ISSN 0105-8517

A PRACTICAL STATE SPLITTING ALGORITHM

FOR CONSTRUCTING LR-PARSERS

by
Bent Bruun Kristensen *

and
Ole Lehrmann Madsen

DAIMI PB~-115
March 1980

*  Aalborg University Center, Aalborg, Denmark

Computer Science Department — [T . ]]]j
AARHUS UNIVERSITY — {f%
Ny Munkegade — DK 8000 Aarhus C — DENMARK B T N
Telephone: 06 — 12 83 65 | [—I—




Abstract

A practical algorithm for constructing L.LR(k) parsers is given. The
algorithm works by splitting those states in the LR(0)-machine that give
rise to LALR(k)-conflicts. The algorithm takes a conflicting pair of
items, say I,J in a state T, and performs a recursive backwards tra-
versal of part of the predecessor tree of T. At each node pairs of

items which contribute with lookahead to | and J in T are visited.

During the return from the recursion, states in the predecessor tree
that give rise to LAL.R(k)-conflicts (between | and J in T) which are
not LR(k)-conflicts, will be split. This splitting may involve unrolling

of loops and separation of loops into several loops.
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I. Introduction

In [De Remer 69 and 71] it is proposed to construct LR(k)-parsers
indirectly by constructing the LR(0)-machine and then resolve possible
LR(0)-conflicts by means of SLR(k)- or LALR(k)-lookahead. If this
fails parsing conflicts may be resolved by splitting states in the
L.R(0)-machine. However, no practical solution for the state splitting

approach is given.

The purpose of this paper is to present a practical algorithm for the
state splitting approach. This algorithm will construct a parser for all

LR(k)-grammars.

In [Kristensen & Madsen 79b ] algorithms for testing LR(k)-ness of a
grammar on the basis of its LR(0)-machine were given.b These algorithms
were a further development of the algorithms for computing LALR(k)-
lookahead which were presented in [Kristensen & Madsen 79a]. In these
algorithms LALR(k)-lookahead is computed by (recursively) tracing back-
wards in the predecessor tree of an item in a state T. The LR(k) testing
is done by taking conflicting items two by two, say 1,J in state T, and
tracing backwards with both items simultaneously. In a predecessor state
it is then checked whether the lookahead contribution from this state

will give rise to LR-conflicts between |l and J in T or not., In case of

such a conflict there will be a corresponding conflict in the LR(k)-machine.
If there are no such conflicts then the possible LALR conflicts are caused

by the (implicit) merging of states with identical CORE.

This idea is developed further in this paper. If during the test for LR(k)-
ness no conflicts are found it is possible to perform state splitting and

avoid the conflicts caused by implicit merging.

In practice most (well prepared) grammars turn out to be LALR(k) and
then it is not necessary to perform state splitting.. Consequently very

few parser generators accept more than LALR(k) gr‘ammar‘s.' However,
the notion of an LALR(k)-grammar is hard to understand for a (non-L.R

exper‘t) user of a parser generator system.



The experience with the BOBS-system (| Eriksen et. al. 73]) is that
most of the LALR conflicts are caused by grammars which are not LR(k)
(often because of ambiguities in the grammar). Such conflicts are rela-
tively easy to repair as the notions of LLR(k)-grammars and ambiguous
grammars are understandable for most users of a parser-generator
system. Conflicts caused by a grammar which is LLR(k) but not LALR(k)
are often hard to understand and repair as it requires detailed know-
ledge about the technique used to construct an LR-parser. Such con-

flicts may appear in practice as the following example shows :

{stmt-list> ::= {stmt> | <stmt-list> ; <stmt>
{stmt> = <proc-id> | <vard> := <exp>

var) = {identifier>

<{proc-id> ::= <identifier>

<exp> 1:= {var> | {proc-id> ({parameter-list>)

The problem for an LALR(1) parser is to decide whether an <identifier>
is a <var> or a <proc.-id>., This LALR~conflict can be repaired
by replacing <proc-id> by <{func-id> in the second alternative for <exp>,

and introduce the additional production <func-id> ::= <identifier>.

All together we find it highly desirable that a parser generator accepts
all LR(k)~ (or LR(1)-) grammars. The state splitting algorithm presented

in this paper is a sufficiently simple and practical way of achieving this.

In section 2 a summary of the necessary LR theory is given. The concept
of a splitted LLR(0)-machine is defined in section 3. The state splitting
algorithm is presented in section 4 and proved correct in section 5.

The paper is concluded in section 6 by discussing various improvements
and making comparisons with related wor*k.i An example of using the

state splitting algorithm is given in the appendix.
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2.' Basic Terminology and Results

The reader is assumed to be familiar with the terminology and conven-
tions from [ Aho & Ullman 72] concerning grammars and parsers.
Especially the following concepts are used extensively : FlRSTk,

EFF,., ®_, LR-item, {canonical) collection of sets of LR(k)-items,

GOTO, CORE, and consistent set of items,

A context-free grammar is always assumed to have the form G =

(N, I, P,S) where N is a finite set of nonterminal symbols, ¥ is a finite
set of terminal symbols, P is a finite set of productions, and S is the
start symbol.' All grammars are assumed to be free of 'useless! symbols.
They are also assumed to be extended with a new start symbol St and

the production S! - S-—{k, where —| is a symbol not in (N U ).

We use the following conventions : small Greek letters such as as B Y
are in (N U 2)* ; small Latin letters in the beginning of the alphabet
such as a, b, c are in &; small LLatin letters in the end of the alphabet
such as v, x, y are in ¥ ; capital Latin letters in the beginning of the
alphabet such as A, B, C are in N; capital Latin letters in the end of
the alphabet such as X, Y, Z are in (N U ) ; the empty string is denoted
by e.

If M is a set of subsets of some set N then UM means

{XEN| x€mé&me M].

We shall repeat some definitions and theorems often in a slightly modified

form.

Definition 2. 1

Let G be a CFG, then the LR(k)-machine for G is

G G,
S,xsk, GoTo. ),

LRMS = M

where MS is a set of (LR(k)-)states, one for each set of items in the
canonical collection of LR(k)-items. We do not distinguish between a state
and its corresponding set of items. ISS is the initial state. GOTOSis

the GOTO~function defined on MSX (NU ) - MS



For a given grammar G we shall assume the existence of its LRMS

this form. The superscript G is omitted when this causes no confusion,

on

Let TE Mk, then

K

{[s'+.5 451} | i T = IS
flasa. g uleT| ol >0} ifTAIS,

KERNEL(T) =

The following definitions and theorems summarize the notions and re-

sults necessary in the following sections :

Definitions

Let G be a CFG, with LR(k)-states M, , k > 0.

k’

(2.2) Let TE M, , then

k’
LRk([A»a.'B],T) = {u| [A2a.8, uleT}.

(2.3) Let [A»a.8, u] be aLR(k)-item and let S € M. . then

k’
CORE([A~a.8, u]) = [A~+a,8], and
CORE(S) = {CORE(l) | 1€ S}.

We shall not distinguish between the items [A - q. B8, e and
[A-a.g].

(2.4) LetTE€ My then

URCORE, (T) = {S€M,_ | CORE(S) = T}.

(2.5) Let TE¢ Mg, then

L_ALRk([A +a.8], T) = U{LRk ([A»a.],8) | s¢€ URCORE, (T) }.

(2.6) G is said to be LR(k), k>0, ifforall TE€ M, and for all distinct

items [A~+a.g,u] and [B+ y.,v] in T, we have

v § FIRST, (EFF (p)u),

K



or equivalently that
(*)  EFF_(g) ®_ LR_([A~ a.g], T) N LR _([B~v.], T) =4.

{(We shall use 2‘.‘6 as a definition. It may be found in [Aho & Ullman 72]

as a theorem.)

(2.7) G is said to be LALR(k), k > 0, if for all T ¢ Mgs and for all
distinct items [A+ .8 ]| and [B = y. | in T we have

EFF,(g) ®_ LALR ([A~a.p],T) N LALR ([B~y. 1,7T) = @.

(2.8) Let TEM,, X € (NU ) and o € (NU D*, then

(T} if a=e

PRED(T,a) = { U{PRED(S,a') | GOTO

|<(S,X) =T} ifo =alX

Theorems

(2.9) Let TEM, andlet [A+q.p]# [S! .s—lk], then

0
LALR ([A - B, T) =
U{FIRST (v)® LALR ([B~p.AY],S) |

S € PRED(T,a) A [B +g.AY | € S5}

(2.10) Let T € Mgs then

LALR ([A=q.8],T) =U{L(S,A) | S € PRED(T,q)}
where
L(S,A) = U{FIRST,(¥) | [B = o.AY ] ¢ S}\{e}

UU{LALR, ([B+ . AY],S) | [Bog.Av] €S Ay =" e]

(*) The ®, ~operator has higher precedence than the N-operator.



(2.11) Let T € M, then

Y'S € PRED(T,%) : LR ([A~4.8],T) =LR ([A~ .0g],5)

(2.12) Let T € M, and et [A+.0] # [Sta .5 5] then
LRk([A—’ .‘og:l, T) =

UFIRST (V)& LR ([B+ 0. Av],T) | [B+g.Av,u] € T}.

(2.13) Let T € M, then
LR ([A+a.g],T) ={w | we FIRST, (v) A

St :im Y AY = yapy A GOTO, (IS, va) = T}

Proofs

2.9 and 2. 10 have been proved in [Kristensen & Madsen 79a].. 2.'11, 2.12
and 2. 13 follow directly from section 5. 2.3 in [Aho & Uliman 727,

Notation 2. 14

The following constructs are used in the algorithms:

ASSUME ...,
is used for name giving of (components of) structured

variables,

FOR a€ M WHERE P_ DO S ENDFOR;
means:
FORac M DO

IE P_ THEN S ENDIF
ENDFOR ;




3. The k-splitted LLR(0)-machine

In this section we introduce the operations used for splitting states in
the LR(0)-machine. These operations are the ISOLATE- and the MERGEk-—
operations.

The purpose of the ISOLLATE~operation is as follows : LLet M ¢ PRED(T, X)
for some state T accessed by X. ISOLATE may isolate from the remai-
ning predecessor states of T by creating a new copy of T, T!, and

letting M be the predecessor states of T!. MERGE,
with respect to CORE and LAk—lookahead, into a single state. ISOLATE,

MERGEK, and l_Ak are formally defined below.

merges identical states,

The state splitting algorithms use these two operations successively on
the LLR(0)-machine in order to perform the necessary state splitting. The

resulting machine is called a k-splitted LR(0)-machine.

Definition 3. 1

Let G be a CFG. A k-splitted LR(0)-machine for G, SM, = (M, IS, GOTO),

k
is either :

- the LLR(0)-machine for G, - or

-~ the result of applying either the ISOLATE- or the MERGEk—

operation to a k~splitted LLR(0)-machine for G.

For the rest of this paper SM, will denote the class of k~splitted LR(0)-

. k
machines, If Q € SMk’ then Q will always have the form

Q=(M, IS, GOTO)

unless otherwise stated.



Definition 3, 2

The function ISOLATE is defined as follows :

LetQ€ SM,_and let T€ M let PRED(T,X) =R U &

suchthat R#®, $Z@, and RN S = B,

Let (@', T') = ISOLATE(Q, T, $). Then @' = (M!, 1S, GOTO!)
is an SMk which is identical to @ except that

- Mt=MU {T'} where T! is a new state not in M and
CORE(T!) = CORE(T),

- VS €ES8:GOTO! (5,X) =TT,

- VYENUT:GOTO! (T!,Y) = GOTO(T, V),

- fTES then GOTONT!, X) = T!

The following pictures illustrate the effect of an ISOLATE oper‘ation.v
[3.3a] shows the case when T ¢ 8 and [3.3b ]| shows the case where

®  © ®»  ©
WLk g

[3.3a] L 2 /
© \®
®
X L x
[3.3b] JM@@




Definition 3. 4

The function MERGE|< is defined as follows :

Let G be an SMk,let T, T' €M, and let CORE(T!) = CORE(T).
Let Q= MERGEK(Q, T!, T). ThenQ! = (M!, IS, GOTO!) is an

SMk which is identical to Q except that
- M'=M \ {T}’

- VR € PRED(T,X) : GOTO' R, X) = T!,

U
In theorem 2.9 and 2. 10 the LALRk—function is expressed in terms of
the LR(0)-machine. An equivalent lookahead-function, LAk, may be
defined in terms of an SMk.
Definition 3.5
Let Q be an SMk and T € M., TheLAk—lookahead (of length k) for an item
[A~q.B] €T, denoted LAk([A + .8 ], T) is defined as the minimal
solution to the following set of equations :
(1) LA ([S' - .S—lk],ls) = {e}
(i) Let[A-aX.8]€ T, then
LA ([A - a X, 8], T) =
U{I_Ak([A +0a.X8],8) | S € PRED(T, X)}
(ifl) Let [A- .a] €T and let A# S!, then
LA([A=.a],T) =
U{FIRST (1) ® LA _([B~»o.AY],T) | [B»og.AY] € T}
O

Remark 3.6

The definitions of GOTO, PRED, URCOREK, CORE, and consistency

(2.6, 2.7) may be extended in a straightforward way to an SMk.
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Definition 2.5 and the theorems 2.9, 2.11 and 2.13 may all be generalized

to LAk—lookahead and SMks.

Theorems

Let Qbe an SM|, Te M, and[A 2+4.8] € T, then

[3.7] LAU[A+a.5],T) = U[LA ([A+ .08],S) | S € PRED(T, )}

[3.8] Ime URCORE, (T) :

LA ([A-~ a.B],’T) =U{LR ([A+q.8],8) | 5 €m}.

[3.9] LA(A»a.8],T)= {w|we FIRST (yJAGOTO(IS, ya) = T A

Now if all the states in an S’Mk are consistent then it is straightforward
to construct a set of corresponding LR(k)-tables which are equivalent to
the canonical set of LR(k)-tables ([Aho & Ullman 72]), and thus to con-

struct a valid parser.
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4, The State Splitting Al gorithm

In this section we shall step by step present a state splitting algorithm

leading to an SMk—machine which is consistent iff the grammar is LR(k).

Let [A-~ .8 ] and [B -+ 6. ] be two conflicting items in a state T € M of

an SMk' We have an L.Ak-—conf!ict if

EFF, (8) & LA ([A~a.p], TV NLA ([B-5.],T)#®

(Initially we are thus considering an LALR-conflict in the L.LR(0)-machine).

In the following we assume that T is always accessed by the symbol X.
The L_Ak—lookahead of the two items have contributions from all prede~
cessor states of T (PRED(T, X)). These contributions have one of the

following two forms :

[ 4. 1a ]Propagation :

Leta =a!'X and & = 8!'X then using 3.5 we have that

LAk([A—»a'X.B], T) = U{L_Ak([A—b(x!.xB],S) | s € PRED(T, X)}
and

I_Ak([B» 8'%. |, T) = u{LAk([B + 5. %],8) | S € PRED(T, X)}.

Consider the following picture :

S1 SN
[A~al.Xp] ... [A =gt Xp]
[B = 8! X] [B 8t X]

T
2 %
[A "X 8]
(B + 8!'X. ]
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If for all S € PRED(T, X) = {S1,...,SN} we have that
EFF (g)® LA ([A~q'.Xg],S) N LA ([B~8'.X],5) = @

then there will be no conflicts between the two items in the corre-
sponding states in the LR(k)-machine. URCOREK(T) will contain
at least two states. We can solve the conflict in the LLR(0)-
machine by splitting T in as many copies as necessary (at most

one for each predecessor of T) using the ISOLLATE operation.

[4.1b] Spontaneity:

et 8 = e andq =a!X (the cases wherea =e or O = § = e may be

treated similarly). Then it is easy to see that

LAk([B +8.],T) = U{FlRSTk(H’) ®, LAk([C - cp-lD‘l’], T) |
(%)
[Crq.DY] e TABTEEFFL(D)Ag=gp'X]
We now have a similar situation to [4.v1a] in the following sense :
We may eliminate possible LAk—coanicts in T by splitting T if
these conflicts are caused by the implicit merging of the X-succes-
sors of states in PRED(T, X). This is the case if the following

predicate is true :
VS € PRED(T, X) :
EFF () @ LA _([A-al.Xp], SN
U{FIRST(ry) ®_LA_([C~¢'. XDV],3) |

[CHo'.XDY]eSABTEEFF (D)} =0

This is equivalent to the predicate :

v S € PRED(T,X) vV [Cogl. XDY] €S where B € EFF ! (D) :

EFFK(B)@kLAk([A-»a'.xg},s) N FIRSTk(ﬂf)eakl_Ak([c-»cpuxmf],s) = @

(*) EFF,! denotes the obvious extension of EFF, : (NU 2)* » 5% to

k k

EFF ! (NUD*»(NUD*.
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If we have conflicts in some predecessors then we may in the same way
attempt to (recursively) split those predecessors in order to remove

the conflicts.‘ In the general case propagation involves two items of the
form [A - aX. B‘] and [B -+ 6X.y} and spontaneity involves two items of

the form [A-g.8] and [B -+ .5].

Assume that we initially are considering the items [A + y.5] and [B + 5. ]
in some state T, In case of spontaneity we must keep track of the sets
FlRSTk(TY) when we trace backwards. At each level of the recursion

we will thus have two items 1, J, a state R and two sets G, 8 ¢ Z*k

such that @ ®,_LA_ (I, R) c EFF, (g) & _ LA ([A-~q. 8], T) and

B e LA (J,R)c I_.Ak([B + 8. |, T).

If 08 I_Ak(l, R) n& ® L_Ak(d, R) # @ then we have an LA, ~conflict
involving (G, I, ¥, J, R) in the sense that there is an LAk—coanict
between [A -+ g.g] and [B~ 8. ] in T.

The pairs (G!, I') where Q! ¢ Z*k and I' € KERNEL(R) generated in case

of spontaneity are captured by the following definition .

Definition 4.2

Let TEM, [A-a.B]ET and@gz*k, then

ORIGIN,_ (G, [A=+qg.8],T) =

{(CL, [A—b(x,B])} ifo # e

U{ORIGIN, (G ® FIRST, (v), [B~ 0. AY], T) | [Brg.Ay] € T} ifa =

Lemma 4., 3

Let TEM, 1€ T, andagz*k, then

Co, LAk(l,T) = u{oaaak I_Ak(d, T) | B,J) € ORIGIN (G, 1, T)}

e

g
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As we mostly consider pairs of items we shall extend OR]GINk in the

following way

ORIGIN, (G, 1,8,4,T) = {(G1,11,#1,J1) | (@1,11) € ORIGIN, (G, 1, T)

A (B1,J1) € ORIGIN, (8,0, T) }

In the rest of this paper ¥ will always have the form P = (G, [, 8, J, T)
where G, B < z*k, I,JET, and T € M.

Notation 4, 4

If | is an item of the form [C 2oY. ¥ | then

T = [Cop. YY)

The checks for conflicts in the predecessor states described in [4.1]

may now be formulated as the following checks

v S € PRED(T, X):

v (@,1,8,J) € ORIGIN, (EFF (8), [A+a.g], {el,[B+5.],T):
&
Q(Bkl_/-\k (1,s)n® ® LA (J,8)=0¢

If there are conflicts in some predecessor state, S, then we may (as
mentioned) attempt to split S by tracing further backwards to the prede-
cessors of S. This may be expressed recursively by the following (yet

incomplete) algorithm.
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[4.5] Algorithm

VAR @ : SM,_ 3
PROCEDURE LA-SPLIT (P) ;
BEGIN
IFGe _LA(LTING & LA (J,T)#@ THEN

FOR S € PRED(T, X) ,

@1, 11,81, J1) € OR]GINK(P)
DO
LA-SPLIT@1, T1, 81, §1, )
ENDFOR;
Q: =sSplit(Q, T) ;
ENDIF
END

The initial calis have the form

LA-SPLIT(EFF, (p), [A-+a.8], {e}, [B~s.],T)

The function Split (defined in 4.7) isolates a number of new states from
a glven state T. Each new state T! has the property that no L.Ak—conflict
appears as the result of the implicit merge of the X~-successor state of
states in PRED(T!, X) into T!'. This property is expressed by the follow-

ing predicate :

Definition 4, 6

Let M c PRED(T,X). Then

DISJOINT (I, P) =

VS, STeEM such that S £S!:

v (G1, H,@1,d1)EORlGINk(P): ,
¢~ +

Gle LA (11,s) n B1e LA (J1,S o)
+ : -

f 1) =

ﬁ1@kLAk(d1,s) n @1®kLAk(l1,S) @
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We may now define the function Split.

Definition 4,7

The function Split is defined as follows :

Let Q be an SM, and let T € M. Let Q! = Split{Q, P). Q! = (M!',IS, GOTO!)

is identical to Q except as described below :

let W = PRED(T, X).

(1) M is partioned into m1 U mz Ueooll p =1, such that

p’
~ each set of states . (i € [1,p])satisfies DISJOINT(,, P}, and

- foralli,j €[1,p], i1#] thevalue DIS\JOINT(THi § mj,P) is false

(this is in fact an optimization which is unnecessary, but which

prevents an unnecessary splitting)

(i1) A set of new states is isolated from T by executing :
Qi =Q;
FOR i:=1TO p-1 DO
@', T):=ISOLATE(Q', T, M)
ENDFOR

- Consequently M'=MU{T,, ..., Tp_1}

Algorithm [4. 5] is incomplete for the following three reasons :
(1) the initial state has no predecessors, (2) if the grammar
happens to be non LLR(k) then the recursion will never terminate,
(3) if there are cycles in the predecessor tree then the procedure
may loop forever.

For case (2) we note that if there exists an R € URCORE, (T) where

k

Ge LA, T) = Ge LR (I,R)




17

then further splitting of T will not resolve any LAk—coancts involving

. Such LAk—conﬂicts will then appear as LLR, —conflicts in R. The

k
following predicate E’»OTTOMI< turns out to be a sufficient condition

for this :

Definition 4.8 [Kristensen & Madsen 79b |

Let TEM, 1€ T and agz*k, then
BOTTOMK(G-, |A, T)= Vyel : |y|=k
O
We extend BOTTOMI< in the following way
BOTTOMk(P) EBOTTOMK(@‘, 1, T) v BOTTOMK(B, J, T).

The recursion may now be stopped if we have BOTTOMk. We shall in

the following algorithms only use BOTTOM, and not the check for con-

k

flicts as in [4.5]. Note that this use of BOTTOM, will also handle

case (1).

The problems with cycles in the predecessor tree may be illustrated by

the following example

v ¥ y
S1 S2 534-"-»-&-\
T R K~

L

[4.9]

Suppose that we from the state U make an attempt to split T. This may
imply attempts to split S 1, S2 and S 3. The splitting of S 3 may imply
an attempt to split R and then to split T again. We then have the risk of

entering an infinite loop.
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The loop in [4.‘9] is the result of a merge of corresponding loops in
the LR(k)-machine. The loops in the LR(k)-machine may be of one of

the following two different forms :

L_oop unrolﬂng

S1 | S2

S3! s3n

[4.10]
where CORE(T1) = CORE(T2) = T
CORE(S3!) = CORE(S3M) = S3
CORE(R1) = CORE(R2) = R

L_oop separation

[s1]
>S¥‘1

N

LR ] [u]

[4.10b]

| R2
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where CORE(T1)
CORE(S3t)
CORE(R1)

CORE(T2) =T,
CORE(S3") = 53,
CORE(R2) =R

i

The loop involving T may be unrolled several times and at the same time

the loop may be separated.

Using a stack we may check whether a cycle is entered or not. Similarly
we may mark a predecessor which is part of a cycle. Algorithm 4.5 will

be modified such that the recursion is stopped when a cycle is recognized.

In algorithm 4. 11 we use a set Stack to collect all states "on the runtime
stack!!., The set Blind is used to collect all predecessors that are part of
a cycle. We do not make a recursive call on states which have been collec~
ted in Blind U Stack. If PRED(T, X) c Blind U Stack we put T in Blind.

The next (vet incomplete) state-splitting algorithm will look as follows :

[4.11] Algorithm

VAR Q:SMk;

PROCEDURE LA-SPLIT(P) ;
BEGIN Stack : = Stack U {T} ;

1= ﬂBOTTOMk(P) THEN

L : FOR s € PRED(T, X) \(Blind U Stack) ,

(G1, 11,81, J1) € ORIGlNk(P)
DO
- - -
LA-SPLIT(G1, 11,81, J1, S)
ENDFOR ;

IE PRED(T, X) N (Blind U Stack) = @ THEN Q : = Split(Q, V)

ELSEIF PRED(T,X) c (Blind U Stack) = THEN Blind:=Blind U {T}

ELSE Split-loop
ENDIF
ENDIF ;

Stack : = Stack \ {T}

END LA-SPLIT ;
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In the third case (Split-loop) we know that some of T!s predecessors
have been split properly, whereas others are in Blind J Stack. This

may be pictured as follows :

G GO

T

PRED(T, X) \ (Blind U Stack)
PRED(T, X) N (Blind U Stack).

where I

and &£

Note that T € PRED(T, X) implies that T € §.
We may first isolate M :

N N

(7] [T

T! can now be properly split as none of its predecessors are in

Blind U Stack. Unfortunately we can in general do nothing with T. The
predecessors of & may reach T! if GOTO(T!, Y) € Blind for some Y. This
means that the states in Blind are no longer necessarily part of a cycle.
We may, however, make a new attempt to split T. We shall thus make the

following refinement of Split—-loop

[4.12] Split-loop

(@, T" : = ISOLATE(Q, T, M;
Q: = Splitlq, @, 1, 8, J, ) ;
Blind: = @ ;

GOTO L ;
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This may transform [ 4.9] into

tst] [s2]] S3

] 2] L=

[4.13]

Repeating the splitting process of £ may imply a splitting of states which
could not be split before (in [4.9], [4.13] S3 and R). It is, however,
obvious that we will still have a cycle involving T.v We may have to
repeat the splitting process as the loop involving T may have to be

unrolled a number of times.

After the first execution of the repeat-loop we have the following situation :

An execution of Split~loop gives :

Blind

Rac g e

where M1 are the states isolated from T. After N executions of the repeat-

loop we have the following situation :
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During the unrolling it will eventually happen that some state T! ¢ Mi

will be identical (with respect to LAk—-Iookahead) to some state T!" € Mj’
] < i, and T" is part of the predecessor tree for T!. If this is the case
we may eliminate T! by using MERGEK(Q, T!", T!') and in this way close

a loop. The final refinement of Split-loop (] 4. 12 1) will thus be as follows

[4.14] Split-loop

(@, T") : = ISOLATE(Q, T, I) ;
Q:=35plit (@, (G, I, &, J, TH) ;

Blind: =@ ; N:=N=+1,
Close-loop(N) ;

GOTO L ;
O
N has the initial value 0. Close-loop is defined as follows :
[4.15] Close-loop (N : INTEGER)
FOR (T!,T") ¢ (Mi,Mj)
WHERE i¢ [1,N],j€e[1,i-1]
AND T'" € Predecessor tree (T!)
AND vi1eT LA, T = I_Ak(I,T”)
DO
Q:-= MERGEK(Q,T”, T
ENDFOR
]

For some N there will be an Mi which is empty after the execution of
Close-loop(N). A succeding call of LA-SPLIT(P) will imply that
PRED(T, X) c Blind. In this case T will be added to Blind, and the repeat-

loop will terminate.

We are now ready to present the final algorithm. First we shall make one
more change partly to simplify the proof and partly for optimizing the

algorithm.
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First we note that we do not treat arbitrary 's, but only P's that can
be generated by LA-SPLIT from the initial calls. These P's are

characterized by the following definition and lemma.

Definition 4. 16

The predicate proper is defined inductively as follows:

(i) If A#S! and B # S! then
({e} , [A~a.], EFF (5), [B~g.5],T) and
(EFF (m), [A-a.1], {ef, [B-8.], T)

are both proper.

(i) 1f(@, [A =+aX.w], 8, [B4pX.6], T) is proper and
S € PRED(T, X) then (G, [A+g.Xn], B, [B-B.X8], S) is proper.

(iii) 1P =(@,1,8,J,T) is proper and (G1,11,81,J1) € ORIGIN(P) then
G1,11,81,01,T) is proper.

0
Lemma 4, 17
Let P be proper., Then
3 TtE URCOREK(T):
3 R € Mk:
3 [A~a.B], [B25.] € R:
G & L_Rk(l,T‘) < EFF,(B) ®, I_Rk([A +q.8],R)
ANB® LR (J,T! e LRk([B +68.7,R)
M

We shall say that a P is LA-DONE if,by means of LA-lookahead in T,

possible LR-conflicts involving P can be determined.
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Definition 4, 18

L.et © be proper. Then

LA-DONE(P) =

U@ ® LAL,TINE @ LA (J,T)# @

G is not LR(k).
In the final algorithm we shall mark all proper parameter sets which
are LA-DONE to avoid a lot of repeated backwards tracing.

LA-SPLIT will have the property that after a call LA-SPLIT(P) we are

finished with § in the following sense:
[4.19] T may have been splitted into a number of copies. For all
such copies, T', either T!'€ Blind or LA-DONE(G,!,8,J, T')

is true.

To keep track of the states being isolated during a call of LA-SPLIT

we define the foilowing concept:

Definition 4. 20

LetM be a set of states and let a statement, Stmt, be executed.
coPY(h) and COPY°() keep track of the states isolated from states

inh during the execution of Stmt :

Initially COPY®(m) =M.

- Let T, € COPY(). If a statement (@, T,) := ISOLATE(Q, T,,8)

is executed then T, is included in COPYO(\_TL).

2
- Let T, € COPY’(n). If a statement Q := MERGE, (Q, T, T,)

is executed then T, is removed from COPYO(m).

2
Finally COPY(n) = COPY° MmN\ .
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In the state-splitting algorithm we make use of COPY0 in- order to
indicate in which sense we have finished the treatment of the conflict
being considered. In practice it is not necessary to keep track of

COPY® since the relevant information may be found in LA-Done,

Algorithm 4, 21

I\LF_D_F:PO = (SET OF z*k X Item x SET OF g*k X ltem x State);
VAR Q:SM;
LA-Done : SET OF £°; {initially LA-Done = 3}

PROCEDURE LA-SPLIT-k(I,J: Item; T: State);
VAR Blind, Stack: SET OF State;
BEGIN

Blind := Stack := @ ;

ASSUME (I,J)~ ([A2¢.8], [B=+5.]);

LA-SPLIT(EFF (8), I, fel, J, T)

FOR T'e COPY({ T} )\ Blind DO
IE EFF (8) ® LA (I, T)NLA (J, T)# @
THEN i(EFFk(B), l, {el, J, T') € LA-Done]
"Report that there is an LR(k)-conflict
between | and J in some state in URCORE, (T!)",
END IF
ENDFOR 3
IE Blind # @ THEN
"Remove from Q all states in Blind!"
ENDIF
END LA-SPLIT-k;

k
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PROCEDURE LA-SPLIT(P:P°);
VAR N: Integer; X: N U I; S: State;
1, B1: SET OF n¥K;

11, Ji: Item; G
m,& :SET OF State,
BEGIN ASSUME P = (G, I, 8, J, T);
Stack := Stack U {T} 5
IE = BOTTOM, (P) THEN
N := 0;

REPEAT
FOR s € PRED(T, X)\ (Blind U Stack]),
(G1,11,B81,J1) € ORIGIN, (P)
WHERE (G 1,11,81,01,S) ¢ LA-Done DO
LA-SPLIT(G1,11,81,51,5)
ENDFOR;
m ;= PRED(T, X)\(Blind U Stack);
£ 1= PRED(T, X)N(Blind U Stack);
IEM =@ THEN Blind := Blind U { T}
ELSEIF £ = @ THEN Q := Split(Q,P )
ELSE {h#F @ A& # &)
(Q, T') := ISOLATE(Q, T, ) ;
Q :=Split(Q, @, ,8,J, TY);
Blind := @; N 1= N+1;
Close-loop(N)
ENDIF
UNTILT =@ V& = @;
ENDIF ;
LA-Done := LA-Done U {P};
Stack := Stack\ {T};
END LA-SPLIT;
O

The operation Split(Q, (G, 1,8, J,R)) has to update LA-Done properly, i.e.
If R! is isolated from R, then (G, 1,8,J,R!) must be added to

LA-Done and for all @',1',8',J',R) € LA-Done,(G',1,81,J',R!)
must be added to LLA-Done,.

The following theorem states the correctness of algorithm 4, 21,



Theorem 4. 22

Let

I

PRE-SPLIT(PR) {L ={Pr1 ]| LA-DONE(P1)} A proper(P)}
POST-SPLIT(P) = {proper(F) A
(V T' € COPY®(T) : T'€ Blind vV LA-DONE(@G, 1,8,J, T')) A
(V (G1,11,81,J1,T1)E L: ¥VT2€ COPY?(T1):
LA-DONE(@G1,11,81,J1,T2))}.

hii

Let P = (EFF _(8), [A-+q.8], {el, [B=6.], T) then

{PRE-SPLIT(P)}

LA-SPLIT-k ([A+q.8], [B=56.], T)
[POST-SPLIT(P) |

and LLA-SPL I T~k terminates.

Proof: Follows from theorem 5. 16,

27
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5. A Proof of the State Splitting Algorithm

In this section a proof of the state splitting algorithm is given. We

shall first define an auxiliary predicate which is- nheeded in the proofs.

Definition 5.1

Let P be proper and let I € PRED(T, X). Then

PRED-DONE(M, P) =
vsenmV (Gr,I1,81,J1) € ORIGIN
LA-DONE(G1,T1,R1,01,S)

k(P):

OJ

PRED-DONE(D, P) is true iff it is possible to determine L.R~conflicts
involving by means of the L_Ak—sets for the items 1 and 91 in the states
in M.

We may now formulate the following lemmas:

Lemma

Let © be proper. Then

[5.2] If lordis{S~+.5! ———{k], then BCTTOM, (P) is true.

k

[5.3] BOTTOM, (P)= LA-DONE(P).

[5.4] whcPRED(T,X):
{DISJOINT (M, P) A PRED-DONE(M, P) |
(@, T!) := ISOLATE(Q, T,n);
{LA-DONE(G, 1,8, J, T')}

[5. 4a] Let Stmt be (Q,SZ’) = ISOL_ATE(Q,S1,m) or @ := MERGE
Then

[(@,51,52),
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{LLP = {P1 | LA-DONE(P1)} }
Stmt
IV (G1,11,81,J1,T1) € LP VT2 € COPY?(T1): LA-DONE(G1T, 11,81, J1, T2)}

Proof

[5.2] Follows from the definition of LA, (3.5 (1))
[5.3] Follows from lemma 4. 17 and the definition of BOTTOMk([4-. 8]).

[5.4] 1ae LA, T)INE & LA (T # & then there exist S € I
and (G1, 11,81, J1) € ORIGIN, (P) such that
c1@e LA (11,S)Nel ® LA (J1,S) # @. Since LA-DONE(GT, I1,81,J1,S)
is true it follows that LA-DONE(G, I,8, J, T') is true.

[ 5.4a] Assume that LA-DONE(P1) is true. LA, -sets in Q cannot increase
as the result of ISOCLATE or MERGE,, i.e. no new L_Ak—conflict
can be introduced. An L_Ak—conﬂict involving 1 cannot be re-
moved since this will be a contradiction (LA-DONE( 1) implies that
L_Ak—conﬂicts involving P! are LRk—conflicts). If T2 € coPY(T1)
then clearly LA-DONE(GT,11,81,J1, T2) is true.

0

If h is a set of states, then ENTRY() is the set of states not in M, that

have a successor in M:

Definition 5. 5

ENTRY(N) = {S | s ¢m A3 X: GOTO(S, X) € I}

The set Blind is characterized by the following predicate:

Definition 5.6

BOUND ENTRY(BIlind) ¢ Stack

il
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If Stack = @ then BOUND implies that no state in Blind can be reached
from a state not in Blind. Note that the initial state (I1S) will never be

in Blind.

We shall prove that the set LA-Done keeps track of the P!'s that
satisfy the predicate LA-DONE.

Lemma 5.7

Let PRE-SPLIT and POST-SPLIT be as defined in theorem 4.22 Then

{BOUND A Stack = Stack! AT ¢ Blind A P ¢ LA-Done A PRE-SPLIT(P) |
LA-SPLIT(P)
{POST-SPLIT(P) A BOUND A Stack = Stack! }

Proof

(a) We assume that all the inner calls of LA-SPLIT satisfy the {emma.
Under this assumption we shall prove that an execution of the body

of LA-SPL.IT satisfies the lemma.

(b) If BOUND A Proper(P) A Stack = Stack! is true before the body of
LA-SPLIT is executed then this is also the case after the execution

of the body.
(c) [5.4a] also holds if Stmt is replaced by the body of LA-SPLIT.

(d) Let nh be the set of states isolated from T during the execution of
the body of LA-SPLIT (n does not include T). Initially h= @, and
n gets extended for each cycle of the repeat-loop. The following

predicate is an invariant of the repeat loop.

VYREN: LA-DONE@G,I,8,J,R).
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(e) After the for-loop and the separation of PRED(T, X) into n
and £, PRED-DONE(M, ) is true and (by definition)
£ ¢ Blind U Stack.

(f) The execution of the if-statement in the repeat-loop may
imply that T € Blind (W= @) or LA-DONE(P) (£ = @). In both

cases the predicate in (d) still holds.

(g) After the repeat-loop and the outermost if-statement we clearly

have that

VRENU {T}: RE Blind V LA-DONE(G, 1,8, J, R).
0

We shall now prove that LA-SPLIT will terminate. The most difficult
part of the termination proof is to assure that the repeat-loop terminates.
For that purpose we need an invariant for the repeat-loop (lemma 5. 14),
In order to prove 5. 14 we need a nhumber of auxiliary lemmas which are

given below,

The next lemma states that no state can get new predecessors other
than those obtained by splitting the predecessors it had before the
call of LA-SPLIT,

Lemma 5,8

fm = PRED(T!,X) }
LA-SPLIT(P)
{PRED(T',X) < coOPY°(n) }

Proof:

Assume that the lemma is true for all inner calls of LA-SPLIT. In the
body of LA—SPLIT,MERGEk is only applied to copies of T!created
during the execution of the body. This means that no state existing

before the call can get a new predecessor.
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The situation where the repeat-ioop needs another activation is
characterised by the next two lemmas in terms of the changes in
ENTRY(BIlind).

Lemma

[5.9] {m=PRED(T,X)\ (Blind U Stack) A
£ = PRED(T, X) n (Blind U Stack) A BOUND
AQ=aQ'=(M,IS,GOTO') A T € Stack }

(@, T!) :== ISOLATE(Q!, T,M);
Q = Split(Q, (G, 1,8,J,T)) ;
ASSUME Q= (M, 1S, GOTO)

{(ENTRY(BIind) ¢ (M\M!) U Stack }

Note that M\M! are the copies of T created by ISOLATE and
Split.

[5.10] {PRED(T,X)= £ cBU Stack A ENTRY(B) ch U Stack }

LA-SPLIT(R)
[ENTRY(COPY(B)) ¢ coPY®(n)]
M

For the purpose of the invariant of the repeat-loop we introduce a number
of auxiliary (shadow) variables as described below. In[5.11] a skeleton
of the repeat-loop is given. Additional labels and statements defining the
values of the auxiliary variables are inserted. During the proofs we
shall refer to [ 5.11].

The auxiliary variables M;, B, (i € [1,N]) are sets of states. Consider

the situation after N executions of the repeat-loop:

The values of M, B, (i € [1,N]) may be described as follows:

Mi (i € [1,N]) contains the copies of T being created during the ifth
execution of the repeat-loop, including the possible further splitting

during the succeeding executions of the repeat-loop.
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If B! (i € [1,N]) is the value of Blind at label L3 in[5.11] during the
i'th execution of the repeat-loop, then Bi (iefr, N]) is the set of states
which have been isolated from Bi| during the (i+1)!th execution of the
repeat-loop, including the possible further splitting during the

succeeding executions of the repeat-loop.

[5.11] = 0;
REPEAT L1:

FOR ... DO

FOR i €[1,N] DO
M. := COPY?(M.); B, = COPY°(8.)

ENDF OR

L2

ENDFOR;

B, = BN\BIind;

N
L3:
M=o, &= ...,
IF ... ELSEIF
ELSE
L4:
(Q, T') := ISOLATE(Q, T, n);
Q := split(q, (@, 1,8, J, T'));
BI\I+1 = Blind;
N {T'} U {the states isolated from T!
by @ := Split(Q,(. .., TN)};
L 5:
Blind := @; N := N+1; Closeloop(N);
L6:
ENDIF

UNTIL h=@ Vv &= @&
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Introducing the following predicates

[5.12] Pm)={v ie[1,m-1]:
(ENTRY(B,) = M.) A

(ENTRY(M. ) < uiB,

i li=1,...,m} UM)]}

[5.13] a@lm)=P(m) A (ENTRY(B )< M, U Stack),
the following lemma is true.

Lemma 5. 14

Q(N) is an invariant of the repeat—loop in the sense that Q(N) is always

true at L1.

Proof

Q(N) is clearly true at L1 when the repeat-loop is entered since N = 0,
Assume that Q(N) is true at L1. Then using 5.8-5.10 we may prove
that

(a) P(N) A (ENTRY(BN) c MN) is true at L.3;

(b) @(N+1) is true at L5,

(c) Q(N) is true at L6.

We may now prove that LA-SPLIT terminates.

Lemma 5.15

LA-SPLIT(R) terminates.

Proof

(a) The recursion stops as we either will obtain BOTTOMk or

meet a state in Stack U Blind.

(b) The for-loop must terminate, even if PRED(T, X) grows for
each iteration, because S, and any new copy of S, are handled

q._
for the given parameter set, i.e. after LA-SPLIT(G1 ,11,631,31,5)
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we have VS! € COPY® ({S]) : (S! € Blind) v LA-DONE(G T, 11,81, 91, S").

The repeat-loop must terminate. Assume that it does not. Then
for any N = 0 there will exist a sequence of sets of states

M1 s B1 ’ MZ’ Bz, ey MN’ BN as defined by [ 5. 11] and satisfying
P(N) ([ 5.12]). Furthermore all M. # @ (i € [1,N]) otherwise
an application of LA-SPLIT(R) will imply that PRED(T, X) ¢

Blind U Stack.

This is a contradiction, since then there will for any N be a sequence

of states T. € M., S. .. .,Simé B, (i € [1,N]) such that there is a path
from T. vias, ,... ’Sim to T, (i€ [1,N-1]). If N is large enough
there will exist i, j € [1,N] i ;fj such that Ti and Tj may be merged.

O

We may now formulate the main result,

Theorem 5,16

Let PRE-SPLIT and POST-SPLIT be as defined in theorem 4. 22,

and let P = (EFF _(8), [A +q. 8l, {el, [B~56.], T). Then

{Blind = Stack = @ A PRE-SPLIT(P) }
LA-SPLIT(R)

{Stack = @ A BOUND A POST-SPLIT(P)}
and LA-SPLIT(P) terminates.

Theorem 4. 22 follows immediately from theorem 5. 16,
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6. Concluding Remarks ‘

We conclude the paper by giving suggestions for using LA-SPLIT in
practice. This includes integration of LAk—Iookahead into LA-SPLIT,
various optimizations, and the case k = 1. Finally a comparison with

related work is made.

6.1 A strategy for using the state-splitting algorithm

Algorithm 4, 22 is expressed (in Split by DISJOINT and in Close-loop
by MERGEK) by means of I_Ak—sets computed on the actual SMk’ It is
possible to integrate the computation of I_Ak—lookahead sets into
LA-SPLIT in the same way as is done in [Kristensen & Madsen 79b ]

for the function testing LLR(k)-ness. In addition it would be desirable to
save L.Ak—lookahead sets once computed, for later reuse. Applications
of the MERGEk and ISOLATE operations may however change the LAk—
lookahead sets, such that a recomputation seems necessary. The follow-
ing strategy integrates the computation of LAk—Iookahead sets into LA~

SPLIT and prevents recomputation of L_Ak-sets once computed.

Let LAl (I, T) denote the lookahead currently saved for (I, T). The idea
is that if the I_Al'<—-sets for the interesting items in the states in PRED(T, X)
are available then these L.Al'<—sets may be used to determine the I_A;'<~sets

for the items being considered in T :

[6.1a] Initially LALR, lookahead is added to the LR(0)-machine, I.e.
LAL(I, T) = LALR (1, T) for all 1, T,

[6.1b] If BOTTOMk(P) is true in the body of LA-SPLIT then L_Ak(l, T
and L_Ak(d, T) are computed, i.e. the LA!-sets are updated to

the actual LAk—sets.
[6.1c] Having executed an operation of the form
(@, T" : = ISOLATE(Q, T,M)

LA;< is updated for 1,J in T and T! by propagating LAL—-sets from

M= PRED(T!, X) to T' and from PRED(T, X) to T.
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[6..1d:| The comparisons made by Close-loop is based on the I_A|'<-sets.
An execution of MERGEk makes no changes to the LAL—Sets.
]

We shall later in this section improve on [6.'1 1.

We shall now argue that the strategy works in the sense that

[6. 2] If ¥ € LLA-Done then LRk—conf'Hcts involving P may be deter-
mined using the LAL—sets for1,J in T, and LA-SPL.IT termina~

tes,
This is supported by the following observations :

The I_Ak-sets cannot increase as the result of an ISOLATE or MERGEK-

operation :

[6.2a] VWV T €MV IET: LA (1,T) c LALO,T).
LAk—sets for items visited during the recursive traversal by LA-SPLIT
will always be recomputed since LLA-SPL.IT continues until BOTTOM

k
is true :

[6.2b] After an execution of LA-Split(P) we have that

LAL(LT) = LA (1, T) A LAY, T) = LA _(J,T)

[6.2c] The partition made by Split {[4.7]) using DISJOINT on the LA~
sets cannot introduce conflicts because of an implicit merge

([6.2a]).

[6.2d] The strategy in [6.1] will make no changes to the LAl -sets for
the predecessor states of T which are in Blind | Stack. Let
&= PRED(T, X) N (Blind U Stack). The LA| -sets for states in
£ have not been updated. This will, however, cause no pro-
blems since in a succeeding ISOLATE-operation £ will be pre-

decessors of T and we have not finished the treatment of T.

[6. 2e| Consider an attempt to execute MERGE Q, T1 s Tz) where

CORE(T,) = CORE(T,) = T.

4
2
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It is only necessary to require identity of the L.Ak—sets for items that
appear inLA-Done; i.e. items I,J € T where (G,1,8,J, Ti) € LA-Done
for some G and® and for i € [1,2]. Items that do not appear in LA-Done
have not been part of a state~splitting process and whether or not the
L_Ak-—sets are changed does not matter (their LAk—sets will in the worst

case be ]_ALRk—sets).

We have three situations :

(1) LALOL T = LALT), i=1,2,
(2) LA;((],T1) = I_A"<(I,T2) and
LA, T,) # LA (1,T,)
(3) LA;((!,T1) # LAL(I,TZ) and
LA, T = LA, T,)
In case (1) there are no problems. In case (2) we should not have merged

and in case (3) we could have merged.

Case (2) might violate LA-DONE, but all P's in LA-Done are LA~-DONE
according to I_AI'<(I, TT) and LAk(I,T1) ; li.e. an increase in l_Ak(I, T1)

to LA!(l, T.) makes no changes.

1
Case (3) might violate the termination proof ; but this is based on the fact

that 2*k is finite and not that the I_Ak—»sets are correct.

The termination part of [6.2] follows from [6.2e]. The remaining part

of [6.2] follows from the above remarks and may be formulated as follows :

[6.2f] VWP e LA-Done ;

Ge_LA (I, T)NG @

!

Go LA(,TING® LAI(J,T) = @

K EALY, T) =@

This expresses that using LAl-sets instead of L.Ak—sets does

not introduce new conflicts and does not remove L.Rk—conﬂicts.
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We shall improve on the strategy in [6.1]. If P ¢ LA-Done then only
the sets LA(I, T) and LAj(d, T) where 1=k~ |G Imin and j =k - |B Imin
are necessary in order to check L.Rk—conﬂicts involving .

This may be used to improve on [6.1]. The points [6.3a-3d] give the

changes to the corresponding points In [6. la - 1d] :

[6.3a] Initially LALR -sets are added, i. e, l_A'O(I,T) = {e} forall I, T.

0

[6.3b] In case of BOTTOM, (P), LA(I, T) and L_AJ.(J, T) are computed
where | and | are determined as above, Note that either i = 0
or j= 0. If I_AIL(I, T), where r > I, is already saved then
I_Ar,(l, T) must be computed. Similarly for the LA!-set for
(J, T).

[6.3c] This is similar to [6.3b], LAl-sets for I in T and T' and
LA'J.-—sets for J in T and T! are updated by propagating from
the LLA! =sets in the predecessors of T and T!. If L_A'P(I, T) where
r> 1 is already saved then L.A'P(l, T) must be updated by recom~
puting LAP(I, T).

[6..3d] In Close~loop the comparision is based on the LA'i-sets saved
for the largest i, If L_A'i(l, T]) and LA:,‘(I, T
saved and the LLA!-sets for (I, T,
then I_AP(I, T1) must be recomputed.

2), where r > i, are

) and (1, TZ) need to be compared

(%) Let G ¢ Z*k then |G lmin is the length of the shortest string inG,
ifG#£@, and 0 if G = @,
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6.2 Fur‘thér‘ Improvements

It is possible to add an extra condition for terminating the repeat-loop.
The reason for not terminating the repeat-loop in the case where
M# @ and £ # @ is that PRED-DONE(S, T) is in general not true. If

however, we have that

?

vseg v (A1, 1, 81, J1) € ORIGIN, (P) :

k
« - +
a1 ®, I_Ak(ll,S) nete_LA(J1,s)=¢

then PRED-DONE({, T) is true and we may split T and terminate the

repeat-loop. |

Concerning Close-loop it may seem complex that the sets Mi are tested
against the sets Mi—l ye e ,M1 (i=n,...,2). For practical grammars

in the case k = 1, this is no serious problem since n will be small.
However, one may limit the attempts to try to merge. Assume that

the states in the sets M,...,M, (i € [0,n-1]) have not had their LA, -
lookahead sets changed since the previous Close-loop operation.

(If using the strategy in [6. 1] no state in these sets have been split)
then one needs only consider states in Mj (j € [i+1, n]) against those in
Mj—1 yew o
for a merge. This will then correspond to the LLR(k) construction algo-

M1. By doing this then only newly created states are considered
rithm where it is tested if a newly generated state already exists.

Concerning Split (4.8) : The third requirement in point (b) is in fact

not necessary and without this requirement a simpel partition can be made.
It is, however, straight-forward to make a partition satisfying the require-
ment. It is more complex to make a partition where p is minimal. In
practice it does not seem necessary to do this, Even if one does mini-

mize p it will not guarantee that this gives the minimal number of states.

The primitives ISOLATE, MERGE, , ORIGIN,_

forward to implement. Concerning ORlGlNk, it may pay to compute
ORIGlNk({e} ,1,{e},J, T) when ORIGIN, (G, ,#,J, T) is desired and then

and BOTTOMk are straight

K
save it,
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6.3 Thek =1 Case

The LALR(k) and I'_F?CONDk algorithms in [Kristensen & Madsen 79a,

79b] have all been improved for the important practical case with k = 1,
In this case it is possible to eliminate the parameters of type §_E_T9£Z*k.
This can also be done for LA-SPLLIT. The following lemma is useful in

this connection,

L_emma 6. 4

Letl,J& T, then

LA-DONE ({e}, I, {e},J, T)
!

v S € PRED(T, X) :

v (G,11,8,J1) € ORIGIN, {e}, 1, {e},J, T) :
BOTTOM, (G, T

‘.—-
@, 11,8,01,8) v LA-DONE, ({e},11, {e}, U1, S)

O

BOTTOM, appears when either e ¢ 0 or ed B, The set parameters can
be eliminated by testing for BOTTOM1 before the internal recursive
calls of LA-SPLIT in algorithm 4, 20 instead of the BOTTOM~test in
the beginning of the body of procedure LA—SPLIT.F It is then also neces-
sary to test for BOTTOM1 before the initial call of LA-SPILIT in the
body of LA-SPLIT~-k. If BOTTOM1

we have a shift/reduce conflict. It is well known that an LALR(1) shift/

is true before the initial call, then

reduce conflict is also an LR(1) shift/reduce conflict, i. e, state-

splitting cannot remove the conflict.

6.4 Comparison

The idea of using state splitting for constructing L.R(k) parsers for non-
LALR(k) grammars was suggested by De Remer [De Remer 69]. The
LR(0) machine is viewed as a so~called characteristic finite state machine,
CFSM, which recognices the regular set of characteristic strings (cf;
[Aho & Ullman 72])‘.‘The CFSM is converted into a nondeterministic FSM
by duplicating all pathes leading to state with LALR(k) conflicts. If such
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a path contains loops then each loop is unrolled k times in order to
stabilize the lookahead propagation along the path. The nondeterministic

FSM is then made deterministic using standard techniques.

It has been shown in [Pager‘ ’72] that it is not enough to unroll loops k

times in order to stabilize lookahead propagation. According to Pager
this must be done k « n + ¢ times where n is the number of states in the
smallest KERNEL in the loop and ¢ = 0 if the first state in the loop has
a KERNEL of size n, and ¢ = 1 otherwise.

The above approach is more theoretical than pr‘actical... The amount of
loop unrolling and loop separation is in general too high.. The part of the
LR(0) machine being split this way may have a size that is larger than
the corresponding parts in the LR(k)-machine. The reason for this is
that the splitting process does not capture the situations where lookahead
propagation stabilizes much further than in the worst case.

No practical use of the method has been reported.

Another approach to state splitting is reported in [Pager‘ 77a|. Here the
approach is to regenerate the part of the LLR(0) machine in conflict by
constructing sets of LLR(k) items. By doing this one avoids the worst case
loop unrolling and loop splitting as in De Remer'!s approach. The sets of
LR(k)~items are regenerated by a method described in [ Pager 77b | which
uses two merge criteria to merge L.R(k)~states during the generation
process in order to reduce the space needed by the standard algorithm for

constructing LLR(k)-parsers.

A weak and a strong merge criterion are used to check if a newly generated
state T can be merged into an existing state T! without introducing a con-
flict in T! or any state reachable from T'.‘ If T and T! satisfy one of the
merge criteria then T is merged into T!'. The lookaheads of the items in

T are then added to the corresponding items in T!. This newly added look-
ahead in T! must then be propagated to those successors of T! which have
been generated. Thus merging involves one or {wo tests and a lookahead

propagation.
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A disadvantage of Pager!s method seems to be that not only the states

that need to be split are regenerated but also all of their succes-
sors. These superflous states are then eliminated by the merging process.
Alltogether this method seems to perform unnecessary work. However,

it is difficult to evaluate if there is any practical differences between
Pager'!s method and ours. The size of the resulting parsers seems to be

the same.

The arbitrariness in the size of p when making the partition in [ 4. 8]
appears in Pager'!s method in the arbitrariness in which of several pos-

sible states that is selected for a merge.

The method in | Pager 77b | can be used for directly constructing an
LR(k)-parser. This also appears to be complex because of the merging
process. For most practical grammars these will be LALR(k) and if

not then only a small amount of state splitting is necessary. It thus seems
to pay to generate the LLR(0)-machine first and then make the state split-

ting. Again it is hard to evaluate if this has any practical differences.

It is difficult to compare the two methods because a worst case analysis
is a poor measure for realistic examples. We know of no way of making
an analysis that shows the differences for realistic examples other than

by impiric results.

We shall conclude by considering the situation where a grammar is LALR(k)

and the situation where no merge is possible in the LR(k)-machine.

Let PS be the state splitting approach of Pager and let PD be the direct
approach of Pager. Let KMS be the algorithm LA-SPLIT of this paper.

Case 1. L.etG be an LALR(k)-grammar. There is no principal difference
between PS and KMS, There is a difference between PD and the
state splitting approaches (PS and KMS). The time spent in PD
for testing that two states can be merged (they always can since
Gis LALR(K) must be compared with the time used for computing
LALR(k)-iookahead).
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Case 2. l_et G be an extreme LR(k)-grammar where no states in M, with
identical CORE can be merged. Here PD is more expensive than
the standard LLR(k) constructor algorithm because of the attempts
to try to merge states that never can be merged. PS is more
expensive than PD since it includes a complete regeneration of
Mk using PD. KMS will continue to split MO until MI<
This is probably also more expensive than the standard LLR(k)

is reached.

constructor algorithm. How it compares with PD is difficult to

see.

Case 2 is extreme in the sense that for practical grammars we are close

to case 1. In that situation the state splitting approaches seem to be the
simplest ones. According to Pager,PS is more efficient than PD when there
are few simple LLAL.R(k)-conflicts in the grammar, whereas PD is faster
when there are many 'complex! LLALR(k)~-conflicts. This is because the
more the PD-algorithm is used as part of PS to resolve conflicts the less

favourable is PS compared to using PD directly.

As KMS is simpler than using PD to handle non LLALR(k)-grammars we
believe that KMS may compare favourable with both PD and PS in practi-

cal situations.
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APPENDIX A

Examples illustr‘ati‘ng the state-splitting process

The state splitting algorithm is illustrated by two examples., This is

done by showing the steps of the state splitting algorithm when transforming
the LR(0)~machine of a grammar into its LLR(1)-machine. The first example
includes splitting a loop into more loops. The grammar of the second
example is a variant of the first one. Here the splitiing process further-

more includes unrolling loops.

We use the version of LA-SPLIT-k with k = 1 as described in section 6. 3,

in order to avoid the two set parameters.

Example A. 1

Let G, = ({S', S, A, B}, {a,b,c,d, %, ¥, 2,4}, P, S!) be a CFG,

where P consists of :

S+ S 4

S + Aa | Bb | dAb | dBa
A—bxyzAIxc
B—bxyzlec

The interesting parts of respectively the LLR(0) - and the LLR(1) -~ machines

for G, are shown in [A.1] and [A. 2]

State number 5 of [A. 1] is inconsistent and may therefore serve as a

base for the initial activation of LA-SPLIT~1.

The following sequence of calls will appear : (with the level of recursion

indicated in the leftmost column)

LA-SPLIT ([A+ xc. |, [B = xc. ], 5)
LA-SPLIT ([A+ x.c], [B~*x.c],1)
LA-SPLIT ([A+ .xc], [B~.xc],0)
LA-SPLIT ([A+ .xc] , [B= .xc],4)
LA-SPLIT ([A~+.xc|, [B~ .xc],3)
LA-SPLIT ([A + xy.zA ], [B =+ xy.zB], 2)

W N N DD = O



0
Sto .S 4
S . Aa
S .Bb
S -+ . dAb S -+ d. Ab
S -+ .dBa S -+ d.Ba
A 2 xyzA A o xyzA
A . xc A - ,xc
B » .xyzB B - .xyzB
B -+ .xc B -+ .xc 3
A 2 xyz. A
B » xyz.B
X A =+ L xyzA
% A + .xc
B » .xyzB
* B + .xc
A+ x,vzA
A+ X.cC
B -+ x.yzB 2
B + x.c
5 2
A + xc. A 2 xy.zA

B - xc. B -+ xy.zB

[A.1]
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0
st+.s 4 A
S ».Bb A
S +.dAb
S ».dBa
A - .xyzA a
A 2 . XC a
B -+ .xyzB b
B —»+ .xc b
32
A = xyz.eA a
B+ xyz.B b
A = . xyzA a
X
A~ . xc a
B~ .xyzB b
x
1 B+ .xc b
2
A 2 x.yzA a
A = x.cC a
B »x.vzB b z
B -+ x.c b
22
\ A~ xy., zA
C
B -+ xy.zB
52
A + xc. a
B - xc.

[A. 2]

4
S~ d.Ab
S~+d.Ba -
A~ ,.xyzA b
A~ . xc b
B- .xyzB a
B+ .Xxc a
3
A xyz. A b
B xyz.B a
X A -, xyzA b
A+, xc b
B+ .xyzB a
x
11 B+ .xc a
A2 x.yzZA b
A+ X.C b
B+ x.yzB a z
B~ x.c a 21
y
A+ xy. zZA b
c
51 B~ xy.zB a
A -+ xc. b
B - xc. a
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The two first calls on level 2 stop because BOTTOM becomes true;
the call on level 3 stops because of PRED(2,y) = {1}, and 1 € stack.
The recursion then returns to level 1 and we arrive with the following

shapshot where the contents of Stack, Blind and parts of LLA-Done are

given:

\\*/

\‘

[A.3a]

{({([A~».xc], [B+.xc], 0, ([A=+.xc], [B+.xc], 4} c LA-Done,

{5,1} = stack, {2,3} = Blind.

We have that PRED(1,x) = {0, 4} U {3} where {3} c Blind, i.e. we
cannot finish the treatment of state 1. We may perform a splitting of

state 1 and reactivate LASPLIT ([A - .xc], [B + .xc], 3) as shown by

the next picture :

[A.3b]

{({[A~ x.c], [B~x.c], 1) ([A=x.c], [Bx.c], 1,)] c_:L_A—Donev,

{5,1,3,2} = Stack, Blind =¢
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The next steps involve a splitting of states 2 and 3 as shown by the
pictures [A. 3c] and [A. 3d].

[A. 3c]

{([A~ xy.zA], [B~ xy.zB],21), ([A- xy.zA], [B~ xy.zB], 22)} c LA-Done,

Stack = {5,1,3} , Blind= {2}

[A. 3d]
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{{([A~+ .xc], B~ .xc],31), ([A~».xc], [B~ .xc],32)} c LLA-Done

Stack = {5,1} , Blind = {2,3}

We have now finished a reactivation of the REPEAT-loop and may per-

form a new splitting of state 1 :

Now we find that the LA1—Iookahead of items in 11 and 12 is identical
to the LAi—!ookahead of corresponding items in 13 and 14 respectively.
We may thus merge 13 into 11 and 14 into 12 :

e

[A. 3f ]

Stack = {5} , Blind = {1,2,3}.
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Returning to the initial call we may make a splitting of state 5 and remove

the states in Blind : The final result is shown by picture [A. 3g].'

1 2
o,
M
e T
51 |52 ~—

[A.3g]

This is in fact the machine shown in [A. 2]. Note, however, that in
[A.1] and [A. 2] the A-successors of the states 3, 3, and 3, are not
shown. In [A. 3g] 3, and 32 will have a common A-successor whereas
this will not be the case in [A.2]. The same is the case for the B-

successor of states 3, 31 and 32
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Example A, 2

Let G2 be as Gv1 except that the production

A= xyz A
has been replaced by

A+ xyzAC
C-c

C—re

The interesting part of the LR(0)-machine for Gz is nearly unchanged from

G, (the picture in [A. 1] may still be used). [A.4 | gives the interesting

part of the LR(1)-machine for G,.

2
The state splitting process of the L.R(0)-machine for Gz differs at step
[A. 3e]. Here it is not possible to merge 1, with 15 and 1, with 1,.

It is necessary to perform yet another activation of
LA SPLIT ([A+ .xc], [B~.xc], 3).

This implies a splitting of states 2, 3 and 1 as shown in the picture [A. 5f].
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0
S+.s4 A 4
S - .Aa - S+ d.Ab -{
S +.Bb — S+ d.Ba ]
S +.dAb d DA .xyzZAC b
5 -+ .dBa —-] A2 . xc b
A =+ .xyzAC a B~ .xyzB a
A 2, xc a B+ .xc a
B -+ .xyzB b
B - .xc b X
X
12 11
A 4+ x,yzAC a A+ x, yzAC b
A 2 X.cC a A+ x.cC b
B - x.yzB b B~ x.yzB a
c B +Xx.c b y c B~ x.c aj jy
1 1
52 %y 51 2
A - xc. a A+ xy.zAC a A+ xc. b A - xy. zAC b
B -+ xc. b B+ xy.zB b B -+ xc. a B~ xy.zB a
32 31
A -+ xyz.AC a z A -+ xyz. AC b z
B -+ xyz.B b B~ xyz.B a
A -+ .xyzAC a,c A+ .xyzAC b,c
A +.xc a,c A+ . xc b, c
B -+ .xyzB b B-.xyzB a
B -+ .xc b B~ .xc a
34 33
x A+ xyz.AC a,c A+ xyz,AC b,c
B xyz. B b B+ xyz.B a
A+ . xyzAC a,c x A = . xyzAC b, c
A2 . xc a,c A+ . xc b, c
B~ .xyzB b B - .xyzB a
B . Xxc b x| B .xc a
T4y 4 '3 ¢
A =+ x.yzAC a,c A~ x.yzAC b,c
A =+ x.c a,c > A x.cC b, c 5
B -+ x.yzB b B~ x.yzB a
c B + x.c b y c\ B x.c a y
1" il
55 2, 5] 23
A+ xc., a,c A -+ xy.zAC a,c A+ xc. b,c A+ xy.zAC b,c
B -+ xc. b B -» xy. zB b B -+ xc. a B -+ xy.zB a
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[A.5F ]

15 and 16 may now be merged into 13 and 14 respectively as shown by picture

[A.Sg ] Next state 5 is split and Blind is removed as shown by the final

picture :
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), (1, J, 13) , (1,9, 14)} < LA-Done
where I = [A- x.c] andJ = [B= x.c],
Stack = {5}, Blind= {1, 2, 3}

PRED (5,¢c) = {1,, 1,} U{15, 1,} U{1]}

5 52

[A.5h ]

{{[A=> xc. ], [B~ xc. ],51), ([A+ xc. ], [Bxc. ], 52)} c LA~Done

This is close to the machine shown in [A. 4]. The remark following [A. 3g]

about A- and B-successors also holds here. Note also that 51 (52) in

[A.5b] is a merge at 54 and 5Y (5'z and 55) in [A.4],
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