section we merely present the net of the ball-system (fig. 1.3).
The dashed lines indicate the subnet corresponding to a single ball-object.
initially all four BEGIN-places are marked with a single token each and
all other places are unmarked. When a transition gets concession it is
forced to fire at that moment of "time! (unless it looses concession by the

firing of another transition), cf. section 2.

The use of boolean expressions in the guarded-statement (9 and 13) resembles
the use in guarded commands [Dijkstra, 75]. Conflicts are resolved non-
deterministically. There is, however, a profound difference between our
guarded-statement and a normal algorithmic control-statement. Execution

of the guarded-statement consists of a continuous state-transformation

(specified by the equation), combined simultaneously with tests of the

conditions determining the duration of the state-~transformation. Execution

of an algorithmic control-statement alternates between transformations and
tests. This difference is enhanced by the fact that the single equation spe-

cified in the example above may in general be replaced by a sequence of

equational-actions all supervised by the same set of guards, cf. section 4,
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2. TIME IN THE NET-MODEL

When we describe a system it is possible to apply a time-concept in at
least two different ways. Either "time'!l is explicitly available, e.g. as

a variable, and "time" may be used to describe the development of the
system, as we did with the ball-system in section 1. In this case things
change - at least with respect to the net-model - because !"time!"
increases. This mode of description is used in classical physics. Alterna-
tively "time! may be treated as a derived concept, which is not a priori

available. Then !time" increases because things happen.

Further choices to be made regarding the time-concept include:
- is "time!' considered continuous or discrete, and

- is "time!' considered global (totally-ordered) or local

("relativistic!) ?

In our net-model we support the use of an explicit, newtonian (i.e. con-
tinuous, global) "time''. Such a time-concept has proved its usefulness
in a large number of applications, as mentioned in section 1, We are not
- at least at present - considering the possibility of supporting a con-

tinuous, local ''timel!,

Although we support an explicit, newtonian time-concept, it is possible
for the person making a system description to decide to treat "time'!' as
a derived concept, i.e. to make an Epsilon description which does not
use the predefined variable "time!'. Such a description corresponds to

a net which behaves like traditional Petri nets [Petri, 76]. Transitions,
which have concession, are allowed to fire, but they are not obliged to.

Thus we have an asynchronous model (although objects may communicate

synchronously, as described in section 1).

The use of a newtonian time~concept in Epsilon is supported in the net-
model by the variable "time!'., The behaviours of nets where this variable

is used alternate between a continuous mode, where no transition has

concession, i.e. the marking is constant, but the value of !"time!! is

continuously increased, and an instantaneous mode, where the value of
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"time!" remains fixed, while the marking is changed by the firing of
transitions. The duration of each continuous period is as short as possible,
i.e. It ends when at least one transition gets concession. The duration of
each instantaneous period is as |long as possible, i.e. it continues until

no transition has concession. Two transition firings belonging to the same
instantaneous perijod are said to be time~equal. Concurrent firings are

always time-equal (but the reverse is not true).

A continuous period ends by the firing of (at least) one transition, which
did not have concession during the period. Since the marking has not
changed, this implies that the value of the guard of the transition has

changed.

When '"time! is used, the model is synchronous, in the sense that the

beginning of an instantaneous period is synchronized with "time!' as
described above. In some respects this resembles "synchronized Peiri
nets'' defined in [Moalla, Pulou & Sifakis, 78]. In their model transitions
are divided into external and internal transitions., Each internal transition
is dominated by exactly one external transition. When an external transi-
tion firing occurs it is followed by a maximal firing sequence of internal
transitions dominated by it. Then the system waits for the next external
transition firing and so on. In our model the increase of "time!" plays the
role of external transition firings, and each increase dominates each (in-

ternal) transition.

The firing of transitions during an instantaneous period is still asynchro-
nous in the normal Peiri net sense. In faci there is no technical difference
between the firing rule for nets corresponding to descriptions with and
without the use of !"time!'. The expressions attached to places and tran-
sitions in a net, simply do not involve "time!' if the corresponding descrip-
tion does not. Each behaviour (firing sequence) of such a net contains only
one instantaneous period. In terms of the analogy with "synchronized Petri
nets' we may say that when a dead marking is reached, there are no exter-

nal transitions to revive it.
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There is, hOWeVéI", important differences between the traditional Petri
net concepts such as liveness and deadlock, and those needed to study
nets using "time!'. For example the existence of an infinite sequence of
time~equal transition firings probably indicates an error if the net in-
volves '"time'!'. And, as illustrated in section 5, when we prove properties
of an Epsilon system using ''time!", we are primarily interested in
markings corresponding to continuous periods, i.e. markings which are

dead during the period.

3. THE MODEL : CONCURRENT-SYS TEMS

In this section we describe the semantic model, which is used to define
the Epsilon~language. While Petri nets are excellent models for the
control-flow of a language, they are less suited as models for state
transformations in the data part. To remedy this situation we augment

Peiri nets with a data-part containing a set of variables.

The model, called concurrent-systems, consists of a triple:

(CON, INT,INIT). The control-part, CON, is a condition/event-net. The

interpretation, INT, specifies a set of variables and attaches an expres-

sion over some of the variables to each place and each transition. The
initial state, INIT, specifies an initial marking and initial values for the

variables.

The expression attached to a transition specifies a boolean expression
(guard), which must be satisfied to obtain concession (in addition to the
normal condition for concession), and a transformation, which is carrijed
out on some of the variables, when the transition fires. The concurrency-
relation for places and transitions is defined as for traditional Petri nets,
except that two transitions to be concurrent also have to use disjoint sets
of variables. In our figures the guard is prefixed by "when'' and the

transformation by '"do''.
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The expression attached to a place specifies an equation and a set of
changeable variables. In our figures the expression is prefixed by Met!
and the variable list by det!" (for "determine''). When the place is marked
the changeable variables are assigned values such that the equation is
satisfied (together with the equations of other marked places). It should
be noted that expressions attached to places may involve variables which
change continuously. These expressions are needed to define the seman—
tics of the equational-actions of Epsilon. The algorithmic statements of
the language can be described by attaching expressions to transitions

only, cf. [Keller, 76], [Mazurkiewicz, 77].

When a concurrent system is in continuous mode (cf. seciion 2) the set

of equations associated with the marked places is continuously satisfied.
by changing the values of some variables. When the system is in instan—
taneous mode the values of the variables cannot change between transition
firings. Thus the equation-system is only solved once for each step in

a firing sequence.

If a situation is reached, where the set of equations associated with
marked places has no solution, we consider this as a descriptional error

and we say that the concurrent-system is ill-behaved.

A formal definition of concurrent systems and their behaviours may be

found in [Jensen, Kyng & Madsen, 79b].
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4. LANGUAGE SEMANTICS DEFINED BY NETS

In the present section we define in terms of concurrent-systems the
semantics of a few kinds of Epsilon-statements and discuss the limitations
and shortcomings of our present approach. The use of a net-model has
been an aid in developing a better understanding of concurrent processes
and their communication and of the relation between continuous equational-

actions and instantaneous event-actions (see section 1).

Each Epsilon-statement is represented by a concurrent-subsystem with
exactly one transition distinguished as an entry and zero or more tran-
sitions distinguished as exists. In the general case the exit-transitions

are partitioned into several sets depending on where to continue execution.
Normal GOTO's are not allowed, but it is possible to skip the rest of a
guarded-statement. In this paper we only consider exit-transitions leading
to the immediately following statement. We depict the concurreni-subsystem

representing a statement in the foilowing way:

=)

The entry-transition and the exit-transitions are indicated by vertical
bars, to the left and right respecitvely. The braces indicate that there
may be zero or more exit-transitions. The oval symbol named "stat!

denotes an open subnet.

Sequential composition of two statements, ”stat1;stat2”, corresponds to
the composition of the two concurrent-subsystems as shown below. Each
exit-transition of sta'c1 is concatenated with a copy of the entry~transition
in statz. Concatenation of two transitions will be done only when the
second transition has no guard. Such a concatenation yields a single
transition, where the guard is taken from the first of the original tran-
sitions and the transformation is the sequential composition of the two

original transformations. Concatenation is associative.
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entry ‘ exit leniry exit
——
stat1 stat1 stat2 , statz

Before we proceed with the definitions of Epsilon-statements, we present
the concurrent-systems of some - hopefully more familiar - statements:

Dijkstra's guarded commands [Dijkstra, 75] . (These are not part of our

language. )

The statement

0 boo = stat
n n
fil

is represented by the concurrent-system

entry .
stat a - : exit stat,

when boon

entry
stat
8]

exit stat
N

when — (boo1v. .V boon)

ERROR




The statement

1)

£}
v

0 boo -~ stat
n n

od”

is represented by the concurrent-system

exit
Stat1

_ vexit
stat
N

stat S
N

when booh

when —(boo Ve vboon)

Next consider the following program-segment intended to find the largest

value in the array a[ 1..last]:

Ni = 1; max :=al 1];
doi<last=+1:= i+ 1;
ali] > max = max :=al[i]

if
0 ali] < max = skip
fi

od!
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Assignment-statements and skip-statements are represented by single
transitions being both entry and exit. We gei the following concurrent-
system from the above program-segment (the error-branch of the if-

statement has been omitted since its guard reduces to false):

when a[i] > max
do max :=ali]

when i < last
do i :=i+1

O when a[i] < max

when | = last

In this example we considered algorithmic statements, thus we attached

expressions to the transitions only.

Now we return to the Epsilon-statements. A guarded-statement with

boolean expressions only in the guards, i.e.:

”stato

when
a boo1 -+ s’cat1
. (n=0)

0 boo_ = stat
N N
end!
is represented by the following composition of concurrent-subsystems. The
thick arrows and the dashed rectangle indicate that a copy of the subsystem
representing the when-part is attached to each place in the subsystem repre-

senting stato. If statO describes a single equational-action, the corresponding
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subsystem contains only one place and the thick arrows could be re-

placed by normal arrows. If stat, describes several equational-actions

0
they are all supervised by the guards in the when-part. The concurrent-

subsystem representing stat, contains several places and a copy of the

0
concurrent-subsystem inside the dashed rectangle must be attached to

each place.

entry

—— — e e e T e i St e e e st s e e o Gt s e e e s - ——— - — e T —

——— — e Vs e v . L T et S T S S S S S S S o S S S S S S S ——
i S S S D St e i A TS it . A S S S A S . it YD . S G e e B e

In the general case the guarded-statement may have exit-transitions other

than those of stato, but this will not be discussed in the present paper.

An object is described by the following concurrent-system, where stat

is the actions of the object. Initially only the BEGIN~-place is marked.

BEGIN END

entry
e
stat

exit
stat
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Now we consider the situation where one or more of the guards in a
guarded-statement specifies synchronization with another object directly

(not via variables), i.e.:

“stato

when

a booj, with S' =+ do
stat
end,

Statz

.

end!

This j'th branch in object S has to be selected together with a similar

branch in object St

”stato'

when

O boo,, with S +do

1
Stat1
end,

1
stat2

end!

We shall only allow the situation where stat1 and stat1' are parts of an
event-action, and update disjoint sets of variables. The two branches
are then represented by the following concurrent-subsystem. The
expression ''do expr1]\e><pr~ ;' ' means joint execution in the following
sense: First the new values to be assigned to variables changed by stat1
(expr 1) or stat1l (expr‘I') are found. Then these values are assigned

to the variables (in non-deterministic order).
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entry exit
. b
statg Statz stat,
when booJ. A booI<

do expr,|[expr !

) entry ) exit
stat, staté statz'

=~ O

|

The construction above is also applicable when more than two objects
synchronize their (event-)actions. Our approach is at present inspired
mainly by [Hansen, 78], [Ichbiah et al, 79], [Kristensen, Madsen,
Mgller-Pedersen & Nygaard, 79], and thus by [Hoare, 78].

An Epsilon system containing a number of objecis is represented by the
union of the concurrent-subsystems representing each object. For each
possible directly synchronized communication (i.e. each matching set

of with-statements) the corresponding transitions are joined in the manner
described above. When each object contains several with-statemenis
addressing the same object(s) we have an exponential blow-up in the

number of transitions representing direct communication.

Svyntax-directed translation of Epsilon-descriptions into concurrenti-
systems could be formalized using an attribute grammar with concurrent-
systems as attributes. It would then be possible to make a compiler,
which uses concurrent-systems as target code. This is similar to the

use of Net-Attributed-Grammars in [Hruschka & Kappatsch, 79].
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Next we consider some of the limitations and shortcomings of our semantic

model.

Petri nets are static in the sense that it is not possible to add or remove
subnets. The use of recursive procedures and Simula-like classes of
objects calls for concurrent-systems with an infinite number of identical

subsystems representing different pr‘ocedure/object—invocations.

To be concurrent two transitions must use disjoint seis of variables. Thus
it is not possible, from the net-structure alone, to deduce whether two
transitions are concurrent or not. We could represent each variable by a
place, but this would generate large unstructured nets with many side-
conditions. It is often difficult to make a clear distinction between control-
part and data-part. It is for instance not obvious how to represent (dynamic)

object-references.

As mentioned earlier in this section heavy wuse of direct communication

may blow up the number of transitions, even with a static object structure.

Some of the problems described above can be overcome by the use of a
net-model where information can be attached to tokens [Genrich & Lautenbach,
79], [Jensen, 79, 80]. It would then be possible to equip each token, acting
as a control-pointer, by a colour which represents the data state of the

corresponding object,

We have not yet established a satisfactory set of methods for the analysis

of concurrent-systems. We return to this in the next section.
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5. ANAL YSIS OF SYSTEM DESCRIPTIONS

In the previous sections we have discussed how a net-model can be used

to describe the semantics of programming and system description lan-~
guages. We defined a class of net-models, called concurrent-systems,
and a syntax-directed transiation mapping each program or system
description into a concurrent-system. The use of a formal model improves

the language-design and may be of help, when presenting the language.

In this section we discuss how to analyze the concurrent-systems obtained
from programs or system descriptions. A number of existing methods of
net-analysis can be used for our model (e.g. [Lautenbach, 75], [Keller,
76], [Kwong, 77], [Mazurkiewicz, 77]). We shall not repeat the descrip-
tions of these methods, but focus on how analysis can benefit from the

distinction between continuous-mode and instantaneous—-mode (cf. section 2).

For a specific language the syntax~directed translation maps into a small
subclass of concurrent-systems only. As an example the semantics described
in section 4 can be shown to guarantee that the ‘concurrent-system repre-
senting an object is a state machine with exactiy one token. In more com-
plicated languages (e.g. the one described in [Jensen, Kyng & Madsen, 79b])
this need not be the case; but for any well-designed language it will be
possible to infer a number of system properties from the mere fact, that

we deal with concurrent-systems representing programs or system descrip-
tions., Such proofs can be done by the use of structural induction [Stoy,

77] and the invariant method [L_autenbach, 75]. They need only be carried

out once for each language, not for each program or system description.

The division into continuous~mode and instantaneous-mode can be utilized
in the analysis of concurrenti-systems. Each system state consists of a
marking and values of the variables. We are primarily interested in the
system states which occur in continuous—-mode. [t is an essential design

goal of Epsilon that these system states are representative in the sense

that they are abstractions of states in the modelled system. In contrast to
this, we allow the system states of instantaneous-mode to be

states, which may have no counterparts in the modelled system. In the
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ball-example of section 1, each collision is described by the firing of three
different transitions. There exist system states where the velocities of
the two colliding balls have been updated ""according to the collision', but
where one or both balls remain to update the variables recording position

and time of the last collision. We consider such system states to be without

any physical counterparts,

From the description of concurrent-systems (in section 3) it immediately
follows that all system states must be (forward) reachable. Furthermore

if the system state is dead (i.e. no transition has concession) it belongs

to continuous-mode and it should be representative. Whether the repre-
sentative states include other states (i.e. states of instantaneous~mode)

has to be decided for each Epsilon-description/concurrent-system by deter-
mining if any of the states of instantaneous-mode are abstractions of states
in the modelled system. This process of determining a set of represen-—
tative states and our insistence on being interested in these states only (at
least during analysis) often drastically reduces the number of system

states which have to be considered.

In the ball example of section 1, a token on any of the places labelled by

BEGIN, LEFT or RIGHT gives concession to the transition which has the
marked place as input-place. Thus the system states with these markings
need not be representative, and we decide that they are not. We conclude

that each representative state has a marking where the MOVE-places are
marked for all four objects (called a MOVE-state). Finally we have to

decide whether or not (some of) the non-dead MOVE-states should be con-
sidered as representative. If not, the representative states are exactly
the states of continuous-mode, that is the states where no collisions occur.
IT we include the non-dead MOVE-states this means that we consider these
states, where a collision has been "recognized, but not executed!, as an
abstraction of states in the modelled system. As illustrated below the
implication of this is that we may consider a collision between more than

two balls as composed of a set of pairwise collisions.
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Given an occurrence-net for a concurrent-system the distinction between
representative and non-representative states could be captured by a
mapping analogous to a net-morphism. All transitions fired to get from

one representative marking to the next is mapped (together with the inter-
connecting places) into a single transition, where the expression describe
the total effect of all the original transition firings. The concurrent-
system, which is the image of such a net-morphism, would be an occurrence-
net, where the system states are exactly the representative states of the
original occurrence-net. In the ball-example, a collision between more than
two ball-objects will be represented by a closed subnet in the corresponding
occurrence-net. If we demand that representative states are dead, such

a closed subnet will be mapped into a single transition. If we include the
nhon-dead MOVE-states in'the set of representative states, -then such a
closed subnet will be mapped into a smaller one, where each iransition

represents a pairwise collision.

As in other formal models it is often convenient to create a proof simulta—
neously with the description. To illustrate this we describe a system,
where two persons each are able to think, speak and listen. Each person

is described by the following concurrent-system:

let s = listen
det s
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In the most general situation, where nothing is assumed about the guards
of transitions, a single instantaneous-period may contain loops (i.e.
infinite firing sequences). One of these loops may be avoided by de-
manding for each object that B1 (i.e. desire to stop thinking) cannot be

true at the same value of ''time!! as Bz (i.e. desire to start thinking).

Next we define the other guards by the following expressions, where

"'partner! is a reference to the other person-object.

i

B, = B

3 partner.s = speak

5
B4 = B6 = partner.s 75 speak

I}

It is then straightforward to prove that the following property is satisfied

for all dead states and thus for all states in continuous-mode:

s = speak & partner.s = listen

Both person-objects may start to speak simultaneously by concurrent
firings of the transitions 1. Then we may have an infinite sequence of
firings in a single instantaneous~period by alternation between simulta-
neous firings of the concurrent transitions 5 and of the concurrent
transitions 6. This corresponds to the situation where two polite persons

both want to speak, but wait infinitely for each other,

This example illustrates a difference between concurrency-~-models and
interleaving—models. In an interleaving-model there would be a non-
deterministic choice selecting the person-object which has to listen

(one of the simultaneously enabled transitions 5 would be fired first,
thereby preventing the firing of the other). In a concurrency-model there
is also the possibility where the two concurrent transitions fire concur-

rently,  i.e. both person-objects start to listen.:
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