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ABSTRACT

This thesis 1is a contribution to the development of a formal theory

for attribute grammars, their languages and their translations.

There are given precise definitions of an attribute grammar, the
language recognized by the attribute grammar and the translation specified
by the attribute grammar. The various definitions are compared with some
alternative ones. Based on properties of the translation specified by an
attribute grammar two new subclasses of attribute grammars are introduced:

the determinate and the unambiguous attribute grammars.

Furthermore the concept of an evaluator 1is considered. Based on
properties of of an evaluator for an attribute grammar some new subclasses
of attribute grammars are introduced: the k-visit attribute grammars and
the k left-to~right pass attribute grammars (k is an integer). It turns out
that the k-visit as well as the k Lleft-to-right pass attribute grammars
define proper hierarchies of translations when some conditions are satis-
fieds It is also shown that there are translations specified by 1-visit at-
tribute grammars that cannhot be specified by any k left-to-right pass at-
tribute grammar (when some conditions are satisfied). On the other hand it

turns out that any well-defined attribute grammar is k=visit for some k.
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1. INTRODUCTION

Informally, an attribute grammar can be considered as an extension of
a context free grammar. To each symbol we associate a fixed number of at-
tributes and to the syntactic rules we associate semantic rules. These
rules define some of the attributes of the symbols occurring in a (syntac-
tic) rule in terms of others.

To each node in a derivation tree defined by the context free grammar
we can associate attributes similar to those of the corresponding symbol.
The semantic rules associated with the productions are used to give values
to the attributes for each occurrence of the production in the derivation

tree.

There exist several compiler writing systems based on attribute gram-
mars. Some of them are compared in [JMR78]. Several aspects of the systems
are discussed in that paper, two of the most important ones are

~ how can we determine an order for evaluating the attributes associated
with a derivation tree
- what kind of information can be stored in the attributes and what kind

of operations are allowed in the semantic rules.

A question that naturally arises is: how important are the various
restrictions on the attribute grammars for the translations that can be
specified.

It will be desirable to have a theory for attribute grammars which
makes it possible to compare various classes of attribute grammars. The
classes of attribute grammars may be defined on the basis of how an
evaluation order 1dis determined for the attributes associated with a
derivation tree, or on the basis of how the domains for the attributes are
and how the operations 1in the semantic rules are.

This thesis 1is a contribution to such a theory but still much research

remains.



The reader is assumed to be familiar with attribute grammars at least
to a level corresponding to that of [Knu681, [Knu71J and [Boc761. Some

knowledge of Llattice theory 1is recommended especially in chapter 2 (see
e.g. [Man74] or [Stor71).

ACKNOWLEDGEMENT: I wish to thank Sven Skyum for his advice during my
work with this thesis. Furthermore I wish to thank Brian Mayoh and Erik
Meineche Schmidt for useful comments. Personal thanks are due to Flemming

Nielson.

As far as I know the topics outlined above have only been treated by
LLRS741 and LENF79] and here only for very restricted classes of attribute

grammars.

In [LRS74] so-called attributed translation grammars are considered.
These grammars may be considered as a restricted form of attribute gram—
mars. Each symbol will have associated a synthesized attribute denoting the
translation corresponding to the translation of a derivation tree with the
symbol as root. If therefore p: X ::= X1 X2 ... Xn is a production in the
attribute grammar then the translation b of a tree with root X is obtained
by concatenation of the translations bj of the subtrees with roots Xj for
1<j<n. More precisely we may have b = c0%b17c1 b2 ... c(n=1) "bn~cn where cj
is a constant value for 0<j<n and '"' denotes string concatenation.

The results presented 1in [LRS741 hold for these restricted forms of

attribute grammars.

An L-attribute grammar is defined as an attribute grammar where all
the attributes associated with a derivation tree can be evaluated by a
single left-to-right pass over the tree. Furthermore an S-attribute grammar
is defined as an attribute grammar where all the attributes of every symbol
are synthesized.

Two of the results from [LRS74]1 may then be stated as:

There dis a translation that can be specified by an L-attribute grammar

but which cannot be specified by any S-attribute grammar using the same
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domains for the attributes and the same operations 1in the semantic

rules.

There is a translation that can be specified by an attribute grammar but
which cannot be specified by any L-attribute grammar using the same

domains for the attributes and the same operations in the semantic

rules.

In CEnF79] another subclass of attribute grammars are considered, the
one~visit attribute grammars. This class of attribute grammars may be
characterized by that each node is 'visited' at most once when evaluating
the attributes associated with a derijvation tree. Thus the L-attribute
grammars are a subclass of the one-visit attribute grammars. We have the

following result

There is a translation that can be specified by a one-visit attribute
grammar but which cannot be specified by any L-attribute grammar using
the same domains for the attributes and the same operations in the

semantic rules.

Also a class of attribute grammars called 1S-attribute grammars is
considered by L[EnF79]. An attribute grammar in this class is characterized
by that each symbol has at most one synthesized attribute but it may have
any number of inherited attributes. It turns out that a 1S-attribute gram-

mar is one-visit but

There s a translation that can be specified by a one-visit attribute
grammar but which cannot be specified by any 1S-attribute grammar using
the same domains for the attributes and the same operations in the

semantic rules.

The 1S-attribute grammars and the L-attribute grammars turn out to be

incomparable with respect to the translations that can be specified.

Let us summarize the results about translations specified by attribute
grammars refered above. An arrow in the following figure represents an in-

cltusion and unconnected classes are incomparable.



arbitrary
attribute grammars
one-visit

attribute grammars

l-attribute 1S-attribute

grammars grammars

S—attribute

grammars

The dinclusions hold for any fixed choice of domains for the attributes
and operations din the semantic rules. Furthermore there is a choice for

which the inclusions will be proper.

In chapter 2 s given a formal definition of an attribute grammar.
There are given several definitions of the language recognized by and the
translation specified by the attribute grammar. This is done in order to
compare the many different and more or Lless formal definitions 1in the
Literature. Furthermore two new subclasses of attribute grammars are
defined, the determinate and the unambiguous attribute grammars.

A subclass of attribute grammars which often is considered is the
well-defined attribute grammars. This class is introduced in chapter 3. The
language and translation definitjons given in chapter 2 are applied to the
well-defined attribute grammars and it turns out that most of the
definitions coincide. We end up with two approaches to translation
definition, a translational and a traditional. Furthermore we introduce a
subclass of attribute grammars called the reduced attribute grammars and we
show that any well-defined attribute grammar can be transformed into a
reduced attribute grammar which specifies the same translation and uses the
same domains for the attributes and the same operations in the semantic

rules.




In chapter 4 and 5 we consider subclasses of attribute grammars which
are extensions of the one-visit attribute grammars of [EnF79] and the L-at-
tribute grammars of [Boc76]. We also introduce the concept of an evaluator.
Both in chapter 4 and 5 we give algorithms which may be used to construct
evaluators for the respective subclasses.

In chapter 4 the k-visit attribute grammars are defined. It s shouwn
that any well-defined attribute grammar is k-visit for some k and that the
k=visit attribute grammars define a proper hierarchy also with respect to
translations when some conditions are satisfied.

In chapter 5 we consider a subclass of attribute grammars where the
attributes can be evaluated by a fixed number of left-to-right passes over
the derivation tree. We show that there are translations specified by one-
visit attribute grammars which cannot be specified by any attribute grammar

in this class when some conditions are satisfied.

At Llast in chapter 6 I give my conclusions and some proposals for fur-

ther research.

In this section I will present some of the notation that will be used.

Let @1 and Q2 be two graphs over the same set of nodes. We define @ =
Q1 LJ @2 as the graph over the same set of nodes and with an arc from b to ¢

if and only if there 1is an arc from b to ¢ 1in either @1 or in Q2.

Let @ be a graph over a set of nodes A= A0 U AT U ... U An where Aj N
Ai =0 for j # i. Let Qj be a graph over a set of nodes containing those in
Aj for 1<j<n. Then the graph

Q' = QEFQ1 62 ... Qn%
will be a graph over the set A of nodes. There will be an arc from b to ¢
in @' if and only if there is an arc from b to ¢ in either @ or in Qj for
some j, 1<j<n.

If Q0 s a graph over the set AD of nodes then QOEQI is a graph over
the set of nodes A and with an arc from b to ¢ if and only if there 4ds an

arc from b to ¢ in either @ or in Q0.

_S_



Let Q be a graph. An arc from b to ¢ will be denoted by b->c. A path

from b to ¢ will be denoted b->*c and if the length is greater than zero
then it may be denoted by b->+c.

A tree t with root labelled X and subtrees t1, t2, ..., th will be
denoted t = X[t1 t2 ... tnl.

The concatenation of the leaves of a tree is called the yield of the
tree.

The height of a tree consisting of a single node is zero. The height
of a tree t = X[t1 t2 ... tn] is one plus the maximal height of the sub-

trees.

The empty string will be denoted by ) .



There does not seem to exist a generally accepted definition of an at-
tribute grammar. Therefore the purpose of this chapter is to give a formal
definition of attribute grammars and to clarify some questions concerning
the Llanguages recognized by and the translations specified by attribute

grammars.

In section 2.1 is given a definition of an attribute grammar which em—
phasizes the 1importance of both the domains for the attributes and the
functions used 1in the semantic rules.

There seems to be some disagreement about how to define the language
and the translation specified by an attribute grammar. Two central points

seem to be:

1. Do we care about the values of all the attributes associated with a
derivation tree or are we only interested in the values of the at-

tributes of the root of the derivation tree.

2. How shall we find the values of the attributes.

Here point 1 leads to a distinctijon between a 'traditional®' and a
'translational' approach. Point 2 results in two language definitions, one
in section 2.2 and an other in section 2.3. The first of the definitions
requires the existence of & so-called evaluated semantié tree and the
second requires a minimal fixpoint for a specific function.

The translation defined by an attribute grammar needs not be unam-
biguous. Therefore in section 2.4 we introduce the concepts of determinate
and unambiguous attribute grammars. It turns out that it is undecidable
whether an attribute grammar is determinate or unambiguous.

At Llast in section 2.5 we investigate the formal power of both the un-
restricted, the unambiguous and the determinate attribute grammars. Fur-

thermore we consider some decidability results.



In many definitions of attribute grammars

tributes and the

the

domains for the at-

functions used in the semantic rules are just something

that exist. But in fact the power of the formalism is strongly dependent on

the choice of domains for the attributes and the
In order to emphasize the importance of the
I first

introduce a so-called semantic domain

attribute grammar over a semantic domain. These

operations on them.

domains and the operations
and later I will define an
definitions

are inspired

by LEnF791.

DEFINITION 1:
A semantic domain is a pair (D, F) where

- D is a set of complete Lattices

- F dis a collection of total, continuous and recursive functions of
functionallity f: D1 X D2 X .au X Dm =>D with m >0 and where
D, D1, ..., Dm are complete Lattices from D.

171

The bottom

top element !. If an attribute has the value 2 it means that its value

element of a complete lattice D will be denoted 2 and the
has

not been determined. The value ! 1is an error value.

EXAMPLE 1:
The set INTEGER of integers can be extended to a flat lattice INTEGER'

by addition of a top an a bottom as described by e.g. [Stor7]. The set
BOOLEAN = {true,false} can be extended in a similar manner to the Llattice
BOOLEAN'.
Consider the function

cond: BOOLEAN X INTEGER X INTEGER -> INTEGER
defined by

cond(true,a,b) = a

cond(false,a,b) = b
for a,b € INTEGER.

The function can be extended to a function cond’' operating on the

complete lLattices:

cond': BOOLEAN' X INTEGER' X INTEGER' =-> INTEGER'

by letting



cond'(2,a,b) = 2

cond'(!,a,b) = !

cond'(true,a,?) = a cond'(true,a,l) = a
cond'(false,?2,b) = b cond'(false,!,b) = b
where a,b € INTEGER' and otherwise cond'(c¢,a,b) = cond(c,a,b) where c €

BOOLEAN'.

In a similar manner we can extend the didentity function and the 'ad-

dition-by-one' function to operate on the complete lattices. If F consists
of these tree functions and D = {INTEGER', BOOLEAN'} then (D,F) will be a

semantic domain.

117/

DEFINITION 2:

An attribute grammar (AG) G over a semantic domain (D, F) 1is a

4-tuple:

where

Ve

G =(V, B, R, 2)

a finite set of symbols. V is separated into two disjoint sets: Vn,
the set of nonterminal symbols, and Vt, the set of terminal symbols.

To each symbol X in V is associated a fixed set A(X) denoted the
attributes of X. Each attribute is associated with a lattice from D,
and the value of the attribute is a member of the lattice.

An attribute can be either inherited or synthesized. The set of
inherited attributes for a symbol X in V is denoted I(X) and the set
of synthesized S(X). (We shall require that I(X) N1 S(X) =@ and
IOO U SO = A D

For each synthesized attribute of a terminal symbol there is

given an external semantic rule which defines its value.

a set of attribute variables used in R. Any attribute variable denotes

an element from a (fixed) lattice in D.

a set of productions. Any production consists of a rule from a reduced
context free grammar (CFG)

Gu = (Vn, Vt, Ru, Z)
together with some semantic rules. Gu is called the underlying grammar
of the AG.

If in Ru we have a rule p: X t:= X1 X2 ... Xn then the values of

- 9 -



the inherited attributes of X and the synthesized attributes of Xj for
1<j<n  (called the defining attributes 1in p) will be denoted by
distinct attribute variables associated with the corresponding Llat-
tices for the attributes. The values of the synthesized attributes of
X and the inherited attributes of Xj for 1£j<n (called the applied at-
tributes in p) will be denoted by semantic rules.

A semantic rule is a function from [ whose parameters are eijther
attribute variables denoting defining attributes in p or they are con-

stant values from the appropriate Llattices.

Z: the start symbol. Z is in V and I(Z) = 0.
) /117
We use 3 BNF-Like notation for the productions. Behind each symbol we
write dits attributes - an up~wards arrow ($) prefixes a synthesized at-
tribute, a down—-wards arrow (§) prefixes an inherited attribute. We will

assume that there is a fixed ordering of the attributes of each symbol.

EXAMPLE 2:
We will now define an AG G = (V, B, R, Z) over the semantic domain

(D,E) from example 1.

V:Vvn =X, Y, 72}, Vt =LA, M, A2, A3, A4}

ICX) = {x1, x22% S(X) = {x3%}

YY) = {y1> SCY) = {y2}

() =0 S(2) = {213

IR =0 SCA) = {a}

I(Aj) = 0@ S(Aj) =0 for 1<j<4

where x1, a: BOOLEAN' and x2, x3, y1, y2, z1: INTEGER'.

a is defined by an external semantic rule to be either true or false.
B: a: BOOLEAN' and b: INTEGER'.

R: pl: <Z #> :1:= M <A ta>
p2: <Z tb> ::= <X Va VYcond'(a,0,b) hb> <A ta>
p3: <X ¥Ya ¥b fcond'(a,b,1)> ::= A2
phs <Z 4b> :1:= A3 <Y ¥Yb 1b>
p5: <Y ¥b o> ::= <A ta>
pb: <Z 40> ::= Ak <Y y(b+1) 1b>

_10_




Z: is the start symbol
11/
We have already mentioned the most important difference between the
definition given above and other definitions of AGs, namely the introduc-
tion of a semantic domain as a part of an AG. There are however some minor

differences.

In most definitions of an AG there are restrictions on the type of at-
tributes (inherited and/or synthesized) allowed to be associated with a
terminal symbol X. There are at least the following possibilities:

i) no restrictions on I(X) and S(X)

11)  I(X) = @ and no restrictions on S(X)
119) S(X) = @ and no restrictions on I(X)
iv) I(X) = S(X) =0

These alternatives are discussed by [RYi771. I have <chosen to allow
inherited attributes for terminal symbols as they do not impose further
problems. Also synthesized attributes are allowed, but they are defined by
external semantic rules (i.e. by the lexical analysis of a compiler). They
correspond to the intrinsic attributes defined by L[Sch76l. The notion ‘ex-—
ternal semantic rule' is due to [Tie79]. We will assume that the external
semantic rules define the values for the synthesized attributes independent

of the values for the inherited attributes of the symbol.

In some but not all definitions of AGs the start symbol Z is allowed
to have inherited attributes. There are advantages by allowing inherited
attributes (defined by external semantic rules). For instance it becomes
conceptually cleaner to consider subgrammars of AGs.

But by allowing inherited attributes for Z it becomes more difficult
to handle the AGs in a theoretical envirocnment as we will do - and

therefore I refrain from allowing them.

In some definitions of AGs so-called global and local attributes are
introduced (LRHi771, LGRW77], and [Poz791). Global attributes are special
attributes associated with the start symbol of an AG. Their value may be
changed and accessed by semantic rules of any production. But they seem to

make the understanding of an AG more complicated.

_11_



A local attribute 1is an attribute whose value only 1is wused 1in one
production. It may be an advantage to have lLocal attributes associated
with not the symbols (as in [Poz791) but with the productions (i.e. acting
as Llocal variables). They may make it easier to write and to understand AG
specifications, since for example common subexpressions may be extracted or
complex tests may be split into smaller pieces.

But in order not to make the definition of an AG more complicated than

necessary I refrain from introducing global and local attributes.

At Last I will comment on the parameters of the semantic rules. In my
definition an applied attribute will always depend on defining attributes
exclusively. In Knuth's original definition this restriction is not im-
posed. I introduce only AGs 1in normal form ([Boc76]1). By doing so some AGs
are avoided, namely those, where an attribute is defined recursively by it~
self in one production. Incidentally, the BNF-like notation used in the

examples is only possible for AGs in normal form.

In order to define the language recognized by an AG G we review the
definition of a derivation tree for a CFG Gu = (Vn, Vt, Ru, Z). Let DOM(X)
be the set of derivation trees with root labelled X where X is a symbol in

V. DOM(X) 1is defined recursively as:

i) if X € Vt then DOM(X) = {XZ

ii) if X € Vn and p: X 1:= X1 X2 ... X0 (0>0) is in R then
XCt1 t2 ... tnd ds in DOM(X) where tj € DOM(Xj) for 1<j<n.

i11) if X € Vn and p: X ::= ) is in Ru then XLAJ dis in DOM(X).

Often we will not distinguish between a node and its Llabel.

To each node in a derivation tree we associate attributes correspon—
ding to those of the equivalent symbol.

Let X be a node in a derivation tree t. If p: X ::= X1 X2 «u. Xn is
the production used to expand X in t then the semantic rules for the syn-
thesized attributes of X given in p are used to give values to the cor-
responding attributes in t. If X occurs on the right hand side of a produc~

tion g: Y ::= Y1 Y2 ... Ym and X is dintroduced (in t) by an application of

- 12 -



g then the semantic rules for the inherited attributes of X given in g are
used to give values to the corresponding attributes in t.

We will now give some definitions making that of giving values to the
attributes associated with a derivation tree more formal. It is achieved in
two steps. First the nodes in a derivation tree are extended to hold the
values for the attributes. These trees are called semantic trees. 1In the
second step we put restrictions on the values of the attributes din the
semantic tree: the relations between the attributes defined by the semantic
rules of the AG must hold. This subset of the semantic trees is called the

evaluated semantic trees.

DEFINITION 3:
A semantic tree for a string w is a tree t satisfying:

i) each node in t has a label of the form <X,v> where X is in V, A(X) =
{al, a2, eew, am¥, and v = (W1, V2, ..., vm) satisfies that vj is in
the lattice for aj for 1<j<m

i1 if h is the homomorphism defined by

- h(<X,v>) = X for X in Vt
- h(<X,v>I[t1 t2 ... tnl) = XLCh(t1) h(t2) ... h(tnd]
then h(t) is a derijvation tree for w according to the grammar Gu.
11/
DEFINITION 4:
An evaluated semantic tree for a string w is a semantic tree t for w
satisfying:

~ Let <X,v> be a node in t with n subtrees with roots labelled by resp.
<K1,v1>, <X2,v2>, «ua, <Xn,vn>. Then p: X :1:= X1 X2 ... Xn is a
production in Ru and if a semantic rule associated with p defines an
attribute b and uses the attributes b1, b2, ..., bm as parameters then
the actual values for b, b1, b2, ..., bm defined by v, vl, v2, .vc., vn
must satisfy the relation defined by the semantic rule.

- If X is a terminal symbol and <X,v> is a node in t then all the com~
ponents of v corresponding to synthesized attributes of X have values
determined by the external semantic rules.

11/
Originally Knuth defined the meaning of a string in the Llanguage
recognized by the underlying grammar as the values of the synthesized at-

tributes associated with the root of a derivation tree for the string

_13..



(EKnué8l). Later on the meaning has some times been defined as the whole
derivation tree decorated with values for the attributes.

These two approaches give rise to two different views on languages and
translations defined by AGs. The two approaches have been named resp. the
translational and the traditional approach by L[EnF79]. In the ‘trans-
Lational approach the meaning of a string is the values of the attributes
at the root of an evaluated semantic tree; in the traditional approach it

is the whole evaluated semantic tree.

DEFINITION 5:
Let G be an AG over a semantic domain & = (D,E). The meaning of a

string w is defined in two ways:

meaning-e(w,G,8) = {v| <Z,v> is the root in an evaluated semantic tree
for w}

meaning'-e(w,G,8 = {t] t is an evaluated semantic tree for wl}
17/
If G and ¥ are obviously known from the context then we will often
write meaning-e(w) in stead of meaning-e(w,G,8). The same convention is
adopted for meaning'~e(w,G,8). The suffix 'e' refers to that the meaning
is defined on the basis of an evaluated semantic tree.
The two approaches result in two definitions of the language recog-

nized by an AG.

DEFINITION 6:
The language L-e(G,8) recognized by an AG G over a semantic domain 8 =
(D,E) is defined as _
L-e(G,® = {w € L(GW | there is a v € meaning=e(w), v = (vl, v2, «.., vm)
such that vj # 2 and vj # ! for 1<j<m}

The language L'-e(G,8) recognized by an AG G over a semantic domain 8
= (D,F) is defined as
L'-e(G,8) = {w € L(GU)| there is a t € meaning'-e(w) such that if
<X,v1, V2, aew, vM)> is a node in t then
vi # 2 and vj # ! for 1<i<n>
/117
EXAMPLE 3:

Consider the AG from example 2. Then we may have the evaluated seman-
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tic trees (the values of the synthesized attributes of the terminal symbols

are given in brackets):

for Al Altrue):

<Z,(1)>
A <A, (true)>

for A3 A(true) (among others):

<Z,(2)>
A3 <Y,(2,2)>
<ACtrue)>

It is not difficult to show that

meaning—e(Al A(true)) = {17}
meaning-e(A2 A(truel)) = {02}
meaning-e(A3 A(true)) = INTEGER'
meaning=e (A4 ACtrue)) = {02}

We have

L-e(G,8)={A1 Altrue), A2 A(true)l,

for A2 A(true):

<Z,()>
<X,(true,0,0)> <A, (truel>

A2

for A4 A(true) (among others):

<Z, ({i%\
YA <Y,(2,2)>
<A,(truel)>

A3 A(true), A4 ACtrue)d,

M A(false), A2 A(false), A3 A(false), A4 A(false)

L'-e(G,0)={A1 A(true), A2 A(true),

A3 Altrue),

Al A(false), A2 A(false), A3 A(falsed}

Thus we see that the two languages may be different.

11/

If we in the definition of the language recognized by an AG care about

the actual values of the meaning of the accepted strings then we obtain the

following alternative definition:

L-e(P,G,0) = {w € L(GW | P(meaning~e(w))Z

where P is a (total, recursive and monotonic) predicate operating on the

complete Llattices of D and giving

...15_
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{true, false} with the ordering 'true > false'. This definition may be
useful 1if context sensitive tests are given 1in the attributes. Note that
not very much 1is said about the complexity of the predicate P and that we
therefore have the same ‘'problems' as in connection with affix-grammars
(IWat741, [Mad?51) where a great deal of the analysis of a string can be

made by a predicate.

The translational and the traditional approach result in two different

definitions of the translation specified by an AG.

DEFINITION 7:
The translation T-e(G,8) specified by an AG G over a semantic domain ®
= (D,E) is defined as
T-e(G,8) = {((w,W]| w € L-e(G,8) and v € meaning-e(w), no components of v

is equal to 2 or !32

The translation T'-e(G,8) specified by an AG G over a semantic domain
8= (D,E) is defined as
T'-e(G,8) = {(w,t)| w € L'-e(G,8 and t € meaning'-e(w), no components of
nodes in t is equal to 2 or !}
/117
From our point of view the translational approach is the most natural
one but it is often theoretical easier to handle the traditional approach.
The definitions of languages and translations defined in this section
is only of theoretical interest, the reason being the lLack of an algorithm
that can be used to find the evaluated semantic trees. Therefore 1in the

next section we present another set of definitions.

s oy - S . 0 " A D A e e g R g iy b

Consider an AG G and a tree t € DOM(Z). We can consider the semantic
rules defining the attributes associated with the nodes of X as a set of
equations that must be satisfied by the values of the attributes. A
solution to these equations is an evaluated semantic tree. In stead of
being interested 1in all possible evaluated semantic trees for t we may be
interested in the least one. In this section we present definitions based
on these special evaluated semantic trees (inspired by [Jon791).

We will define a function F which transforms one semantic tree into
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another. The least fixpoint of that function will be the evaluated seman—

tic tree we are searching for.

DEFINITION 8:
Let t be a semantic tree for w. Then F(t) 1is the semantic tree for w
defined by
- h(t) = h(F(t)) where h is the homomorphism given in definition 3
- if <X,v> s a node in t with sons <X1,v1>, <X2,v2>, ..., <Xn,vn> then
the corresponding nodes <X,u>, <X1,ul>, <X2,u2>, «us, <Xn,un> 1in F(t)
will satisfy that if b (an applied attribute) is defined by a semantic
rule f(b1, b2, «.., bm) in p then the value of b in u (resp. uk for
some k) 1is determined on the basis of the values of bl, b2, ..., bm in
v, Vi, V2, «ua, VN.
/177
The existence of a minimal fixpoint for F follows from the continuity
of the functions in the semantic domain and thereby of F. In order to find

the wanted fixpoint we introduce the concept of an initial semantic tree:

DEFINITION 9:
An initial semantic tree for a string w is a semantic tree t for w
satisfying:
- if <X,v> in a node in t and X € Vn then all components of v are equal
to 2
- if <X,v> is a node in t and X € Vt then all components of v correspon-
ding to dinherited attributes are equal to 2 and all components cor-
responding to synthesized attributes have values determined by the ex-
ternal semantic rules.
Iy
We can note that if the external semantic rules define the attributes
of the terminal symbols uniquely then an initial semantic tree for a string

can be uniquely determined for each derivation tree for the string.

In the previous section we defined the meaning of a string in two dif-
ferent ways corresponding to the +two approaches translational and
traditional. We also had two definitions of the language recognized by an

AG. We have similar definitions here.
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DEFINITION 10:
Let G be an AG over a semantic domain 8 = (D,F). The meaning of a
string w is defined in two ways:
meaning(w,G,8) = {v| <Z,v> is the root of F*(t) where t is an initial

semantic tree for wl}

meaning*(w,G,8) ={t| t = F¥(t') where t' is an initial semantic tree
for w}
/17
The continuity of F ensures that Fx{(t") is the least fixpoint of F

stronger that t' where t' is an initial semantic tree.

DEFINITION 11:
The language recognized by an AG G over a semantic domain 8 = (D,E) is
defined by
L(G,® = {w € L(Gu)| there is a v € meaning(w), v = (W1, v2, ..., vm)
such that vj # 2 and vj # ! for 1<j<n}

The Llanguage L'(G,8) recognized by an AG G over a semantic domain & =
(D,F) is defined by
L'(G,8) = {w € L(GW ]| there is a t € meaning'(w), such that if
<X, (v, v2, eew, v)> is a node 1in t then
vi # 2 and vj # ! for 1<j<m}
111
EXAMPLE 4:
Let G be the AG from example 2. The semantic trees given in example 3
are the Lleast fixpoints of the various F-functions. Consider for instance

the string A2 A(true). The initial semantic tree for the string is:

<7,(2)>

N\

<X,€2,2,2)> <A,(true)>

A2

After application of F one resp. two times we have these semantic trees:
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<Z,(2)> <Z,(2)>

N YO

<X,(true,0,2)> <A,(true)> <X,Ctrue ,0,0)> <A,(truel)>

A2 A2

By applying F once more we get the evaluated semantic tree of example

3.

We have
meaning(Al ACtrued)) = {12}
meaning(A2 A(true)) = {02}
meaning(A3 A(true)) = {23
meaning(A4 ACtrue)) = {0}

and

L(G, 8 = {A1 ACtrue), A2 A(true), AL A(true),
Al ACfalse), A2 A(false), A4 A(falsed}

L'(G,8) = {A1 ACtrue), A2 ACtrue), Al A(false), A2 A(false)}

/117
EXAMPLE 5:

The Llanguage recognized by an AG depends very much on the semantic
domain. We could have extended the function cond in example 1 1in another
way:

Let ' = (D,E') be the semantic domain from example 1 where F' is as F
except that cond is extended in another way:

cond': BOOLEAN' X INTEGER' X INTEGER' -> INTEGER'
where
cond'(2,a,b) = 2
cond'(true,a,?) = 2
cond'(false,2,b) = 2
independent of the values of a and b, and
cond'(!,a,b) = !
cond'(true,a,!) =
cond'(false,!,b) = !

where a and b are arbitrary values different from 2.

If the AG G from example 2 is over the semantic domain 8' then we have
meaning (Al A(true)) = {12}
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meaning(A2 A(truel) = {23
meaning (A3 ACtrue)) = {23
meaning (A4 Altrue)) = {02

and
L(G,8) = {A1 ACtrue), A4 ACtrue), A A(false), AL A(false)}
L'(G,0) = {A1 ACtrue), Al A(false)}

The difference between the AG in example 2 and here corresponds to
that between call-by-name and call-by-value evaluation of the semantic
rules.

/117

The translations specified by an AG can be defined in a manner very

similar to that in definition 7.

In the rest of this section we will compare the two languages L-e(G,%)
and L(G,8). Similar results can be obtained for the two languages L'-e(G,®
and L'(G,8).

THEOREM 1:
For any AG G over a semantic domain 8 = (D,F) we have L(G,8)c
L-e(G,0)

PROOF: The theorem obviously follows since the least fixpoint of F is an
evaluated semantic tree.
11/
THEOREM 2:
There exists an AG G over a semantic domain 8 = (D,F) such that
L(G,8) # L-e(G,8).

PROOF: Consider the AG G from example 1 and 2, and assume that A1, A2, A3,
and A4 are different. Then L-e(G,8) and L(G,8) are different.
11/

The definition of meaning in section 2.2 may be considered as that of
finding all possible fixpoints of the function F. If one only is interested
in the minimal fixpoint of F then it is possible to construct algorithms
that find it ([Man741). The problem to find algorithms for the general AGs
will not be investigated further here. Later on the topic will be discussed

for a restricted class of AGs.
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Let us for a moment reconsider the definition of L(G,8) (definition
11). A string w is in L(G,8) if there exists an element v in meaning(w) and
none of the components of v are equal to 2 and !. But meaning(w) may con-
tain several elements with that property. A natural requirement to an AG
will be that the meaning of a string in the Llanguage is wuniquely deter-
mined. This Lleads to the definition of two subclasses of AGs, the deter-—
minate and the unambiguous AGs.

In the following we will only consider the translational approach to
language definition. Similar results can be obtained for the traditional
approach.

Let us first introduce and discuss the determinate AGs.

DEFINITION 12:
An AG G over a semantic domain & = (D,F) is determinate if for any

string w € L(G,®8) and any v1, v2 € meaning(w) we have vl = v2.

An AG G over a semantic domain ® is e-determinate if for any string w
€ L-e(G,® and any v1, v2 € meaning—e(w) we have vl = v2.
/117
Corresponding to these properties of AGs we define two classes of AGs:
D~AG and ED—-AG:

DEFINITION 13:
D-AG = {G]| G is a determinate AG}
ED~-AG

{G| G is an e~determinate AG}
117/
THEOREM 3:
ED-AG & D-AG and ED-AG # D—-AG

PROOF: Let G € ED-AG and assume that G is not in D-AG. Then there is a
string w € L(G,8) with two elements v1, v2 € meaning(w) and such that vi #

v2. But meaning(w) < meaning—e(w) and G will not be in ED-AG.

If M, A2, A3, and A4 are different then the AG 1in example 3 is in

D-AG but not in ED-AG: A3 A(true) is not in L(G,8) and we do not care about
its meaning; but A3 A(true) is in L-e(G,8) and now we are interested in its
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" meaning.
11/
THEOREM 4:
It is undecidable whether an AG G is in D—-AG (or ED-AG).

PROOF: Consider a CFG Gu = (Vn, Vt, Ru, Z). Construct an AG G with the un-
derlying grammar Gu such that each symbol has a single synthesized at-
tribute. The Llattice for the attribute of the symbol X is the set DOM(X)
extended to a flat lattice. The tree concatenation operation is extended
to the complete Llattices by letting the operation be strict in its
parameters. If in Ru p: X ::= X1 X2 ... Xn then we have in G
p': <X MXLt1 t2 .ue tNI> 1:= <X1 21> <X2 42> o <Xn 4EN>
If X € Vt then the external semantic rules defining the attribute of X
gives it the wvalue X. Then G is in D-AG if and only if Gu 1is an unam—
biguous CFG. Since it 1is undecidable whether a CFG is unambiguous (LAhU721)
it will also be undecidable whether an AG is in D-AG. In a similar way we
have that it is undecidable whether an AG is in ED-AG.
11/

One may be interested in AGs with the property that for any string w
ih the Llanguage meaning(w) will only contain one single element with com—
ponents different from 2 and !. This Lleads to the dintroduction of the

second subclass of AGs, the unambiguous AGs.

DEFINITION 14:
An AG G over a semantic domain ® = (D,F) is unambiguous if for any
string w € L(G,8) and any vi1, v2 € meaning(w) where in both vl and v2 all

components are different from 2 and ! we have vl = v2.

An  AG G over a semantic domain ® = (D,E) is e-unambiguous if for any
string w € L-e(G,8) and any vl, v2 € meaning-e(w) where 1in both v1 and v2

all components are different from 2 and ! we have vl = v2.

117
DEFINITION 15:
U-AG = {G | G is an unambiguous AG}
EU-AG = {6 | G is an e-unambiguous AG}
1177

The following theorems are easy to show:
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THEOREM 5:
EU-AG = U-AG and EU-AG # U-AG

11/
THEOREM 6:
Any determinate AG is an unhambiguous AG but not vice versa.
117
THEOREM 7:
It is undecidable whether an AG is in U-AG (or EU-AG).
/117

By associating attributes with the symbols of a CFG and semantic rules
with the productions as defined in section 2.1 we get a very powerful tool.
In fact 1t 1is possible to recognize any recursive enumerable set by an AG
if one allow some simple operations in the semantic domains. We will now
show how this can be done by simulating a Turing Machine (for a definition

see e.g. LAHU741). A similar construction is given by Watt in [Wat74].

let M=, T, 1,8, b, d0, gf) be a deterministic Turing Machine. We
have
is a set of states

is a set of tape symbols

is the transition function 6: @ X T ->@ X T X {L,R,S}
is the blank symbol, b € T - 1
g0: is the dinitial state

Q
T
I: 1is a set of input symbols, I ¢ T
6
b

gf: is the final state
We define an AG G = (V, B, R, Z) over a semantic domain® = (D, E):

D: contains flat lLattices constructed by extensions of the sets @, T, Tx,
and T X Q.

E: contains the functions:
append: Tx X Tx => Tx%
but-first, but-last: T* -> T*
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first, last: T* => T

cond: (T X Q X(TX & ->TXa

condz: (T X Q) -> Q@

cond=first, cond-Last: (T X @ X (T X @ X T X @ => T*

The function 'append' concatenates two strings. Only if both the
parameters are ! the result is !.

The functions 'but=first' resp. 'but-last' remove the first resp.
the Llast element from the string. If the string is the empty string
then the result will be !.

The functions 'first' and "lLast' give the first resp. the Llast
element of a string. If the string is the empty string then the result
will be !.

The function 'cond' takes as parameters two pairs. If the two
first of these pairs are equal the result will be the third pair,
otherwise it is !.

The function ‘'condz' takes a pair (A,q) as parameter and gives
the value of as result if g = gf, otherwise the result is !.

The functions give the value 2 as result if at Least on of their
parameters have the value 2.

cond-first is defined by

cond=-first(th1,th2,tr,q) = cond(thl,th2,(first(th),q))
cond-Last is defined by

cond-last(thl,th2,tl,q) = cond(thl,th2,(last(tl),qg))

The components of the AG are defined as:

V:

B:

vn =X, Y, 7}, Vt = I

S(X) = {t¥, t is associated with T*

IX) =0

sC¢Y) = {tl, th, tr}, tl and tr are associated with T*
th is associated with T X @

Iy) =0

S(Z) = {9}, g is associated with @

I(Z) =0

tl: associated with T*, will denote the string to the left of the
head.

th: associated with T X @, will denote the symbol under the head and
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the state of the Turing Machine
tr: associated with T*, will denote the string to the right of the
head.

R: For each symbol A € I we have:
<X tappend(tr,A)> :1:= <X 4tr> A
<X > =

A Lot of chain productions Y ::= Y is used in order to simulate the
Turing Machine:

<Y PA PMfirsttr),q0) PMr> o

<X ttr>

If 6¢q,B) = (g',B',S) then
<Y 4tl tcond(th,(B,q),(B',q%)) ftr> ::= <Y ttl fth ttr>

If §(g,B) = (q',B',L) then
<Y fbut~Llast(tl) fcond-last(th,(B,q),tlL,q")) tappend(B',tr)> ::=
<Y 4tl 4th 4tr>

If é&(q,B) = (g',B'",R) then
<Y tappend(tl,B") fcond=first(th,(B,q),tr,qa)) Pout=Ffirst(tr)> ::
<Y ML tth ttr>

1]

<Z fcondz{th)> ::= <Y MtLl tth ttr>

If LCM) is the language defined by the Turing Machine then L(M) =
L(G,0). And we have the result:

THEOREM &:

Any recursively enumerable set can be defined by an AG.
/17

Inspection of the construction above shows that the AG 1is unambiguous,

that is we have

THEOREM 9:
Any recursively enumerable set can be defined by an unambiguous AG.
117/

An immediately consequence of this is

THEOREM 10:

The general membership problem is not solvable for neither arbitrary
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AGs nor unambiguous AGs.

/111
If we consider the determinate AGs we have these results:
THEOREM 11:
Any recursive set can be defined by the determinate AGs.
PROOF: We construct an AG G = (V, B, R, Z) over a semantic domain® = (D,

E): D consists of the two sets Vt* and {accept} extended to flat lattices.
F consists of two functions, 'append' (almost equal to the function with
the same name mentioned earlier) and f: Vt* => {accept}, a recursive func-
tjon. f is extened to operate on the complete Lattices. The function f'
is defined by f'(w) = f(w) if f is defined onw, f'(L) =1, f'(2) = 2 and
f'(w) = | otherwise.
The wunderlying grammar of G is Gu = ({X,Z}, Vt, Ru, Z) where Ru con-

tains the ruLés:

Z = X

X X A for every A € Vt

X 1:= A for every A € Vt
We have S(X) = {b}, I(X) =0, S(Z) = {c}. b is associated with the flat

Lattice constructed from Vt* and ¢ with that from {accept}. For every A €
Vt we have A(A) = @. In R we have the productions
<Z pf€a)> :1:= <X %ta>
<X fappend(a,A)> ::= <X 4a> A for every A € Vt
<X MA> 1:= A for every A € Vt
17/
THEOREM 12:

The general membership problem is solvable for the determinate AGs.

PROOF: Let G be a determinate AG over a semantic domain 8 = (D,E). 1In
order to determine whether a string w is in L(G,8) we construct a
derivation tree for w, determine an initial semantic tree and the minimal
evaluated semantic tree (it is possible according to the discussion at the
end of section 2.3). Inspection of the evaluated semantic tree shows
whether w in the language or not.

Iy
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3. WELL-DEFINED ATTRIBUTE GRAMMARS

In this chapter (and in the rest of this thesis) I put restrictions on
the semantic domains of an AG. It is required that the operations are

strict (in a slightly different sense that usually):

Let 8= (D, F) be a semantic domain. Then every function f: D1 X D2 X
ee. X Dm => DO in F must satisfy:

- fvl, v2, «ue, vm)

1
L]

if and only if vj = 2 for some j

1

- fvl, v2, aue, vm) ' dif vi # 2 for all j, and if vj = ! for some j.

When using semantic domains with these properties it becomes con-
venient to represent the dependencies between the attributes as graphs. In
section 3.1 I introduce so~called dependency graphs for both the produc=
tions and the symbols of the AG. These graphs are of great importance for
this and the remaining chapters.

This leads to the introduction of a subclass of AGs, the well-defined
AGs, 1in section 3.2. An AG in this class has the property that in any ob-
tainable derivation tree for the wunderlying grammar it 1is possible to
evaluate all the attributes to values different from 2. It turns out that
the class of well-defined AGs and the <classes D-AG and U-AG from the
previous chapter are incomparable.

In section 3.3 I introduce a subclass of the well-defined AGs and show
how any well-defined AG can be transformed into an AG in this class. This
class and transformation are mainly introduced in order to simplify some of
the proofs in the following sections. And a slightly modification of the
transformation shows that any AG can be transformed into a well-defined AG
over the same semantic domain and defining the same translation.

In the translational approach there may be some attributes associated
with a derivation tree whose values do not influence the meaning of the
string. In section 3.4 I give transformations that remove these attributes.
There are given two constructions, the first one removes all the attributes
that never will influence the meaning. The second construction transforms

the AG into an equivalent AG where every attribute of every symbol influen-
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ces the meaning if the symbol occurs in the derivation tree.

When using semantic domains with properties as described above it is
possible statically to discuss whether one attribute depends on ancther. An
important concept when doihg so is the dependency graphs. A dependency
graph 1is a directed graph where the nodes represent attributes and an arc
from a node representing an attribute b to a node representing another at-
tribute ¢ means that the value of ¢ may depend on the value of b. Often we
will refer to a node in a dependency graph as an attribute.

We define dependency graphs for both symbols and productions in an AG.
A dependency graph for a symbol 1is any graph with a node for each of the
attributes of the symbol. A dependency graph for a production is any graph
with a node for each of the attributes of each of the symbols occurring in
the production.

The fundamental of the dependency graphs is a dependency graph D(p)
for each of the productions p in the AG.

DEFINITION 1:

Let p: X ::= X1 X2 ... Xn be a production in an AG G. The dependency
graph D(p) for p is the graph determined by that there is an arc from b to
¢ 1if and only if the attribute varjable for b in p occurs in the semantic
rule for ¢ in p.

11/

We can note that any arc in D(p) will begin at a defining attribute

and end at an applied.

EXAMPLE 1
Consider an AG G over a semantic domain ® which contains the Jdentity

function. G contains the productions:

pl: <Z 4b> :;:= B <X Va V0 1b ta>
p2: <Z 1tb> :1:= C <Y Vb tb>

p3: <Y Ya th> 1:= <X ¥1 va tb 4c>
ph: <X Ya ¥b ta M> 1:= Al

p5: <X Va Vb 10 tb> :1:= A2

Then we have (the ordering of the nodes s equal to that of the at-
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tributes):

D(pT): 2 if>><:\\ D(p2):  Z [] D(p3): Y E]Eﬁ
8" X CICICICT ¢ v é;%b X CICICICD

/17

The dependency graphs D(p) can be put together in a way determined by
a derivation tree and thereby define a dependency network for the tree tel-

Ling how the attributes associated with the tree depend on each other.

DEFINITION 2:
Let G be an AG and let t € DOM(X). The dependency network D(t) for t
is:
- if t = X, X € Vt then D(t) is the symbol dependency graph for X with

no arcs

- if t = XCt1 t2 ... tnl and the production applied at X is p: X :1:= Xl

X2 ... Xn then
DCt) = D(P)EDCtT) D(t2) ... DC(tr)d

- if t = X[)J then D(t) = D(p) where p: X :1:= ).
11/

EXAMPLE 2:
Consider the AG from example 1. We may have the following dependency

networks:

Z

E§>‘?\\

B X CICICICI B

[] 7 I3 Z [
vty ¢y ;%ﬁ ¢y ;;%3
F ;

CICICIC] X [ICICILCD
A ;

T
|

A

TN N

A "2

I oa a3,

17/

The dependency network D(t) for t € DOM(X) shows among other things

how the attributes of X depend on each other in t. It is possible to con-
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struct a set of dependency graphs for X showing all possible dependencies

between the attributes of X that can occur in trees in DOM(X).

DEFINITION 3:
Let G be an AG. For each symbol X in V we define a set of dependency
graphs SYM(X) for X:
- if X € Vt then SYM(X) consists of a single graph, the graph with no
arcs
-~ if X € Vn and p: X 2:= X1 X2 ... Xn (n>0) is a production in R then
there will be a graph Q@ 1in SYM(X) for each choice of graphs Qj €
SYM(Xj) for 1<j<n. The graph Q has an arc from b to ¢ if and only if
there is a path from b to ¢ in the graph
D(p)EAT1 @2 ... Qnd
- if X € Vn and p: X ::= ) is a production in R then the graph @ = D(p)
witl be in SYMOX).

/1177
EXAMPLE 3:
For the AG 1in example 1 we have:
SYM(Z): Q1: [J
SYM(X): Q2: CIC3ICIC] Q3: CICICILC]
.. A

SYM(Y) . Q4: [IL3

11/

THEOREM 1 :
Let t € DOM(X) and define sym(t), the symbol dependency graph for X
corresponding to t by:
b=>c in sym(t) <=> b=->+c in D(1)
Then sym(t) € SYM(X).
If @ € SYM(X) then there is a tree t € DOM(X) such that sym(t) = Q.

PROOF: The theorem follows from the proof for the circularity test in
CKnu711.
11/
The dependency  graphs and networks presented din these three
definitions are originally introduced by Knuth (LKnué68l1, [Knu711).
We can note that in a graph @ in SYM(X) any arc b=>c will begin at an
inherited attribute for X (b) and end at a synthesized attribute (¢). Thus
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graphs in SYM(X) will only tell how the synthesized attributes of a symbol
may depend on the inherited attributes. I will now define dependency graphs
for the symbols that can tell how the dinherited attributes of a symbol
depends on the synthesized in a derivation tree. These graphs are called

context dependency graphs.

DEFINITION 4:
Let G be an AG.‘For each symbol X in V we define the set of context
dependency graphs CON(X) for X:
- if X = Z then CON(Z) consists of a single graph, the graph with no
arcs
- 9f pr X = X1 X2 .. Xn is a production in R then there will be a
graph in CON(Xk) for each choice of graphs Q@ € CON(X) and Qj' £
SYM(Xj), i # k. Let Qk' be the graph with no arcs. Then the graph Qk
has an arc from b to ¢ if there is a path from b to ¢ in the graph
QED(p)EQT' Q2" ... Gn'I

Iy
EXAMPLE 4:
For the AG in example 1 we have:
CONCZ) : Q1': [
/,w\\\ e
CONCX) s Qz': CJCIC3C] Q3': CJCJC3IC]
CONCY) : Q4': LCIL]
/117

We can note that any arc b=>c in a graph @ € CON(X) starts at a syn-

thesized attribute (b) and ends at an inherited (¢).

Corresponding to theorem 1 we have

THEOREM 2:
Let t € DOM(Z) and consider a subtree t' € DOM(X) of t. We define the
context dependency graph con(t') for X corresponding to t' by:
b=>c in con(t') <=> b=>+¢ in D(t), b € S(X), and ¢ € I(X)
Then con(t') € CONCX).
If @ € CON(X) then there is a tree t € DOM(Z) with a subtree t' €
DOM(X) such that con(t') = Q.
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PROOF: One may use 1induction in the length of a path from the root of t to
the node X. We omit the proof.
/17

We will now follow Knuth in defining a class of AGs called the well-
defined (or non-circultar) AGs (LKnué681). An AG in this class is charac~
terized by that for every tree t in DOM(X), X € V, there are no cycles 1in
D(t).

DEFINITION 5:
An AG 1is called well-defined 1if there are no cycles in any of the
dependency networks D(t) for t € DOM(Z).
W-AG = {G] G is well-defined}
17/

Well-definedness 1is a static property. Knuth has shown [Knu711:

THEOREM 3:

An AG is well-defined if and only if for any production p: X :z:= X1 X2
.-« Xn there are no cycles in the graph

D(pXEQT Q2 ... QNI
for any choice of graphs @j € SYM(Xj).

17/

EXAMPLE 5:

The AG of example 1 is well-defined (see example 2).

The AG 1in example 5 of chapter 2 is not well-defined, we have a cycle
in the dependency network for e.g. the derivation tree ZLA4 YLAJl for the
string A4 A(true):

Ll

Z
A Y Eé]

11/
Jazayeri, Ogden, and Rounds have shown that the test for well-defined-

ness presented above is of exponential complexity, and furthermore they

..32_



have shown that any test for well-definedness will be exponential
(CJOR7S5DD.

Let us return to one of the topics mentioned in section 2.3. How can
we find an algorithm determining the meaning of a string, i.e. the Lleast
fixpoint of the function F in definition 8 in chapter 2. Consider a well-
defined AG. Since no attributes 1in any derivation tree depend circularly on
each other we can determine an ordering of the attributes associated with
the tree. The ordering can be chosen such that if an attribute b precedes
an attribute ¢ in the ordering then the value of b does not depend on the
value of c. The attributes can then be evaluated in this order. A compiler
writing system DELTA 1is based upon this idea (LLor771).

It is also possible to show that never mind which order of the at-
tributes one chooses then the resulting evaluated semantic tree will be the
same, the least fixpoint of the F-function. Furthermore this will be the
only fixpoint of the F-function and thus the 'evaluated semantic tree' and
the 'least fixpoint' approaches to language definition in chapter 2 will
coincide.

Mayoh expresses the same results in a slightly modified form
(CMay781). He reformulates AGs in mathematical semantics. A solution to his
mathematical semantic equations specifies an evaluated semantic tree. Mayoh
shows among other things that if the AG is well-defined then one needs not
use the fixpoint operator when solving the semantic equations. Thus it s
straight forward to find a solution as well as it is straight forward to
find an order in which the attributes associated with a derivation tree can
be evaluated.

In chapter 4 and 5 I will give specific algorithms that may be used to

construct evaluated semantic trees for well-defined AGs.

The discussion above shows that if a string w is in e.g. the language
L(G,8) then it is possible to give values to the attributes in a derivation
tree for w such that allt these values are different from ! and 2. And
therefore w will also be in L'(G,8). The two approaches traditional and
translational will give the same language but of cause not the same trans-
Lations.

Thus the conclusion is that the four language definitions in chapter 2
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coincide for the well-defined AGs.

We will assume that the external semantic rules uniquely define an
initial semantic tree t' for a string w with a derivation tree t. The
meaning of w determined from t' will be denoted by meaning(w,t) 4n the

translational approach and meaning'(w,t) in the traditional.

We will now compare the class W-AG with the classes D-AG and U-AG from
the previous chapter. Intuitively the classes will be incomparable since
in  the classes D-AG and U-AG we care about the value of the meaning of a
string and not whether there are cycles in a network. On the other hand in
the class W-AG we care about the cycles but not the values of the meaning.

We have the result:

THEOREM 4:
The classes D-AG and W-AG are incomparable.

The classes U-AG and W-AG are incomparable.

PROOF : Let A1 = A2 = A in the AG of example 1. Then the AG is neither in
U-AG nor in D-AG since meaning(B A) = {0, 1 and meaning(C A) = {0, 1}. But
the AG is in W-AG (according to example 5).
The AG in example 3 of chapter 2 is in D-AG (and thereby din U-AG).
But it is not in W-AG (according to example 5).
i

In this section I define a subclass of AGs called the partly uniform
AGs. A partly uniform AG has the property that the dependencies between the
attributes of a symbol are independent of what the symbol may derive but

may depend on the context of the symbol in a derivation tree.

DEFINITION 6:
An AG G = (V, B, R, Z) is partly uniform if it is well-defined and if
for every X € V, SYM(X) consists of a single graph.
/117

We have the result:
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THEOREM 5:

Any AG G = (V, B, R, Z) over a semantic domain ® can be transformed
into a partly uniform AG G' = (V', B', R', Z') over the same semantic
domain & and such that

T(G,8) = T(G6',9)

CONSTRUCTION: G' is defined by

Vi: Vn' = {(X, Q)] X € Vn and @ € SYM(X)}> and Vt' = Vt
For any (X,Q) € Vn' Llet A(X,Q) = A(X) and for any X' € Vt' Let A(X")
= A(X)

B': is equal to B

R':s if p: X ::= X1 X2 ... Xn is in R and @j € SYM(Xj) for 1<j<n then

pls XT o= X1 OX2' ... Xn!

is in R where Xj' = (Xj,Qj) if Xj € Vn and Xj' = Xj if Xj € Vvt for
1<j<n. X' = (X,Q) where Q@ is the graph in SYM(X) derived from D(p)EQ1
Q2 ... @nf. The semantic rules of p' are equal to those of p.

Z': is eqgual to (Z,Q) where @ is the only graph in SYM(Z).

PROOF: 1In order to show the correctness of the theorem we consider two as-

sertjons:
i) T(G6,8 = T(6',H

ii) G' is a partly uniform AG

Proof of 1): We define a homomorphism h' mapping any derivation tree of Gu
into a derivation tree of Gu' (sym(t) is defined in theorem 1):

- 3f t = X (& Vt) then h'(t) = X (€ Vt")

- 4if t = X[t1 t2 ... tnl and the production applied at X is

p: X 1:= X1 X2 «aa Xn (n > 0) then
h'(t) = (X, sym(t))Ch'(£1) h'(t2) ... h'(tn)]

Another homomorphism h is defined by:

- 3f t = X (€ Vt") then h(t) = X (€ Vi)

- if t = (X,I[t1 t2 «.. tnl then h(t) = XLCh(t1) h(t2) ... h(tn)]
The existence of the two homomorphisms h and h' whose composition is the
identity function ensures that J(G,8) = T(G',0).

1]

1

Proof of 1i): We will show that for any tree t € DOM(X,Q) ((X,Q) € Vn') we
have sym(t) = Q. Theorem 1 then gives that SYM(X,Q) = {Q} and thereby that

G' is partly uniform. We use induction in the height of t.
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If the height 1is zero then obviously sym(t) = & where Q@ is the graph
with no arcs.

For the 1induction step let t = (X,@)[t1 t2 ... tnd and Llet p: (X, Q0
iz X1Y OX2' ... Xn' be the production applied at (X,Q). The induction
hypothesis gives that sym(tj) = Qj where Xj' = (Xj,Qj) for 1<{j<n. The graph
sym(t) is derived from the graph D(t) or (equivalently) D(p)EQ1 @2 ... @ni.
But so is the graph Q@ and we have sym(t) = Q.

/117

We have formulated and prooved the theorem in the translational style,

but it can easily be modified to hold in the traditional approach.

EXAMPLE 6:
Let us apply the construction to the AG in example 1. Let Q1, Q2, @3,
and Q@4 be the graphs from example 3. The new AG then has the productions:

pl': <(Z,81) fh> ::= B <(X,Q2) Vva V0 1o ta>

p1": <(Z,Q1) 4b> ::= B <(X,Q3) vVa V0 tb ta>

p2t: <(Z,81) tb> ::= C <(Y,Q4) Vb tb>

p3':  <(Y,Q4) VYa th> ::= <(X,82) V1 Va b tc>
p3'":  <(Y,Q4) VYa Pb> :1:= <(X,083) V1 Va fb tc>
p&':  <(X,Q2) Va ¥b ta M> := A

p5%:  <(X,Q3) Va Vb 10 1b> :1:= A2

i

/117
THEOREM 6:

Let 6 = (V, B, R, Z) be an arbitrary AG over a semantic domain 8. Then
there exists a well-defined AG G' = (V', B', R', Z') over the same semantic
domain ® such that

L'(G,®) = L'(G', D)
and

T'(G, 0 = h(T'(G',8))

where h is a homomorphism.
CONSTRUCTION: First we construct a CFG G" = (vn', Vt", R", Z'"):

vn'": {(X,Q)[X € Vn, @ € SYM(X))

Vt': Vit

R": let p: X z:= X1 X2 «ua Xn be a production in R. If @ € SYM(X) could
be derived from the graph
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Q' = D(pP)EQT @2 ... Qni
where Qj <€ SYM(Xj) for 1<j<n and if there are no cycles in Q@' then
there 1is a production
p': X' = X1' X2' ... Xn!
in R" where X' = (X,Q) and for 1<j<n Xj' = (Xj,Qj) if Xj € Vn and
otherwise Xj' = Xj.
Z": (Z,Q) where Q@ is the only graph in SYM(Z).

Let Gu' be the CFG constructed by reducing G" (for a method see e.g.
CARUT721). The AG G' is constructed in a way very similarly to that in the
construction for theorem 4, the only difference being that Gu' is the un-

derlying grammar.

PROOF : The homomorphism h is as in the proof for theorem 4. The proof for
that theorem can easily be extended to the traditional case and thereby we
have that L'(G',® < L"(68) and h(T'(G',8)) < T'(G, M.

Assume now that w € L'(G,8) but that w is not in L'(G',®. Let t be a
derivation tree for w according to Gu. If D(t) does not contain a cycle
then there will be productions in G' such that w € L'(G',®. If D(t) con—
tains a cycle then w is not in L'(G,8) and L'(G',8) either. It is easy to
see that h(T'(G',8)) = T'(G,8).,

11/
EXAMPLE 7:

Consider the AG in example 2 of chapter 2. We have
SYM(Z): Qt: [J

SYM(X): @2: CICJE]
Ny

SYMCY): @3: [1C]

The productions p2, p4, and p6 give rise to circular dependency graphs
(i.e. D(P)EQT Q2 ... GnI graphs) and the CFG G" of the construction will

contain the following productions:

pl': (Z,01) =AM A
p3': (X,02) = A2
pS': (Y,Q3) = A

Thus the resulting AG G' has the single production:
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plt: <(Z,Q1) M> ::= A <A ta>
177

Theorem 6 shows that in the traditional approach it is not a restric-
tion only to consider well-defined AGs because any language and any trans-
lation that can be specified by an AG can be specified by a well-defined AG
over the same semantic domain.

Obvijously any translation that can be specified by an AG 1in the
traditional approach can be specified by an AG in the translational ap-
proach (by an appropriate choice of the semantic domain). The reason why
theorem 6 does not hold in the translational approach is intuitively that
there may be attributes in a semantic tree whose values do not influence

the meaning.

When using the translational approach there may be attributes in the

semantic tree whose values never will influence the meaning of a string.

DEFINITION 7:

Let G be an AG. An attribute b of a symbol X 1is called wuseless if
there does not exist a derivation tree t € DOM(Z) such that b-~>*¢c in D(t)
for some ¢ € S(Z).

17/

I now give an algorithm which detect the useless attributes for each

symbol 1in the AG. For each symbol X and each SYM-graph @ and CON-graph Q'

for X we determine a set Ni(X,Q,Q') of attributes which not are useless.

ALGORITHM 1:
Input: an AG G = (V, B, R, Z)
Output: A set U(X) of useless attributes for each X € V

Method:
1. NOCZ,Q,Q') = S(Z) for @ € SYM(Z) and Q' € CON(Z)
NO(X,@,Q") = @ otherwise
let 1 =0

2. Let NGIHDI(X,Q,Q%) = Nj(X,Q,Q%) for all X, @ € SYM(X) and @' € CON(X).
FOR each production p: X :1:= X1 X2 ... Xn and FOR each symbol Xk on
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the right hand side of p DO

For each choice of graphs Q@' € CON(X), Q@ € SYM(X), Qj € SYM(Xj)
for 1<j<n, and @k' € CON(Xk) such that:

i) @& is derived from the graph
D(p)EGT Q@2 ... Qnd

ii) Qk' dis derived from the graph
Q'ED(p)ERTY Q2" ... Qn"Id
where @j" = @j for j # k and Qk" is the graph with no arcs

Let @" = D(p)EQT1 G2 ... @ni and

NCi+1) (Xk,Qk,Qk') = {c € A(Xk)] there is a b € Ni(X,Q,Q") such that
c=>*b in Q">
U NG (Xk,Qk,Qk™)

3. If there exist an X € V, & € SYM(X), and @' € CON(X) such that
NCi+1) (X,8,Q%) # Ni(X,Q,Q") then let i := i +1 and go to step 2.
4o Let UCX) = ACXD) - {a] a € Ni(X,Q,Q') for some Q@ € SYM(X)
and some Q' € CON(X)}
and stop.
117
Clearly the algorithm will stop since we have a fixed number of at-

tributes in each of the sets A(X) and a fixed number of graphs in each of
the sets SYM(X) and CON(X).

EXAMPLE 8:
Consider the AG from example 1. Let
ACZ) {aX
ACX) = {a, b, ¢, d¥
ACY) {a, bl

il

Then we have these non-empty sets from the algorithm:

ND(Z,81,81") = {a} N2(Z,81,81") = {a}
N2(X,02,82") = {a, c}
N1¢Z,Q1,81") = {a} N2(X,82,83") = {a, c, d}
N1(X,02,83") = {a, c, d} N2(X,03,82') = {c2
NT(X,Q3,83") = {c} N2(X,Q3,03") = {c}
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NTCY,Q4,04") = {b} N2CY,Q4,04") = {b}

The N3-sets are equal to the N2-sets.
That is we have U(Z) =@, UX) = {b}, and UCY) = {al.

117
LEMMA 1:

An attribute b is in UX) if and only if it is useless.

PROOF : Assume that b € U(Xk) but that b is not useless, that is there
exists a derijvation tree t € DOM(Z) and an attribute ¢ € S(Z) such that
b->*c is in D(t).

Let p: X 1:= X1 X2 ..o Xn be the production introducing Xk din t.
Determine the graphs Q@ € SYM(X), Qj € SYM(Xj), Q' € CON(X) and @j' €
CONCXj) for 1<j<n from t. Let

Q" = D(P)ERT Q2 ... Gnd

Let b = b0~->b1=>...->bm = ¢ be the path in D(t). One of these at~
tributes br is in A(X). br can be chosen such that b0->*br is a path in Q"
(follows from theorem 1). r will be the minimal value h such that bh is in
ACX). We have br € U(X) since the opposite implies that b is not in U(X).
On the other hand br is not useless (br->*c in D(t)) and induction in the
length of the path gives that ¢ € U(Z), a contradiction. We have thereby

shown that if b is in U(X) then b is useless.

In order to show the rest of the theorem we use induction in 'i'. The
induction hypothesis will be:
If b € NCi+1)(Xk,Qk,Qk') then there will be a tree t € DOM(Z) with a
subtree t' with root Xk and such that
1) con(t?) = Qk!
2) sym(t?) Qk
3) there 1is a path b=>*c in D(t) where ¢ € S(Z).

i

i=0: Let b € N1(Xk,Qk,Qk'). Then Xk is a symbol on the right hand side of
a production p: Z ::= X1 X2 ... Xn, and there are graphs Q' € CON(Z), Q €
SYM(X) and @j € SYM(X]j) for 1<j<n such that i) and ii) are satisfied.

Choose trees tj € DOM(Xj) such that sym(tj) = @j for 1<j<n (it is pos-
sible according to theorem 1) and let t = ZLt1 t2 ... tnd. The tree t
satisfies the requirements 1) = 3) above:

1) con(tk) = @k' follows from condition i)
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2) sym(tk) = Qk follows from the construction of t
3) as b € N(Xk,Qk,ak') there will be an attribute ¢ € NO(CZ,Q,Q') (€
S(Z)) such that b=>*c 1is in D(P)EQT Q2 ... @nI and thereby in D(t).

The induction step: Let b € NCGi+1)(Xk,Qk,Qk"') and assume that b is not 1in
Ni(Xk,ak,Qk"). Then there is a production p: X ::= X1 X2 ... Xn such that
for some d € Ni(X,Q,Q"') b->*d is in D(p)EA1 @2 ... And where Qj € SYM(X])
for 1<j<n, Qk' € CON(Xk), @ € SYM(X), and Q' € CON(X) satisfy i) and ii).

The induction hypothesis gives that there exists a tree t with a sub-

tree t' such that
1) con(t") = Q!
2) sym(t') = Q
3) there is a path d->*c in D(t) where ¢ € S(Z).

We can choose trees tj € DOM(Xj) such that sym(tj) = Q@j for 1<j<n.
Condition i) and i1) ensure that con(tk) = Qk'. Since b=>*d is 1in D(p)EQ1
Q2 ... QnT it will also be in D(t") where t' = XL[t1 t2 ... tnd and thereby
b->%c will be a path in D(t).

117

A consequence of this lLemma is

THEOREM 7:
For any AG G = (V, B, R, Z) over a semantic domain ® there exists an
A6 G* = (V', B, R', Z) over the same semantic domain without useless at-—
tributes such that G and G' have the same underlying grammar and such that
T(G,9) = 1(6', 0.

PROOF: Determine the useless attributes by algorithm 1. Let A(X®) = A(X) -
U(X) for each symbol X' in V' = V and let R' consist of the productions
from R without semantic rules for the useless attributes. If attribute
variables for useless attributes are used in semantic rules for not useless
attributes then these attribute variables are replaced by arbitrary values
from the appropriate domains. It is easy to show that the two AGs specify
the same translation. The theorem then follows from the lemma.
117

EXAMPLE 9:

The AG from example 1 1is transformed into the AG with the following

productions:
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pl': <Z $b> ::= B <X Va 1b ta>
p2': <Z tb> :1:= C <Y 4b>
p3': <Y 4b> 1:= <X Y1 1b P>
ph': <X vya ta M> z:= A
p5': <X va 10 17> ::= A2
11/
The construction in theorem 7 only removes those attributes which
never will influence the value of the attributes of the root of a
derivation tree. But there may still be attributes associated with a
derivation tree whose values do not influence the meaning. An example of
this is e.g. the production p5' of the AG in example 10. The third at=-
tribute of X is assigned an arbitrary value (7) exactly as the contruction
allows. But if X is expanded with this production in a derivation tree then
the value of the third attribute of X will never influence the meaning. On
the other hand we cannot remove the attribute because 1if production p&' is
used to expand X then the value of the attribute may influence the meaning.
This indicates that it is more complicated to remove attributes such
that the value of any attribute for any symbol in any derivation tree in-
fluences the meaning. In fact we has to change the underlying grammar of

the AG. This leads to the introduction of the concept of a reduced AG.

DEFINITION 8:

Let 6 = (V, B, R, Z) be an AG over a semantic domain 8 . Then G is
reduced if and only if for every symbol X and every tree t € DOM(Z) where X
occur we have:

b € A(X) <=> there is a ¢ € S(Z) such that b->%c in D(t)

/117

In the following we will see how a well-defined AG can be transformed
into a reduced AG. For simplicity we will give the construction for the
partly uniform AGs. By application of the construction in theorem 5 the

result can easily be extended to well-defined AGs.

THEOREM 8:

Let 6 = (V, B, R, Z) be a partly uniform and well-defined AG over a
semantic domain ¥ containing the ijdentity function for each lattice. Then
there exists a reduced AG G' = (V', B', R', Z") over the same semantic

domain 8 such that
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7(G,8) = T(G',8)
CONSTRUCTION: First we construct a CFG G" = (vn", vt'", R", Z'") where

Vn'": {OGAY] X €V and A ¢ A(X) satisfies (%)}
ANIX) ={b € I(X)] there is a ¢ € A N S(X) such that (%)
b->c¢ is in @ where SYM(X) = {Q}}
Vt'": Vt
R"z If p: X ::= X1 X2 ... Xn is in R then we have a production
pt: (X, A) :1:= (X1,A1) (X2,A2) ... (Xn,An)
in R" if the following requirements are satisfied:
i) (X,A) and (Xj,Aj) for 1<j<n are in Vn"
i1) for 1<k<n
Ak N SCXk) = {c € S(Xk)| there is a b € S(X) N A such that
¢c=>*b is in D(pP)E@T Q@2 ... @nd
where SYM(Xj) = {@jX for 1<j<n}
If (X,A) € Vn" and X € Vt then (X,A) ::= X is a production in
R".
2" (Z,S8(7)).

Let Gu' = (¥n', Vt', Ru', Z') be the reduced CFG constructed from G".
Gu' will be the underlying grammar of G'. To (X,A) in Vn' we associate the
set of attributes A separated into the two sets A N S(X) and A N I(X) of
synthesized resp. inherited attributes.

If p': A = (X1,A1) (X2,A2) ... (Xn,An) is a production in Ru‘
then the attributes in AN S(X) and Aj N I(Xj) for 1<j<n are defined by
semantic rules equal to those of the production p in R. The conditions (%),
i) and 149) ensure that this is possible.

If p':s (X,A) ::= X 1dis 1in Ru' then the semantic rules for the at-
tributes in S(X,A) is given as the identity function applied to the at-
tributes of X.

PROOF: We show three things:

1. SYM(X,A) = Q@' where Q' is the subgraph of @ which only dnvolves at-
tributes from A, SYM(X) = {Q}.

2. if (X,A) is a node in t then for any b € A there is a ¢ € S(Z) such
that b=>%¢ is in D(L)
3. 7(G6,8 = T(6' )
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T« SYM(X,A) = {@'F. We will show that if t € DOM(X,A), (X,A) € Vn', then
sym(t) = Q' where Q' is the subgraph of @ only involving attributes from A
and where SYM(X) = {Q}. We use induction 1in the height of t.

If the height is one then the production applied at (X,A) is p': (X,A)
::= X and the assertion clearly holds.

For the dnduction step Let the production applied at (X,A) be p':
(X,A) z:= (X1,A1) (X2,A2) ... (Xn,An). Then D(p') is a subgraph of D(p).
The dnduction hypothesis gives that Qj' 1is a subgraph of @j, where SYM(Xj)
= {@j}. Therefore we have that Q' = D(p"ERT"' @2' ... @n'I is a subgraph of
the graph Q@ = D(p)I@T1 @2 ... QnI. From that it follows that SYM(X,A) = {Q'}
where Q' is the subgraph of & formed by removing nodes not in A and the in-

volved arcs.

2. for any b € A there is a ¢ € S(Z) such that b=>%c is in D(t). To show
this part of the theorem we use induction in the length of the path from
the root (Z,5(Z)) of a derjvation tree t and to a node (X,A) in t. Let m be
the length.

m = 1: The production used to expand (Z,S(Z)) 1is p': (Z,S(Z)) ::= (X1,A1)
(X2,A2) wer (Xn,An). If b € Ak N I(Xk) then condition (%) gives that there
is a ¢ € Ak 1 S(Xk) such that b->c is in @k where SYM(Xk) = {Qk}. From part
1 of the proof it follows that b->c is 1in Qk'.

Thus in order to show that there is a d € S(Z) such that b->*d in D(t)
it is sufficient to show that c->*d is in D(t).

Therefore Let ¢ € Ak N S(Xk). Condition ii) gives that there is a d €
S(Z) such that c¢c=>*d is in D(p)EQT @2 ... QnI. If the length of the path
c=->%d 1is equal to 1 then clearly ¢->d is 1in D(P)ERT' Q2" ... @n'd. If the
length of the path is 2%h+1 (finite since G is well-defined) then we assume
that the path is c=>e=>f=>%d where e € AJ N I(Xj), f € Aj N S(Xj), and e->f
is in Qj. Since f € Aj and the path f=>*d has length 2%¥h-1 this path will
also be 1in D(p")EGTY @2' ... Qn'I. Furthermére e->f is in @j'. Since ¢ €
Ak, e € Aj and c->e 1is in D(p) we have c->e in D(p'). The conclusion is
that c¢=>*d is in D(p")EQT' @2' ... Qn'{.

The induction step: Let p': (X,A) ::= (X1,A1) (X2,A2) ... (Xn,An) be the
production introducing the node (Xk,Ak) in t. As above we can show that if
b € Ak then there is a ¢ € A such that b-=>*c is in D(p")EQ1' Q2" ... Gn'l
and thereby in D(t). The induction hypothesis gives that there exists a d €
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S(Z) such that c=>*d is a path in D(t) and thereby that b->*d is a path in
D(t).

3. 7(G, 0 = T(G',0) We construct a homomorphism h by

- h(X,A) = X for all X € Vn', and

- h(X) = X for X € Vt!
We then have that if w € L(G',® then w € L(G,8) and the meaning of w is
the same for the two AGs.

If w € L(G,® and we have a derijvation tree t then we can decorate the
nodes in t with subsets of attributes for the respective nodes. We define a
mapping h':

h'(XCE1 t2 owa tnl, A = (X, A)Ch'C(t1,A1) h'(t2,A2) ... h'(tn,An)]
where A and Aj for 1<j<n satisfy condition (%), i), and ii).
h'(X,A) = (X,A)IX] if X € Vt
We start by Lletting g(t) = h'(t,S(Z)) where t € DOM(Z). Then we have w €
L(G',®» and w has the same meaning in the two AGs.
/111
EXAMPLE 10:

Let wus apply the construction in the AG 1in example 6. Let A(Z) = {al},

ACX) = {a, b, ¢, d¥ and ACY) = {a, b}. The underlying grammar Gu' will have

the productions

p1': (2,81 ,{a}) ::= (B,0) (X,&2,{a,c,d})
pl': (Z,01,€{a}) ::= (B,0) (X,83,{cH
p2': (2,81,{aXx) ::= (C,0) (Y,Q4,{b})
p3': (Y,Q4,{b}) ::= (X,q2,{a,cH)

p3': (Y,Q4,{b}) ::= (X,Q3,{c}H

oh': (X,02,{a,c,d}) ::= (M,0)

ph': (X,82,{a,c}) ::= (A1,D)

p5': (X,Q3,{c}) ::= (A2,D)

p6': (B,0) ::=B

of': (C,0) ::= ¢

p8': (A1,
p9': (A2,0)

A
A2

The reduced AG can easily be constructed now.
i
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Combination of the theorems 5 and 8 shows that any translation

specified by a well-defined AG can be specified by a reduced AG.
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In chapter 2 and 3 we have briefly concerned how to construct an
evaluated semantic tree for a string. We will in this chapter define a
device called an evaluator which performs this construction when applied to
a derivation tree for the string. We only consider well-defined AGs al-
though some of the constructions also may be applied to nomwell-defined
AGs.

An evaluator may be considered as consisting of two parts called resp.
a traverser and an interpreter.

The traverser specifies how to traverse a derivation tree in order to
evaluate attributes associated with the nodes of the tree and thereby to
construct an evaluated semantic tree. The traverser will only care about
the dependencies between the attributes. When an attribute can be
evaluated the traverser will call the dinterpreter. The interpreter will
then evaluate the attribute and store its value 1in the semantic tree.

The action of the traverser may be dynamically influenced by the
values computed by the interpreter. We will however let the traverser be

quite independent of the interpreter.

Because of the close correspondance between the semantic rules and the
interpreter the main problem when constructing an evaluator will be to con-
struct the traverser. This is the reason why we in the following almost
ignore the interpreter. 1In section 4.1 I dintroduce more formally the con-
cept of an evaluator.

As a natural extension of the one-visit AGs defined by L[EnF791 I in-
troduce 1in section 4.2 the k-visit AGs. An evaluator for a k-visit AG may
have the property that when applied to a derivation tree of the grammar
each node of the tree will be visited at most k times. It turns out that
the k-visit AGs perform a proper hierarchy also with respect to trans-—
Llations when some conditions are satisfied.

In section 4.3 I give algorithms to construct an evaluator for an ar-

bitrary well-defined AG. It is shown that any well-defined AG is k-visit
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for some k. Furthermore we consider methods that may be used to determine

bounds within which the minimal k for which an AG is k=visit can be found.

As mentioned above the main task for the evaluator is to traverse a
derivation tree and evaluate attributes associated with the nodes. It turns
out that different strategies for traversing a tree may give rise to dif-

ferent subclasses of AGs. We define (rather informally):

DEFINITION 1:

Let t € DOM(Z) be a derivation tree for a string w. An evaluation
strategy for t is a way of traversing the nodes of t and evaluating at-
tributes associated with the nodes.

/117

The rest of this section is divided into two parts. First the concept
of an evaluator is introduced. At last I give an overview of how an

evaluator may be constructed for an AG.

We will regard that of traversing the nodes of t as a recursive
routine taking a nocde as parameter — we say that the node 1is visited. At
each visit to a node X we may first call the interpreter to evaluate some
of the inherited attributes of X, after that we may visit some of the sons
by recursive calls of the routine, and at last we may call the interpreter
in order to evaluate some of the synthesized attributes of X. (We might
have other dinterpretations of a visit.) A so-called plan will tell what to
be done at the visit.

For each symbol X we may have a set of plans. At each visit to a node
labelled X we have to choose one of these plans. This choice 1is based on
two types of informations:

- a subset of the dinherited attributes of X that can be or already are
evaluated at the start of the visit. This set is called an input set and
it will be a parameter to the recursive visit routine. The parameter
summarizes the activity that has taken place since the last visit to the
node.

- a state for the node. The state 1is used to remember information between
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the visits to the node. The state may contain information such as which
production 1is applied at the node and/or which attributes have been
evaluated at previous visits. For each node there is an initial state.
Initially all the nodes of the derivation tree are in their inijtial
state. The recursive routine is called with the root of the tree and the
empty input set as parameters (the start symbol has no inherited at-
tributes). When returning from that call the attributes of the +tree have

been evaluated.

We are now ready to state more precisely what kind of information that
will be available in a plan for a node lLabelled X. Let us assume that the
plan is chosen on the basis of an input set I and some state s.

1) The plan will contain a subset I' of I of those attributes of X that
have not been evaluated before. Since all attributes of I can be or
already are evaluated it will be possible to evaluate the attributes
in I'.

i1)  The plan will contain a specification of an order in which the sons
of the node have to be visited. Each son may be visited zero, one or
more times in any order. For each visit to a son is specified an in=-
put set. The input set will contain those inherited attributes of
the son which now either are or can be evaluated. A sequence of
pairs of sons and input sets will be called a visiting sequence.

i11) The plan will contain a subset S' of the synthesized attributes of
X« S' will contain those attributes which not already have been
evaluated but which can be evaluated when the attributes in I are
known.

More formally we define

DEFINITION 2:
Let X €V be a symbol in the AG G and let p: X :1:= X1 X2 ... Xn be a

production. A plan for X and p is a triple (I',vs,S') where

i) I' ¢ I(X

ii) vs is a visiting sequence for p:

vs = (Xj1,I1)(Xj2,12) cua(Xjm,Im)
where Ih < I(Xjh) for 1<jh<n and 1<h<m
iii) S' € S(X)
17/
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As mentioned above a plan is chosen on the basis of an input set and a
state. We will use a table called PLAN to contain this information. A visit
to a node may change some of the information stored in the state of the
node and then we want to update the state. A table called GOTO will be
used to hold information about how the state of the node may change.

The PLAN and the GOTO tables will be parts of an evaluator. The
evaltuator will also contain information about how the initial states as-

sociated with a derivation tree are determined.

DEFINITION 3:

An evaluator E(G) for an AG G = (V, B, R, Z) over a semantic domain 8
is a 5-tuple:

E(G) = (S, 80, I, PLAN, GOTO)

where
S: a finite set of (evaluation) states
s0: a function assigning an initial state to each node in any
derivation tree for Gu
I: a set of input sets

PLAN: S X I -> {plans}, a function determining a plan for a given state
and dinput set
GOTO: § X I -> 8, a function determining a new state on the basis of a
given state and input set
11/
EXAMPLE 1:

Consider an AG G over a semantic domain & = (P, F). D contains a flat
lattice constructed by extension of the set {A,B,C}* and F contains four
operations: concatenation with A, B and C (denoted by A™x, B"x and resp.
C”"x where x 1is the parameter), and the identity operation.

Let I(X) = {a,b}, S(X) = {c,d} and S(Z) = {e,f¥. In G we have the

following productions:

pl: <Z 483 s> 1:= <X ¥sT ¥ A 1s2 453> <X ¥s2 VA tst Ps4>
p2: <X ¥s1 ¥s2 PATs3 4s4> 1:= A <X VA"sT Vs2 153 4fsé4>

p3: <X V¥s1 ¥s2 B7s3 454> ::= B <X yB"s1 V¥s2 4s3 1s4>

phs <X ¥s1 V¥s2 C7s2 #C7s1> 1:= C

G specifies the translation
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T(G,® = {(wlCw2C,(Cw2'wl1C,Cwl"w2C)) |
wl,w2 € {A,B}+ and wj' is wj reversed for j=1,2%

An evaluator for G is E(G) = (§,50,I,PLAN,GOTO) where
S = {sj| 0%j<11}
s0: if the production used at the node is pj then the state is sj for
1<j<4. If the node is a leaf then the state is sO
I = {a,b},{b},0>
The PLAN and GOTO tables are (Xj refers to the j'th son of Z for j=1,2):

SXI PLAN GOTO
s1,0 @, (X2,{b>) X1 ,{a,bP (X2,{a,b}), {e, 2 s5
s2 ,{b%} {b}, (X,{b>} LcX sé
s3,{b} {b}, X, {b}) {cX s7
s&,{b} {b3}, »n , {c> s8
s2,€a,b> {a,b}, (X,{a,b}), {c,d} s9
s3,{a,b> {a,b}, (X,{a,b¥), {c,d> s10
s4,{a,b> {a,b},» , {c,d¥ s11
s6,{a,by {a}, (X,{a,b}), {d} s9
s7,{a,b} {al}, (X,{a,b}), {d¥ s10
s8,{a,bY {alX,n , {d> s11

/117
The evaluator is used to find the meaning of a string w with

derivation tree t in the following manner:

ALGORITHM 1:
Input: an evaluator E(G) = (§,80,1,PLAN,GOTO) for an AG G,
a string w with a derivation tree t in Gu.

Qutput: a semantic tree t" for w.
Method:

1. Llet each node 1in t be in its initial state determined by s0 and let t!

be the initial semantic tree for w determined from t
2. perform the procedure VISIT(Z,0)

3. Llet t" be the resulting semantic tree.

PROCEDURE VISIT(X,I)

/* X €V is a node in t, I < I(X) is an input set */
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1. let s be the state of the node X
2. let PLANCs,I) = (I', vs, S') where vs = (Xj1,I1)(Xj2,I2) caa(Xjm,Im)
3. call the idnterpreter to evaluate the attributes in If;
FOR h =1 TO m DO VISIT(Xjh,Ih);
call the interpreter to evaluate the attributes in S';
4. Llet GOTO(s,I) be the new state of the node X.
1177/
Let us informally describe what happens when the procedure calls the
interpreter to evaluate the attributes in a set A:
- for each attribute b € A the actual semantic rule is used to compute
the value of the attribute
- if the actual node X has a corresponding label <X,(v1,v2,eu.,vr)> in
the semantic tree then this label 1is changed to <X,(ul,u2,.«.,ur)>
where uj = vj if the attribute is not in A, otherwise uj is the com=

puted value of the attribute, 1<j<r.

To each derivation tree we can associate a sequence of attributes of
the nodes specifying the order in which the attributes are evaluated. An
attribute b precedes an attribute ¢ in this sequence if b s evaluated
before ¢ by the algorithm above. We define a computation sequence for t as
a sequence of sets of attributes where the attributes in each set can be
evaluated in parallel. These sets are determined by the various plans of

the evaluator.

DEFINITION 4:

Let t be a derivation tree with states from $ associated with the
nodes. A computation sequence for a visit "VISIT(X,ID' to a node X 1n
state s is

cs(X,I,s) = I' cs(Xj1,11,s1) cs(Xj2,12,s2) ... cs(Xjm,Im,sm) S
where PLAN(s,I) = (I', wvs, S%), vs=(Xj1,I11)(Xj2,I2)...(Xjm,Im) and the
state of Xjh is sh for 1<jh<n and 1<h<m.

The computation sequence for t is ¢s(Z,0,s0) where sO is the finitial
state of the root of t; all the nodes of t are in their initial states.

11/
EXAMPLE 2:
Consider the string ACBAC and 1its derivation tree t according to the

AG of example 1. The dependency network for t is
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A X2 CICILIC] B x(4) CICICIC]
]
¢ A x¢(5) CICILICT

¢

The computation sequence for t is
{b33{bsI{b53{c53{chI{c33{al b1 3{a2,b23{c2,d23{c1,d1 I{a33{asI{a5}
{d53{d&3H{d33{e, >
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When making an evaluator for an AG we have to consider the following
problems:
1. What kind of information shall we store in the states of §
2. Given a state s and an input set I how can we determine PLAN(Cs,I) and
GOTO(s,I)

3. How can we determine a complete set of PLAN and GOTO entries.

Different choices of information to be stored in the states may lead
to different subclasses of AGs.

When determining the PLAN and GOTO entries for the state s and the in-
put set I we have the problem of finding a strategy for constructing a
visiting sequence. Some methods will be discussed in this and the next
chapter. Also here different choices may result in different subclasses of
AGs.

The third problem, how to make a complete set of PLAN and GOTQ en-
tries, can be solved in at least two ways. One possibility is to take all
combinations of a state and an input set and make a PLAN and & GOTO entry
for each of them. But this may lead to many entries that never will be
used. Another possibility is to simulate all events that can occur and only

make those entries that may be used. We will choose that approach.
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We start by constructing a PLAN and GOTO table entry for the dinitial
visit to the root of a derivation tree. By inspection of the plans made so
far one can determine what PLAN and GOTO table entries that are required.
If they not already are present they must be added. This process is
repeated until no new PLAN and GOTO entries can be found.

Consider a visiting sequence vs of a plan. For each pair (X,I) in vs
we will call the procedure VISIT. If the node X is in the state s then the
visit will cause Llookups PLAN(s,I) and GOTO(s,I). Thus if we know which
states a node may be in we can easily find the PLAN and GOTO table entries
that are required.

The state that a node is in at any point of time is the state it was
Left in by the previous visit or it is its initial state. In order to
determine the state we must be able to determine which visits there have
been to the node until now. That is we have to consider all the previous
plans that have been 'executed' at the node. To keep track of that we in-

troduce the concept of a history graph (inspired by [KeW761):

DEFINITION 5:

A history graph 1is a directed graph whose nodes are Llabelled with
states and whose arcs are labelled with pairs of input sets and visiting
seguences.

/11

A path through the history graph represents a sequence of events which

could take place at a node during the evaluation. Let us consider an arc in

the history graph:

(I,vs)
[ e [ ]

s s!

If a node in a derivation tree is in state s and we visit the node with an
input set I then the sons of the node will be visited in a sequence
described by vs and the node will be left in the state s'. Thus we will
have GO0TO(s,I) = s' and PLAN(s,I) = (I',vs,S") for some sets I' and S'.

EXAMPLE 3:
The history graph for the PLAN and GOTQO tables in example 1 is:
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The history graph is useful because it becomes easy to see 1in which
order the sons are visited even across the boundaries of the single plans.
There may be several arcs ending at a node 1in the history graph and
several arcs beginning at the node. If we take a path leading to a specific
node in the history graph we can concatenate the visiting sequences Label~
Ling the arcs. On the basis of this composite Qisiting sequence it becomes
possible to determine the states in which the sons may be when making a
visit to their father. How it more precisely can be done depends on how the
evaluation strategy is.

Initially the history graph will contain a node for each initial
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state. During the construction of the PLAN and GOTO table entries it will

be extended.

DEFINITION 6:
An initial history graph is a history graph with one node for each
initial state and no arcs.
/111

In this section I introduce the concept of a k-visit AG. We consider
both the translational and the traditional approach. We can note that the
results in this section rely very much on the concept of a visit introduced

in the previous section (j.e. algorithm 1). We define:

DEFINITION 7:
A k-visit evaluation strategy for a tree t is an evaluation strategy
for t where each node is visited at most k times.
117
DEFINITION 8:
An AG is a (translational) k-visit AG if for each tree t € DOM(Z)
there exists a k-visit evaluation strategy which computes meaning(w,t)

where t 1s a derivation tree for w.

An AG is a traditional k-visit AG if for each tree t € DOM(Z) there
exists a k-visit evaluation strategy which computes meaning'(w,t) where t
is a derivation tree for wu.

111/

The AG in example 1 is a 2-visit AG. It 1is easy to see that it also is

traditional 2-visit.

Clearly a k=visit AG will also be a (k+1)-visit AG. I will now give
an example of a translation specified by a k-visit AG which cannot be
specified by any (k=1)-visit AG over the same semantic domain and with the
same underlying grammar.

Let us first specify the underlying grammar Gu = (Vn,Vt,Ru,Z) of the
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AG:
Vn
Vt

Ru:

We will

= {X, 7>

= {A}
L =X
X t:= AX
X 1:= A

define the translation

TAUCK) = €Cuw,w*®)| w € {AT+}

This translation can be specified by a k-visit AG Gk over a semantic
domain & = (D,F) and with the underlying grammar Gu. D will contain
flat Llattice STRINGS constructed as an extension of the set {AX+.

single

In F we

concatenates a string with the symbol A (dencted A™x where x 1is the

have two functions, the identity function and the function

parameter) .
Let Gk = (V, B, R, Z) be defined by

A dependency network for the derijvation tree for the string AAA with k

=2 is:

vn = {X, 1%

vt = {A}

ICX) = {x1, x2, wuu, xkIF SCX) = {yl, ¥2, «.., yk2
I(z)y =@ S(z2) = {13

IA) =0 S(A) =0

where for 1<j<k xj, yj, z1: STRINGS.
for 1<j<k sj, sj': STRINGS
pl: <Z 4sk> ::=

<X YA Y(ATST) Y(A™s2) wana YCATS(k-1)) s 4s2 ... fPsk>
p2: <X ¥s1 ¥s2 ... ¥sk PCA"ST'Y PCAS2Y) ... PC(A"SKT)> ::=

A <X y(A"sT) Y(A"s2) ... Y(A"sk) fs1' $s2' ... fsk'>
p3: <X ¥s1 ¥s2 ... ¥sk PCA"ST) P(ATS2) ua P(ATSKI> 2:= A

...57_.



™

un

Y

PR P N1
I
L
i
L
i
[
(=
[

.
Y

=
>
—
[}
[
[}
al‘"l 9
3.
—
[}

™
L
1
L
=1
| -
1
=

Tomm X e

To see that Gk is a k-visit AG we construct an evaluator
E(Gk) = (5,80,1I,PLAN,GOTO)

where

S = {s1,s2,s3,s4> U {sij| i=2 or i=3 and 1<j<k}

s0: if the production applied at a node is pj then the initial state
of the node is sj, 1<j<3.

I = {Ij] 0<j<kY where Ij = {x1,x2,...,%xj} for >0 and I0 = 0@

s X I PLAN GOTO
(s1,I0) @ , (X,I1)(X,I12)...(X,Ik), {2123 sh
(s2,11) {x1}, (X, 113, {y1> s21
(s21,12) {x2}, (X,12), {y2% 822
(s2(k=1) ,Ik) {xk}, (X, Ik}, {yk> s2k
(s3,11) 1,0, 1} 831
(s31,12) {x2X,% , {y22 $32
(s3Ck=1),Ik) {xkF,n , {yk> s3k

The translation TAU(k) cannot be specified by a (k-1)-visit AG over
the same semantic domain and with the same underlying grammar. To show
that we assume the contrary. Let Gk' be a (k-1)-visit AG over the semantic
domain ® and with underlying grammar Gu and assume that Gk' specifies the
transtation TAUCK). Without Loss of generallity we can assume that there

are no useless attributes in Gk' (according to theorem 8 in chapter 3).
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Consider a string A® with n>k+C where C is the maximal Llength of a
constant value occurring in the semantic rules of Gk'. Let t be the
derivation tree of A'. Let the computation sequence for t be A1 A2 ... Anm.
Since Gk' has no useless attributes Aj will be a subset of the attributes
in ACX) for 1<j<m and Am = S(Z) (there are no visits to the Lleaves of t
since inherited attributes of terminal symbols always will be useless). An
attribute in a set Aj can only depend on an attribute in Ai where i<j. Thus
the length of a string which is the value of an attribute in Aj can at most
be j+C, and thereby the Llength of the translation (the value of an at-
tribute in Am) can be at most m+C.

Since Gk' is a (k=1)-visit AG we have at most k=1 visits to each node
in t. Each visit may result in 2 sets of attributes in the computation se-
guence. There are n+l interior nodes in t which each is visited at most k-1
times (the Lleaves of t will not be visited at all). Thus the computation
sequence will contain at most 2%(k=1)*(n+1) sets. But the length of the
translation of A" is 2*k*n and since 2%k*n > 2%(k=1)*(n+1)+C we have a con-
tradiction: Gk' cannot specify the translation TAUCk). This shows the

theorem:

THEOREM 1:

There exists a semantic domain § such that translations specified by
k-visit AGs over that domain with the same underlying grammar define a
proper hierarchy.

1177

It may be shoun that the theorem also holds in the traditional ap-

proacha

In this section we will give algorithms that construct an evaluator
E(G) for a well-defined AG G. We will assume that I(X) =0 if X € Vt that
is there will never be a visit to a leaf in a derivation tree. As  men-
tioned 1in section 4.1 we will consider three 'problems':
1. choice of evaluation states
2. making an entry in the PLAN and GOTO tables

3. construction of the evaluator

_59—




1. Choice of evaluation states

At a visit to a node X in a derivation tree we choose a plan on the
basis of an input set I and the state s of the node. That is we determine:
i) which attributes of I(X) can be evaluated
i1)  in which order shall we visit the sons and with which input sets

i11) which attributes of S(X) can be evaluated

We will Llet the state contain information about
- the production p: X ::= X1 X2 ... Xn applied at the node
~ the SYM-graphs for the nodes X, X1, X2, «..,Xn
- the set A of attributes of the symbols in p which are known
Let us see that this information is enough for construction of a plan.
If we have the input set I and the set A of known attributes then the
attributes of i) will be I -~ (A N I(X)).
Since we know the dependencies between the attributes of the node X it
is also possible to determine which synthesized attributes of X that can be
evaluated when the inherited attributes of I are known. If @ is a dependen-

cy graph for X then we define:
YIELD-s(X,Q,1I) = {b € S(X)| if c=>b is in Q then ¢ € I}

The attributes in i41) will be YIELD-s(X,Q,I) - (AN S(X)). In order to
have that we must require that all the attributes in the subtree with root
X which depend on attributes in I are evaluated. This will be ensured in
the construction of the visiting sequence.

We will require that when we visit a son Xj of X then some of the at-
tributes of Xj which not already are evaluated will be evaluated. Since we
in  the state have information about which attributes of symbols in p that
have been evaluated we can determine which attributes of a son Xj that can

be evaluated:
YIELD=i(Xj,D(p),A) = {b € I(Xj)| if c=>b is in D(p) then ¢ € A}

The attributes of Ij = YIELD-1i(Xj,D(p),A) may be the input set to a wvisit
to Xj.

After the visit to Xj we may know some synthesized attributes of Xj
which may be used when visiting the other sons of X. We can use the depen-—

dency graph Qj of Xj to determine the synthesized attributes of Xj known
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after the visit to Xj. It will be the attributes in YIELD-s(Xj,Qj,Ij).

Formal ly we define

DEFINITION 9:

An evaluation state is a pair (p+,B8) where p: X :1:= X1 X2 .uv Xn, pt+ =
(p,9,01,82,...,8n) where Q@ € SYM(X) can be derived from D(p) and @1, @2,
«ea, Qn where @] € SYM(Xj) for 1<j<n. A is a subset of the attributes for
the symbols in p.

117
DEFINITION 10:

An initial state is an evaluation state (p+,A) where p: X ::= X1 X2
cen XN, A= S(Xi1) U S(Xi2) U .a. U S(Xim) and

X131 1<ij<n, 1<j<m> = {Xh]| Xh € Vt and 1<h<nZ

/117

It is easy to construct an algorithm which when applied to a

derivation tree associates an initial state to each node (the mapping sym

of theorem 1 1in chapter 3 may be used).

DEFINITION 11:
A final state is an evaluation state (pt+,A) where p: X 1:= X1 X2 ...
Xn and A = A(X1) U ACX2) U «.n U AXn).
11/
EXAMPLE 4:

For the AG in example 1 we have

Sym(zy: @1: [1L] SYM(X): Q2: EEE:§5£9_

The states in the evaluator in example 1 are (the terminal symbols are 1ig-

nored; indices refer to the positions of the symbols in a production):

Initial states
s1 = ((p1,01,02,02),8) s2
s3 = ((p3,82,02),0) st

((p2,62,Q2) ,0)
((pk,Qa2) ,0)

Final states

s5 = ((p1,01,82,82),A(X1) U A(X2) U A(Z))
s9 = ((p2,Q2,02),AX0) U ACXT))
s10= ((p3,02,02) ,ACX0) U ACXT))

s11= ((p4,a2),ACX))
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Other states

s6 = ((p2,02,02) ,{b0,c0,b1,c1})
s? = ((p3,82,Q2) ,{b0,c0,b1,c13)
s8 = ((p4,82) ,{b,chH

/117

2. Making an entry in the PLAN and GOTO tables.

Above we have already dintuitively seen how to construct a plan.

Without further comment I present the algorithm:

ALGORITHM 2:

Input: a state s = (p+,A) where p: X 2:= X1 X2 «aa Xn,
pt = (p,Q,01,082,...,8n), and a set I ¢ I(X)

Qutput: PLAN(s,I) and GOTO(s,I)

Method:
1« Ap := AU I;
I' =1 - (AN IWX;
Vs 1= )\
2. REPEAT

a: FOR j =1 TO n DO Ij := YIELD-i(Xj,D(p),Ap)
b: choose Xj such that
YIELD-s(Xj,Qj,Ij) = (Ap M S(Xj)) #@ or Ij - (ApN I(Xj)) # 0;

vs (Xj,Ij);
Ap U Ij U YIELD-s(Xj,Qj,Ij);

UNTIL no choice 1is possible in step 2b
3. S' 1= YIELD-s(X,Q,I) - (A N S(X));

PLAN(s, ID (1*, vs, S');

GOTO(s, I (p+, (Ap U §%));

C: VS :
Ap :

11/
The algorithm will stop since there are only a finite number of at-
tributes for the symbols in p and since each visit to a son of X fncreases
the set Ap.
We can furthermore note that the algorithm is nondeterministic in step
2b. Different choices will Llead to different evaluators (with different

properties).
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It turns out that it is convenient to introduce a special property of

the states, completeness:

DEFINITION 12:

A state (p+,A) of a node X is made complete by a set Igc I(X) if

A=4b € A(p)| if c=>*b is in D(P)EQT Q2 ... @nd and ¢ € I(X) then c € I}
where p: X 2:= X1 X2 sew Xn, pt = (p,8,01,02,...,8n), Q@ € SYM(X), Q] €
SYM(X3) for 1<j<n and A(p) = ACXD U AXT) U ACX2) U ... U ACXN).
11/

LEMMA 1:

Consider a derivation tree t and a node X in t. Let s = (p+,A) be the
state of X and perform the call VISIT(X,I). Let GOTO(s,I) = s' be construc-
ted by algorithm 2. If s is an initial state or is made complete by a set

I'" < I then s' is made complete by I.

PROOF: Let
A" = {b € A(p)| if c—>*b is 1in D(P)EQT1 Q2 ... @ni and
¢ € I(X) then c € I
Let s' = (p+,A"). We will show that A' = A",
We use induction in the height of the subtree t' of t with root X.
Let the height of the subtree be one. Then PLAN(s,I) = (I',},S') where
S' = YIELD-s(X,Q,I) (by application of algorithm 2). We have A" = I'|J S'
U A. Furthermore we have
A" = {b € A(p)] if c=>b is 1in D(p) then c € I}
S(X1) U S(X2)U  wuww U S(Xn) U T U YIELD-s(X,Q,ID
= A?f
For the induction step let t' = X[t1 t2 ... tnl where p: X z:= X1 X2
- Xn s the production applied at the root of t'. Let PLAN(s,I) =
(1',vs,S') where vs = (Xi1,I1)(X12,12) 4us (Xim,Im).
Let Apj be the set of attributes of symbols of p that are known after
the call '"WISIT(Xij,Ij)' for 0<j<m. We have (from algorithm 2) that
ApO = AU I
Apj = Ap(i=-1) U Ij U YIELD-s(Xij,sym(tij),Iji)
Since Ij = YIELD-i(Xij,D(p),Ap(j-1)) for j>1 we have (by application

of the induction hypothesis for the trees tij) that Apj < A" for 0<j<m. And
thereby easily that A' ¢ A".

In order to show the opposite inclusion let b € A". We will show that
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b € A'.

Let d = b0->b1->b2->...->bh = b be the Longest path in the graph
DCpI)Esym(t1) sym(t2) ... sym{(tn)¥ ending at b. By induction in L we will
show that bl € A'.

If =0 then the claim holds (if b0 € I it 1is obvious, otherwise it
follows from the dinduction hypothesis) since it is an attribute of a sub~
tree of t'.

For the induction .step Llet bl € A'. If bl € I(X]) for some j then
b(l+1) € YIELD-s(Xj,sym(tj),Ij*') for some set Ij' <« I(Xj) containing all
attributes d such that d->b(l+1). Then YIELD-s(Xj,sym(tj),Ij") = (AN
S(Xj)) # 0 and we will have a visit to Xj which evaluates b(l+1) (the 1in-
duction hypothesis) and b(L+1) € A'.

If bl € S(Xj) and b(L+1) € I(Xk) then b(L+1) € YIELD-i(Xk,D(p),B) for
some set B of attributes that includes all attributes d such that d=>b(L+1)
is in D(p) and we will have a visit to Xk where b(L+1) ds evaluated C(and
b(L+1) € AY).

If bl € S(Xj) and b(L+1) € S(X) (i.e. L = h=1) then it is easy to see
that b(Ll+1) € A'.

/177

3. Construction of the evaluator

As mentioned 1in section 4.1 we will construct a history graph in order
to simulate all possible events. We have to consider:
= how can we determine the state of a son of a node
- how do we keep track of the pairs (s,I) for which we not already have
made a PLAN and a GOTO table entry.

Let us discuss how to determine the state in which a son X of a node
can be. If we know the fixed part of the state for the son (i.e. the
pt~part) and the input set I then we can determine the state of the node X
as s = (p+,A) where I makes s complete (according to Lemma 1).

For each composite visiting sequence for a node (see section 4.1) we
can determine the input set for the lLast visit to the son if any. On the
basis of the state for the father we can determine a part of a state (the
SYM-graph for the left hand side of a production) for the son. The set of
pairs (s,I) for which a PLAN and GOTO table entry is required by a specific
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visiting sequence can be determined by the following algorithm.

ALGORITHM 3:
Input: A (finite) history graph H, a visiting sequence vs for
PLAN(s,I) where s is the label of a node in H
Qutput: REQUIRED: a queue of pairs (s',I') for which a PLAN
and a GOTO table entry is required by vs
Method:
1. Let REQUIRED be empty;
let s = (p+,A) and p: X 1:= X1 X2 ... Xn;
let vs = (Xi1,I1)(Xi2,12)...(Xim,Im);
FOR each path in H beginning at an initial state and ending at s
DO construct the composite visiting sequence cvs for the path;
FOR j :=1 TO m DO perform step 2;
2. Let Y = Xij and let Q@ be the SYM-graph for Xij determined from p+;
a: IF j>1 THEN append (Xi(j=1),1(j-1)) to cvs;
b: determine the pair (Y,I') in cvs such that
- cvs = ¢cvs' (Y,I') cvs"
- for all (Y',I'") din cvs' we have Y' # Y;
IF (Y,I') does not exist THEN go to step 2d;
¢: FOR each g+ where q: Y ;:= Y1 Y2 «au Yh,
g+ = (q,0,01,82,...,8h) and where
Q may be derived from D(g)EQT @2 ... @hI and
al € sYM(YL) for 1<t<h
DO let s" = (g+,A") be the state made complete by I'
and append (s",Ij) to REQUIRED;
stop performance of step 2;
d: FOR each g+ where g: Y ::= Y1 Y2 ... Yh,
gt = (q,Q,01,82,...,8h) and where
Q@ may be derived from D(g)EQT1 Q2 ... QhI and
al € SYMC(YL) for 1<Ll<h
DO append ((g+,A'),Ij) to REQUIRED
where (g+,A'") is an initial state
3. Stop
177
The algorithm will stop since the history graph is a directed acyclic

graph and since the number of productions and SYM-graphs are finite.
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In order to keep track of the pairs (s,I) for which we have to con-
struct PLAN and GOTOQO table entries we introduce a queue called REMEMBER.
Initially REMEMBER will consist of the pairs (s,0) where s is a possible
initial state for the root of a derivation tree. A pair is removed from the
queue when it 1is possible to make a PLAN and a GOTO table entry for it.
Whenever a visiting sequence is made, the possible states for the sons are
found and pairs (s,I) are added to REMEMBER. When REMEMBER is empty we have
a complete set of PLAN and GOTO table entries.

ALGORITHM 4:
Input: An AG G = (V,B,R,Z)
Output: An evaluator E(G) for G
Method:
1. Let H be the initial history graph;
let REMEMBER consist of the pairs (s,B) where
s = (p+,A), p has left hand side Z and s is an initial state;
2. IF REMEMBER 1is not empty
THEN Llet (s,I) be the front element of REMEMBER
and remove (s,I) from REMEMBER
ELSE go to step 4
5. IF a PLAN and GOTO table entry for (s,I) not already
have been constructed
THEN
a: apply algorithm 2 to (s,I) to yield
PLAN(Cs,I) = (I',vs,S8") and GOTO(s,I) = s';
b: apply algorithm 3 to H and vs to construct the queue
REQUIRED and append REMEMBER to REQUIRED;
c: add a node labelled s' to H if it is not present
and add an arc s->s' labelled with (I,vs);
L. go to step 2;
5. Llet S consist of the states constructed above, and
let I consist of the input sets constructed above.
Then E(G) = (§,s0,I,PLAN,GOTO)
177
The algorithm will stop since there are a finite number of possible

states and input sets. The following lemmas will be used to show that any
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well-defined AG 1is k-visit for some k.

LEMMA 2:
If in algorithm 4 (s,I) is in REMEMBER at some time during the perfor-
mance then PLAN(s,I) and GOTO(s,I) are constructed.

PROOF: The lLemma follows easily from algorithm 4.
11/
LEMMA 3:
If algorithm 4 calls algorithm 2 to make PLAN and GOTO table entries
for (s,1) then there will be a node 1in the history graph labelled with s.

PROOF: Assume . that there is no node labelled s in the history graph when
algorithm 2 is applied to (s,I). If s is an 1initial state we obviously have
a contradiction. Therefore Llet s be made complete by a set I' (lemma 1).
The pair (X,I') will be in a visiting sequence and GOTO(s',I') = s (for
some state s') has been determined because REMEMBER is a gqueue. But then s!
will not be in the history graph. Since all states originate 1in dnitial
states we have a contradiction.
117

LEMMA 4:

Let G be an AG and let E(G) be an evaluator constructed by algorithm
4. Let t € DOM(Z) and apply E(G) to t. If there is a call VISIT(X,I) to a
node X in t in the state s then at some time during the performance of al-
gorithm 4 (s,I) 1is 1in REMEMBER.

PROOF: We prove the lemma by induction in the length of a path from the
root of t to the node X.

If the length is zero then we have a call VISIT(Z,®) and s 1is an
initial state. Obviously (s,0) is in REMEMBER at the start.

For the induction step assume that the father of X is Y and that a
call VISIT(Y,I") implies the call VISIT(X,I) where X is in the state s. Let
the state of Y before the call be s'. The induction hypothesis gives that
(s',I') s in REMEMBER at some point of time. From lemma 2 it follows that
PLAN(s',I'") and GOTO(s',I') are constructed. Since the visit to Y implies
the wvisit to X we have that the visiting sequence of PLAN(s',I') contains
the pair (X,D).

From Lemma 3 it follows that there is a node in the history graph
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labelled s'. If the node X is in state s and s is made complete by J then
it is easy to show that (X,J) will be in the composite visiting sequence of
algorithm 3 and that (s,I) will be in REQUIRED. If s is an dnitial state
then it is easy to show that there will not be any pairs (X,I") in the com-
posite visiting sequence.
11/

LEMMA 5:

Let G be an AG and let E(G) be the evaluator constructed by algorithm
4. If E(G) is applied to a tree t € DOM(Z) and there is a call VISIT(X,I)
to a node X in t in & state s then there exist entries GOTO(s,I) and
PLANCs,I) in E(G).

PROOF: In order to show the lLemma we have to consider two points:

- if there dis a call VISIT(X,I) to a node X in t and X is in the state s
then at some time during the performance of algorithm 4 (s,I) s in
REMEMBER

- if (s,I) is in REMEMBER at some time during the performance of algorithm
4 then PLAN(s,I) and GOTO0(s,I) are constructed.

The first part follows from lemma 4 and the second part from Lemma 2.
117
LEMMA 6:

Let G be an AG and let E(G) be the evaluator constructed by algorithm
4o Apply E(G) to a tree t € DOM(Z). Let a node X in t initially be 4in the
state sO and let a sequence of visits change the state to s1, s2, ..., and
sk. Then there are nodes sj for 0<j<k in the final history graph of al-
gorithm 4 and there are arcs sj -> s(j+1) for 0<j<k-1.

PROOF: If the state of a node is changed from sj to s(j+1) by a call
VISIT(X,I> then GOTO0(sj,I) = s(j+1). From lemma 3 it is follows that there
will be an arc sj => s(j+1) 1in the history graph.

117/
THEOREM 2:

Let G be a well-defined AG and let E(G) be an evaluator for G con-
structed by algorithm 4. Then E(G) will specify a k-visit evaluation
strategy when applied to a tree t € DOM(Z) for some fixed k independent of
te

PROOF: Let t € DOM(Z). In order to show that E(G) specifies a k-visit
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evaluation strategy when applied to t we have to show:

- if there 1is a call VISIT(X,I) to a node X in t and X is in the state s
then there exist entries PLAN(s,I) and GOTO0(s,I)

- each node is visited at most k times.

The first part follows directly from lemma 5. Let k be the maximal
Length of a path 1in the history graph constructed by algorithm 4. Each
visit to a node will change its state and from lemma 6 it follows that a
state can at most be changed k times. Thus the evaluator will specify a
k-visit evaluation strategy.

111
THEOREM 3:

Every well-defined AG G is k-visit for some k.

PROOF ¢ Let E(G) be the evaluator for G constructed by algorithm 4. Apply
E(G) to a tree t € DOM(Z). In order for G to be k-visit we have to show:

- E(G) specifies a k-visit evaluation stategy for t

- the synthesized attributes of the root of t are evaluated.

The first part follows from theorem 2. There will be a call VISIT(Z,®)
to the root of t and this visit will Leave the root of t in a state made
complete by @ (follows from Lemma 1) and thereby all the attributes of Z
have been evaluated. And the second part of the proof is completed.

/117
THEOREM 4:

Every well-defined AG G s traditional k-visit for some k.

PROOF (outline): Let G be a well-defined AG. G is augmented in that every
nonterminal symbol dis supplied with an extra synthesized attribute. This
attribute will be a dummy attribute in the sense that it will never be com-
puted when applying the evaluator to a derivation tree. It is only used
during the construction of the evaluator in order to enforce that all the
attributes 1in every derivation tree 1is evaluated.

The dummy attributes are used in the following way. If p: X ::= X1 X2
..« Xn is a production then the dummy attribute of X will depend on all the
attributes in I(X), S(X1), S(X2), ..., and S(Xn) including the dummy at=-
tribute of Xj for 1<j<n.

If G' is the AG constructed from G in this way then it may be shown

that G' will be translational k-visit 1if and only if 6 is traditional

_69_



k-visit. Thereby theorem 3 easily gives the theorem.
117

As we have seen algorithm 4 determines (indirectly) a k such that an
AG G is k=visit. Furthermore different choices in the nondeterministic step
in algorithm 2 may result in different k's. The nondeterminism can be used
to give the resulting evalutor special properties. One can use the freedom
to force the left-most son with evaluable attributes to be visited each
time. Another possibility is to force the sons to be visited in order from
Left to right.

Still another possibility will be to use the freedom to make k
minimal. It is possible nondeterministically to find the minimal k such
that an AG s k-visit. I have not been able to find a deterministic al-
gorithm doing that. In the rest of this section we will consider some sim-
ple methods that may be used to find an upper and a lLower bound between
which the minimal k will be.

An upper bound for k will be the maximal number of attributes for any
symbol in G. The reason for this is that we only makes a visit to a son
when some new attributes can be evaluated (see algorithm 2). However it is

easy to change the algorithm such that the maximal number of synthesized
attributes for any symbol of G becomes an upper bound (we then only visit a

son when some new synthesized attributes can be evaluated).

It is also possible to determine a lLower bound for the k. We then use
the SYM- and CON-graphs for the symbols. Let Q' € SYM(X) and Q" € CON(X)
for a symbol X of G. Consider a tree t with a node X with @' and Q" as
resp. the corresponding SYM- and CON=-graphs. At the first visit to X we can
at most evaluate the attributes in the set I1(X,Q) U S$1(X,Q) where @ = Q'LJ
Q" and

I1(X,8) = {b € I(X)| there are no arcs in @ ending at b}

S1(X,Q) = {b € S(X)| if ¢c=>b is in @ then ¢ € I1(X,Q)}
After the m'th visit to the node X (m>1) we will at most have evaluated the
attributes in Im(X,Q) U Sm(X,Q) where

Im(X,@) = {b € I(X)] if c=>b is in @ then ¢ € S(m=1)(X,Q)}

Sm(X,Q) = {b € S(X)| if ¢=>b is in Q@ then ¢ € Im(X,Q)}

The minimal number of visits to the node X which is required in order
to evaluate all the attributes of X is therefore the Lleast m such that

Im(X,Q) U Sm(X,Q) = A(X). This value can be determined from the graph Q.
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Let L be the length of the longest path in @ (L is finite since G s
assumed to be well-defined). The minimal value m can be determined by the
following formulas:

- if L =0 then m =1

=~ if the longest path begins at an inherited attribute then
m=LDIV 2+ L MOD 2

- 1if the longest path begins at a synthesized attribute then
m = (L+1) DIV 2 + (L+1) MOD 2.

For all symbols X and all graphs @ = Q'L Q" where Q' € SYM(X) and Q"
€ CONCX) we can determine the minimal number of visits required in order to
evaluated all the attributes of X. The maximal of these numbers will be
the minimal value for k for which the AG may be k-visit.

The following example shows that there are AGs which are k-visit but

where k cannot be equal to the lower bound determined above.

EXAMPLE 5:
Let G be the AG 1in example 1. We have these CON-graphs:

CON(Z) : 13 CON(X) : C1C3CLaca

The Lower bound for which G is k-visit is 1 whereas the upper bound is
2. Inspection of the graph D(p1)EQ QI where @ € SYM(X) shows that 6 is

2-visit but not 1-visit:

Z [IC]

-""\4., /ﬁj‘“‘g‘trm‘? N
X{1) []Elg] 1 X2 ]Elg][]
\J oA

In order for G to be 1-visit we shall evaluate all the attributes of
X(1) at the first visit and all the attributes of X(2) at the first visit.
It is easy to see that this is not possible.

/17

The evaluator constructed in this section is an extension of the one
in [KeW76]. 1In that paper there are put some restrictions on the dependen-
cies that are allowed between the attributes. These restrictions imply that
the states of an evaluator can be chosen simpler than here: a state is a
pair (p,A) where p is a production and A is a subset of the attributes of
the symbols in the production p.

In [Kas78] another subclass of AGs are considered. Here the states can
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be further simplified: a state has the form (p,m) where p is a production
and m dis an integer denoting the number of visits that has been performed
at the node. The restrictions on the AGs ensure that it 1is possible to
determine the set of known attributes (i.e. A) on the basis of p and m.
Also the input sets of the evaluator can be simplified: an integer tells
the number of the visit that now will be performed.

The evaluator constructed in this section has some resemblance with
that of LCoH79] although a slightly different interpretation of a visit 1is

used 1in that paper.
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In the previous chapter we extended the one-visit property defined by
LEnF791. A subclass of the one-visit AGs 1is the L-attribute grammars
defined by [Boc76l. An AG 1in this class can be characterized by that all
the attributes of any derivation tree can be evaluated by one left-to-right
depth-first pass over the tree. In this chapter we will extend this sub-
class 1in & way similarly to that of the one-visit AGs in chapter 4 and
thereby we will define a class of AGs called the k Left-to~right pass AGs.

In [Boc7r6l a class of AGs called multipass AGs are introduced. An AG
in this class has the property that the attributes associated with a
derivation tree <can be evaluated during a fixed number (for the AG) of
Left-to-right depth-first passes over the tree. But the algorithm checking
the multipass property rejects some very simple grammars which really have
the multipass property. It is required that all nodes in a tree with the
same Label are treated in the same way i.e. corresponding attributes are
evaluated 1in the same pass. Consider for dnstance the AG with the fol-

lowing productions (from LALb791):

pl: <Z %a> ::= <X ¥b %a> <X ¥1 1b>
p2: <X Va %a> := A

ALL the attributes of the only derivation tree for this grammar can be
evaluated by two left-to-right passes over the tree. But the AG is rejec-

ted by the algorithm given by [Boc7r61l.

In section 5.1 I introduce the concept of a k left-to-right pass AG.
It is shown that there are translations that can be defined by one-visit
AGs but which cannot be specified by a k Left-to-right pass AG for any k
when some conditions are satisfied.

In section 5.2 is given an algorithm that for any AG and any k tests
whether the AG has the k Left=to-right pass property.

In section 5.3 I give algorithms that may be used to construct an
evaluator for an AG which evaluates the attributes of a derivation tree by

k left-tco-right passes over the tree if the AG is k left-to-right pass.
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5.1 THE K

LEFT-TO-RIGHT PASS PROPERTY
We give definitions similarly to those of section 4.2:

DEFINITION 1:
An evaluation strategy for a tree t is called k left-to-right pass if
t is traversed k times in a left-to-right depth-first order.
171
DEFINITION 2:
An AG G is (translational) k left-to-right pass (k-LR-pass) if for any
derivation tree t € DOM(Z) for a string w there exists a k Left-to~right

pass evaluation strategy computing meaning(w,t).

An AG G is traditional k left-to-right pass (traditional k-LR-pass) if
for any derivation tree t € DOM(Z) for a string w there exists a k left-to-
right pass evaluation strategy computing meaning'(w,t).

/117

Clearly a k-LR-pass AG will also have the (k+1)=-LR-pass property. Fur-
thermore there are translations that can be specified by k-LR-pass AGs over
a semantic domain & but which cannot be specified by (k-1)-LR-pass AGs over
the same domain and with the same underlying grammar. An example is the
translation TAU(k) defined in section 4.2.

Clearly a k-LR-pass AG will also have the k-visit property. The op-
posite is not the case. In fact there dis a translatijon specified by a
1-visit AG G over a semantic domain 8 which cannot be specified by a

k-LR-pass AG over the same domain and with the same underlying grammar.

Consider the semantic domain® (D,E). D contains the flat Llattice
constructed from the set {A,C}*. In F we have the identity function and the
functions making string concatenation with A and C (denoted by resp. x"A
and x"C where x is the parameter).

Consider this AG G over the semantic domain® with the productions:

pl: <Z 4s> 1:= <X ¢ Ps>

p2: <X ¥s1 4s2> ::= <X ¥s3 4s2> <Y ys1 4s3>
p3: <X ysT $s2> 1:= <Y {§s1 4s2>

ph: <Y ¥s1 $s2> :1:= A <Y ys1™A 4s2>

pS: <Y ¥s1 Ps17C> ::= C
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We have
76,8 = {(w,w") | w = wliCw2Ca..CWwnC, W' = wnNCW(n=1)C..aCwlC
and wj € {AY* for 1<j<n}

It is easy to see that G is well-defined. We can use the analysis at
the end of section 4.3 to deduce that G is 1-visit since each symbol of G
has at most one synthesized attribute. In order to give an fintuitive
feeling about how the flow of attribute values are we may consider the

dependency network for the derivation tree for the string ACAACAAAC:

z [i
X [IC3
MR
T Sy
et (o
""" - .. ™ z ¢
X Ef[lj Y L T ALY 030
¥ £33 ALY EF[] Ay 003
A Y L3g A VLG A Y QL
c c c

We will show that the translation T(G,8) cannot be specified by any
k-LR-pass AG with the same underlying grammar and over the semantic domain
8.

Assume the contrary. Let Gk be a k-LR-pass AG with the underlying
grammar Gu. Gk is over the semantic domain ® and T(G,8) = T(Gk,®.

Consider the string w = wiCw2C...CwnC where n>k and the length of wnC
is greater than the longest constant value appearing in the semantic rules
of Gk. Let t be the derivation tree of w. In t we can find subtrees tj €
DOMCY) such that the yield of tj is wjC for 1<j<n. Furthermore w 1is chosen
such that there are infinitely many trees tj' € DOM(Y) with the property
the sym(tj') = sym(tj) for 1<j<n. (This is possible since there is a
finite number of graphs in SYM(Y)).

We can find attributes b1, b2, ..., and bn of nodes in t such that

_75..



i) bn=>%b(n-1)->%...=>%b1=->*c, ¢ € S(Z), is a path in D(%)

1) the value of bj is wnCw(n=1)C...CwjC for 1<j<n

i11) if d->bj dis in D(t) then the value of d is different from the value
of bj for 1<j<n

We will show:

In order to evaluate bj when b(j+1) has been evaluated we have to

visit some nodes in tj.

Let b(j+1) be evaluated in some pass and assume that bj is evaluated
in the same pass.

Let us first consider the case where all the nodes of tj have been
visited in the pass before b(j+1) and thereby bj are evaluated. We will now
change the subtree tj of t to a tree tj' € DOMCY) with the property that
sym(tj) = sym(tj') but where tj and tj' have different yields. Let t' be
the new derivation tree and let its yield be w'. There will be attributes
ci at the nodes of t' satisfying:

i) en=>*c(n=1)=>%,..->*c1=>%c, ¢ € S(Z), is a path in D(t")

i) the value of c¢i is wnCw(n-1)C...CwiC for j<i<n

i11) if d->ci is in D(t') then the value of d is different from that of ci
for j<isn

Thus the wvalue of c¢i is equal to that of bj for j<i<n. But the value
of ¢j will be equal to that of bj since no nodes in tj (or tj') are visited
when constructing cj from c(j+1) and we get the wrong output for w'.

The case where none of the nodes of tj have been visited in the pass
before b(j+1) and bj are evaluated can be handled in a almost similar man-
ner. The subtree tj 1is changed and it is shown that the output will not be
changed.

The conclusion is that in order to evaluate bj from b(j+1) we have to
visit the nodes in tj. Since bn cannot be evaluated before the first pass
at least n passes over t is required 1in order to determine the translation
of the string w. But k<n and we have a contradiction: Gk cannot specify the

same translation as G. This shows the theorem:

THEOREM 1:
There exists a translation specified by a 1-visit AG over a semantic

domain 8 which cannot be specified by any k-LR-pass AG over the same seman-—
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tic domain and with the same underlying grammar.
11/

A similar result can be obtained for the traditional approach.

2-g IESTING THE K LEFT-TO-RIGHT PASS PROPERTY

Let G be a well-defined AG. For a given k will G be (traditional)

k-=LR-pass? This question will be answered in the rest of this section.

Consider a tree t € DOM(X) and let sym(t) = Q. The graph Q tells how
the attributes of the root of t depend on each other in t, but the graph
does not tell how many left-to-right passes over t there will be necessary
in order to evaluate some specific synthesized attribute when some 4in-
herited attributes are known. This is however the kind of information that
are required when we want to test whether the AG is (traditional) k=LR-pass
for some k.

One may choose to associate weights with the arcs of the SYM-graphs.
This will be done in a way that gives the weighted graphs some desirable
properties. If b->c is an arc +in the graph Q@ above and if the arc has as-
sociated e.g. the weight three then at least three left-to-right passes
over the tree will be required in order to evaluate the attribute ¢ when b
becomes known. More than three passes may be necessary if ¢ depends on
other attributes than b in Q.

DEFINITION 3:

Let G be an AG. A weighted SYM-graph for a symbol X of G s a graph @Q
€ SYM(X) with non-negative weights associated with the arcs.

/11

There may be synthesized attributes of the root of the tree that do
not depend on any attribute 1in Q. They cause a Little problem since they
may be evaluated after any number of passes. In order to keep track of
these attributes we extend the AG. To each nonterminal symbol is associated
an extra (dummy) inherited attribute and all synthesized attributes of the
symbol will depend on this attribute. This is ensured in this way:

If p: X s:= X1 X2 ... Xn is a production in G then all inherited at-
tributes of Xj C(including the dummy inherited attribute of Xj if Xj € Vn)

will depend on the dummy inherited attribute of X for 1<j<n. Furthermore
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any synthesized attribute of X will depend on the dummy inherited attribute
of X.
We will in the rest of this chapter assume that the AGs are extended

in this way.

Let Qj' be a weighted graph corresponding to the SYM=-graph Qj of Xj
for 1<j<n. Let us see how to construct a weighted graph Q' corresponding to
the SYM-graph @ of X where Q is derived from the graph D(p)EQ1 Q2 ... Qni.

The arc b->c is in @ if there is a path b->*¢ in D(p)EQT1 Q2 ... AQni.
Let b = b0=->b1=>b2=->...->bm = ¢ (m>0).

Consider an arc b(i=1)->bi in one of the graphs Qj where 1<j<n. If the
weight of this arc in Qj' is vi then we must make a pass over the tree at
least vi times in order to evaluate bi when b(i=1) becomes known.

If b(i=-2) is an attribute of Xh and h<j then b(i-1) and b{(i-2) can be
evaluated in the same pass and thus the number of extra passes required in
order to evaluate bi will be at least vi-1.

On the other hand if b(i-2) is an attribute of Xh for h>j then we can-
not evaluate b(i-2) and b(i-1) at the same pass and thus at Least vi extra
passes are reqguired in order to evaluate bi.

Let us define some weights ui for the arcs b(i-1)->bi in the path:

- if i =1 then ui =1

= if i = m then uj =0

= if b(i-1) € I(Xj) and bi € S(Xj) then ui = vi-1

= if bCi=1) € S(Xj), bi € I(Xh) and j<h then ui
= if b(i-1) € S(Xj), bi € I(Xh) and j>h then ui

Thus the cost of going from right to Left along an arc in D(p) is one

1l
o

corresponding to that an extra pass is required. Going from lLeft to right
along an arc in D(p) is free since this can be done in the same pass. If vi
passes is required in order to evaluate bi from b(i-1) then ui is the num—
ber of passes required more than the one that currently is performed.

The total number of passes required 1in order to evaluate the at-
tributes bi for 0<i<m fis ;§21 ui.

If m=1, i.e. b=>c is in D(p), then the weight of the path is one.

Thus the weight of the arc b->c 1in @ will be the maximal of the
weights for the paths b->*c in D(p)EQ1 @2 ... @nI. We say that Q' is

derived from the graph D(p)EQA1' @2' ... an'd.
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EXAMPLE 1:

Consider the AG of example 1 in chapter 4. We have

1

And thereby we have a composite graph for pl with (among others) this path;

the labels are the ui-weights defined above:

Z [JLJ0]
1

v /1 N\
X CJCICICACI X [][5?3[3[]
o =

And we get this graph with weights for Z:

Z [%%][]
/177

As we associate SYM-graphs with the nodes of a derivation tree we will
associate weighted SYM-graphs with the nodes. Let Lr-sym(t) denote the
weighted SYM-graph associated with the root of the tree t. The prefix 'Lr!
refers to that the weights are computed for Left—to—right passes over the
tree.

We define for t € DOM(X):

- if X € Vt then Llr=sym(t) = sym(t)

- let X € Vn and let p: X ::= X1 X2 ... Xn (n>0) be the production ap~
plied at the root of t, i.e. t = X[t1 t2 ... tnl for trees tj € DOM(Xj)
for 1<j<n. Then Lr-sym(t) is the weighted graph derived from the graph

D(p)Elr-sym(t1) Llr=sym(t2) ... lr-sym(tn)I
as described above

- if X € Vn and p: X ::= ) 1is the production applied at the root of t
then lr=sym(t) 1is the graph sym(t) with the weight one associated with

each arc.

LEMMA 1:

Let t € DOM(X) and let @ = lr-sym(t). If d is the dummy inherited at-
tribute of X then the weight of the arc d->b in @ will be greater than or
equal to the weight of any arc c¢c->b 1in Q.

PROOF: The Llemma will be shown by induction in the height of the tree t.
If the height is one obviously the lemma hold.
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For the dnduction step assume that the weight of ¢=>b is greater than
the weight of d=>b in Q. The weight of c¢~>b will be derived from a path ¢ =
cO0=->c1=>.n=2cm = b in D(P)EQT @2 ... QAnd where p: X 1:= X1 X2 «ua Xn is
the production applied at the root of t, t = X[t1 t2 ... tnl and Lr=sym(tj)
= Qj for 1<j<n. This path has the same weight as the arc ¢->b in Q. Since
¢l 1is an inherited attribute of a symbol Xj (if m>1) then d=>c¢1 will be 1in
D{(p) and the path d=>c1=>c2=>...->cm will have the same weight as the path
c=>c1->c2=>...=>cm  (the dnduction hypothesis) and we have a contradiction.
If m =1 the Lemma obviously hold.

/117
LEMMA 2:

Let t € DOM(X) and let Q = Llr-sym(t). Let c¢->b have the weight v in Q.

If k passes are used to evaluate the attribute b then the value of ¢ need

not be evaluated before the (k-v+1)'th pass over t.

PROOF: We use induction in the height of t.

If the height is one the lemma cbviously holds since any arc in @ will
have the weight one.

For the induction step let t = X[t1 t2 ... tnl and let p: X ::= X1 X2
«xe Xn be the production applied at the root of t, i.e. tj € DOM(Xj) for
1<j<n.  Let Lr-sym(tj) = Qj for 1<j<n.

Let the weight of the arc c¢~>b in @ be equal to the weight associated
with the path ¢ = b0=->b1=>...=>bm = b in D(P)EQT 62 ... Qni.

Let the weights ui of the arcs b(i-1)->bi be determined as before:

- if i =1 then ui =1

= if 1 =m then ui =0

- if b(i-1) € I(X]) and bi € S{(Xj) then ui = vi-1

= if b(i-1) € S(Xj), bi € I(Xh) and j<h then ui =0
- if b(i-1) € S(Xj), bi € I(Xh) and j>h then ui =1

By induction in 'i' (i>0) we will show:
If b is evaluated in the k'th pass then bi must be evaluated in
the (k - %' ul) 'th pass over t.
If 1 = m then ;BJ}OUSLY the claim holds.
Assume that the claim holds for i+1. We will show that it also holds
for i.
Let first the arc bi=>b(i+1) be 1in Qj for some j and assume that

b(i+1) are evaluated in the r'th pass over the tree tj. The dinduction
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hypothesis (the Lemma) gives that bi need not be evaluated before the (r -

v(i+l) + 1)'th pass over tj. From the claim it follows that r =

m
k - b;ﬁ; ul and thus that bi need not be evaluated before the
(k = ™ ubL'th pass. And the claim holds for 1.

i:i +

Lot now bi->b(i+1) be an arc in D(p) and let bi € S(Xj) and b(i+1) ¢
I(Xh) for some j and h.

If j<h then bi need not be evaluated in a pass before b(i4+1) and since
u(i+1) = 0 we see that the claim holds for 1.

On the other hand if j>h then bi has to be evaluated in a pass over tj
before the one in which b(i+1) are evaluated. Obviously the claim also hold
here since u(i+1) = 1.

If b(i+1) = b then it is easy to see that the claim holds.

This proves the claim. It is now easy to see that the wvalue of bO
needs not be used before the (k = [g; ul) *th pass. But Lg; ul = v=1 and
we have shown the lLemma.

117
LEMMA 3:

Let t € DOM(X) and lLet @ = Lr-sym(t). If the maximal weight of an arc

is k then exactly k passes over are required in order to evaluate the at-

tributes in S(X) (all the attributes in I(X) are known in the first pass).

PROOF : Assume that the attributes of S(X) are evaluated at the m'th pass
over t. Let c¢->b be 1in Q@ and have weight v. From Lemma 2 we have that b
has to be known in the (m—v+1)'th pass over t. Let for fixed c:

rc = min {(m~v+1)| ¢c=>b is an arc in @ and has weight v}
Thus in order to evaluate all attributes of X that depend on the attribute
¢ we have to know ¢ in the rc'th pass.

Let r = min ALrc|] ¢ € I(X)}. In order to evaluate the attributes in
S(X) we need in fact only m-r+1 passes over the tree.

From the definition of r it follows that there is an arc b-=>c in Q
with the weight m—r+1 and that this will be the maximal weight of an arc in
@. This completes the proof.

11/
THEOREM 2:

Let G be an AG augmented with dummy inherited attributes. Let t €

DOM(Z). If k is the maximal weight of an arc in lr-sym(t) then there is a k

left-to-right pass evaluation strategy computing the synthesized attributes
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at the root.

PROOF: The theorem follows directly from Lemma 3.
/117
The following algorithm may be used to test whether an AG is k-LR=pass
for some fixed k. The weighted SYM~graphs called LR-SYM(X) for X € V are

constructed for each symbol X if the AG is accepted.

ALGORITHM 1:
Input: an AG G = (V,B,R,Z) and an 1integer k
Qutput: the sets LR-SYM(X) for X € V if G is k-LR-pass
Method:
1. LR=SYMO(X)
LR=-SYMO(X)

@ for X € Vn;
{QY for X € Vt where Q 1is the graph with no arcs;

let 1 =0
2. let LR-SYM(i+1) (X) = LR-SYMi(X) for all X € V;
FOR each production p: X z:= X1 X2 ... Xn DO

FOR each choice of graphs @1, @2, ..., Qn where
Qj € LR-SYM(Xj) for 1<j<n
DO let Q@ € LR-SYM(i+1)(X) where Q is derived from the
graph D(p)EQT Q2 ... G@ni
3. IF there is a graph @ € LR-SYM(i+1)(Z) with a weight greater than k
THEN stop, G is not k—-LR-pass
4. IF there is an X € V such that LR-SYMi(X) # LR-SYM(i+1)(X)
THEN let i := i+l and go to step 2;
5. G is k-LR-pass;
let LR=SYM(X) = LR=SYMi(X) for all X € V and stop.
117
EXAMPLE 2:

For the AG in example 1 of chapter 4 we have for k = 2:

LR=SYM(Z): Q1: Z E%%i;g
LR=SYM(X): @2: X E%E]E]?g%]

For the AG considered in section 5.1 we have these LR-SYMi graphs for
k =2:

i=1: Y [IL3CD
L
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i=2: v [IOIC) X CICIC
DA
i=3: Y I[IDCD X COQI0) X CICIC) z [3C

N N> ENZ

™
()

i = 4 Yy CICICT X E%F][] X CJLIC X E%E][] z [JL0] z [IC]
N f\::jﬁ 2 3\;:j7 St a7

and the algorithm will stop, the AG is not 2-LR-pass.
117

LEMMA 4:
Apply algorithm 1 to an AG G and an integer k. If @ € LR-SYMi(X) for

some i and some X then there is a tree t € DOM(X) where lr-sym(t) = Q.

PROOF: The Lemma can easily be shown by induction in 'i'. We will omit the
proof.
/1117
THEOREM 3:
Let G be an AG augmented with dummy inherited attributes and apply al-
gorithm 1 to G and an integer k. Then G is k~LR-~pass if and only if G is
accepted by the algorithm.

PROOF: Assume that G is not k-LR-pass. Then there exist a tree t € DOM(Z)
where an attribute b € S(Z) requires more than k passes 1in order to be
evaluated. Then the arc d=>b in lr-sym(t) has a weight greater than k where
d s the dummy inherited attribute of X (lemma 2). Obviously G is rejected
by algorithm 1.

Assume that G is k-LR-pass but is rejected by algorithm 1. Then there
exist a graph @ € LR-SYMi(Z) with an arc d=>b with a weight greater than k
for some i. Lemma 3 gives that there 1is a tree t € DOM(Z) such that

Lr-sym(t) = Q. From theorem 2 it follows that G cannot be k-LR-pass - a
contradiction.
11/

In order to test whether an AG dis traditional k-LR-pass one may extend
each nonterminal symbol with a dummy synthesized attribute as described 1in

the proof for theorem 4 in chapter 4. We will not consider that further.
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2-3 AN EVALUATOR FOR A K LEFT-TO-RIGHT PASS AG

In this section I will give algorithms that construct an evaluator for
a k-LR-pass AG. The evaluator will specify a k Lleft-to-right pass
evaluation strategy when applied to a derivation tree. The construction of
the algorithms are divided into four parts:
1. choice of evaluation states
2. making an entry in the PLAN and GOTO tables
3. simulation of a single pass

4. construction of the evaluator

1. Chojce of evaluation states

The analysis of section 4.3 shows that if we have the following infor-
mation 1in a state then it is possible to construct a plan in a k-visit
evaluator on the basis of the state and an input set.

- the production applied at the node p: X :1:= X1 X2 ... ¥Xn
- the SYM-graphs for the nodes X, X1, X2, «.«, Xn
- the set A of the attributes of the symbols in p which are knoun.

The SYM-graphs are used to find those synthesized attributes of the
symbol X that can be evaluated when some inherited attributes of X are
known. In the k-LR-pass case we will in stead use the weighted SYM-graphs

for the nodes X, X1, X2, ..., Xn. That dis we have:

DEFINITION 4:

An evaluation state is a tuple (p+,A) where p: X ::= X1 X2 ... Xn is a
production, pt+ = (p,Q,01,082,...,Qn) where Q@ is a weighted SYM~graph for X
and Qj is a weighted SYM-graph for Xj for 1<j<n. A is a subset of the at-
tributes of the symbols in p.

117
DEFINITION 5:

An initial state is an evaluation state (p+,A) where p: X ::= X1 X2
ces Xn, p+t = (p,9,081,082,...,8n) where @ € LR-SYM(X) can be derived from
D(p) and the graphs @j € LR-SYM(Xj) for 1<j<n. A = S(Xi1) U S(Xi2) U w.u U
S(Xim) where

Xij | 1€1i¢n, 1<i<m} = {Xh] Xh € Vt and 1<h<n}

/117
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EXAMPLE 3:

For the AG of example 1 in chapter 4 we have the following initial

states:
s1 = ((p1,01,02,02),0)
s2 = ((p2,Q2,Q2),8)
s3 = ((p3,02,02),0)
s& = ((p4,Q2) ,0)

where Q1 and Q2 are the weigthed graphs constructed in example 2.
11/
The initial states of the nodes in a derijvation tree can be determined
in a manner very similar to that in the k-visit case (e.g. by use of the

Lr-sym mapping).

DEFINITION 6:
A final state is an evaluation state (p+,A) where p: X ::= X1 X2 ...
Xn and A= ACX) U AXT) U AMX2)Y U wuw U ACXN).
/17

2. Making an entry in the PLAN and GOTO tables

A visiting sequence for a production p: X ::= X] X2 ... Xn will have a
special form in an evaluator specifying a k left-to-right pass evaluation
strategy:

vs = (X1,I1)2(X2,12)c..(Xn,In)

The sons of a node is visited 1in order from left to right and each of them
exactly one time.

Let the state of a node X be s = (p+,A) where p: X 2:= X1 X2 ... Xn
and pt+ = (p,Q,Q1,82,...8n). Let I be the input set to a visit to the node X
when it is in the state s and let us see how we can construct a plan for
the visit. That is we have to determine:

i) which attributes of I(X) can be evaluated
i1)  with which input sets shall we visit the sons of X
i11) which attributes of S(X) can be evaluated

As 1in the k-visit case the attributes in i) can be determined as I =~
(AN IXN.

We will change the weights of the arcs of the SYM-graphs after each

visit. If the weight of an arc b-~>c in a graph is v before the visit and
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if b is in the input set for the visit then the weight of the arc will be
changed to v-1 since now only v=1 visits are required in order to evaluate
c. However if v=0 we will not change the weight any more. Thus the p+ part
of a state will be changed in the k-LR-pass case in contradiction to the
k-visit case.
We will redefine the YIELD-s operation of section 4.3 to handle the
weighted graphs. Let
YIELD-s(X,Q,I) = {b € S(X)| if ¢c=>b is in Q@ and has weight
0 or 1 then ¢ € I}
where Q@ s a weighted SYM—-graph for X.
Thus if @ is the wejghted SYM-graph obtained from the state then
YIELD-s(X,Q,I) = (A N S(X)) will be the attributes in iii).
If Ap is the set of attributes known after the visit to X(j=1) then
the input set to the visit to Xj can be determined as
YIELD-1i(Xj,D(p),Ap) = {b € I(Xj)| if c=>b 1is 1in D(p) then ¢ € Ap}
just as in the k-visit case. The attributes known after the visit will be
YIELD-s(Xj,Qj,Ij) where Ij s the input set and Qj ds the weighted
SYM-graph for Xj obtained from the state.

ALGORITHM 2:
Input: a state s = (pt,A) where p: X 1:= X1 X2 ... Xn,
p+ = (p,Q,01,02,...,8n), and a set I ¢ I(X).
Output: PLAN(s,I) and GOTO(s,I)
Method:
1. Ap := A UI;
I' := 1 - (AN I(XN
2. FOR j =1 T0 n DO
1j YIELD-i(Xj,D(p),Ap);
Ap := Ap U Ij U YIELD-s(Xj,Qj,Ij);
FOR all arcs b->c in Qj where b € Ij
DO change the weight v of b=>c¢ to v=1 if v > 0;
Let the resulting graph be Qj"
3. vs 1= (X1,11)(X2,12) euua (XN, In);
st YIELD-s(X,Q,I) = (AN S(X));
FOR all arcs b->c in Q@ where b € I
DO change the weight v of the arc b->c to v-1 if v > 0;

It

Llet the resulting graph be Q';
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2}

PLAN(s, I) (1',vs,S$";
GOTO(s,I) := ((p,Q',01',Q2",...,4n"), (Ap U S'))
111
EXAMPLE 4:
Consider the AG of example 3 and apply algorithm 2 to the pair
(s1,{z}) where z is the dummy inherited attribute of the symbol Z. We get
PLANCs1,{z}) = ({2}, (X1,{x1,b13})(X2,{x2,a2,b2}), {f})
where x s the dummy finherited attribute of X. The indices refer to resp.
the first and the second son of a node Labelled Z. The names of the at-
tributes are introduced in example 1 of chapter 4.
Furthermore we get GOTO(s1,{z}) = s5 where
s5 = ((p1,@3,04,Q85) ,{z,f,x1,b1,c1,x2,a2,b2,c2,d2})

and
Q3: Z CICJL]

Q4: X

/117

3. Simulation of a single lLeft-to-right pass

As in section 4.3 we will consider two problems:
= how can we determine the state of a son of a node
- how can we keep track of the pairs (s,I) for which a PLAN and GOTO table
entry not already have been made.

It is not quite easy to determine the state of a son of a node, since
the states of the nodes in the derivation tree seems not to be complete in
a sence similarly to that in section 4.3. We have to find a sequence of
visits which have been performed at the son.

On the basis of a composite visiting sequence for a node 1in the
history graph we can determine some visiting sequences for each of the sons
of a node in a derivation tree in the actual state. For each possible
initial state of a son we can simulate the sequence of visits in the com-
posite visiting sequence. The following algorithm will determine the pairs
(sj,Ij) for which a PLAN and a GOTO table entry are required for a specific

visiting sequence:
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ALGORITHM 3:
Input: A history graph H with a corresponding set of GOTO table entries
and a visiting sequence vs for PLAN(s,I) where s is the label of
a node in H
Output: REQUIRED: a seét of pairs (s',I') for which a PLAN and a GOTO
table entry are required
Method:
1. REQUIRED := @
let vs = (X1,I10(X2,12)...(Xn,In)
FOR each path in H beginning at an initial state sO and
ending at the node labelled s
DO perform step 2.
2. construct the composite visiting sequence cvs for the path;
a: FOR j:=1 TO n
DO let cvs(j) contain the pairs (Y,I'") from cvs
where Y = Xj and let the ordering of the pairs
in cvs(j) be as that in cvs;
b: FOR j:=1 TO n
DO FOR each possible state initial state sO' for Xj
where the LR-SYM-graph of Xj is Qj (determined from s0)
DO Llet cvs(j) = (X3, I1")(Xj,I2") euu(Xj,Ir");
FOR h:=1 TO r DO sh' := GOTO(s(h-1)',Ih");
REQUIRED := REQUIRED U {(sr',Ij)3;
3. Stop.
/117
EXAMPLE 5:

Let us apply algorithm 3 to the initial history graph of the AG in ex-
ample 4  and the visiting sequence (X1,{x1,b1})(Xx2,{x2,a2,b2}) of
PLANCs1 ,{z3}). We get

REQUIRED = { (s2,{x,b}), (s3,{x,b}), (s4,{x,b},
(s2,{x,a,b}), (s3,{x,a,b»), (s&,{x,a,b}) 3
117

In order to keep track of the pairs (s,I) for which a PLAN and a GOTO

table entry have to be constructed we use a set REMEMBER. This set is used

in the same manner as the queue with the same name in section 4.3.
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ALGORITHM 4:
Input: a history graph and a set of PLAN and GOTO table entries
corresponding to m passes over a tree.
Output: a history graph and a set of PLAN and GOTO table entries
corresponding to m+1 passes over a tree.
Method:
1. REMEMBER := {(s,{d})|s = (p+,A), p has left hand side Z, s is in H
and d is the dummy inherited attribute of 7}
2. IF REMEMBER # 0@
THEN choose (s,I) from REMEMBER and remove the pair from REMEMBER
ELSE go to step 4
3. IF a PLAN and GOTO entry for (s,I) not already have been constructed
THEN
a: apply algorithm 2 to (s,I) to yield
PLAN(s,I) = (I',vs,S') and GOTO(s,I) = s';
b: apply algorithm 3 to H and vs to contruct the set REQUIRED and
let REMEMBER := REMEMBER U REQUIRED
¢c: add an arc s->s' labelled (I,vs) to H
4. let H' be equal to H with the added nodes and arcs.
117
The algorithm will stop since there is a finite set of states in H and

a finite set of input sets.

EXAMPLE 6:
Let us apply algorithm 4 to the AG of the previous examples. We start

by the initial history graph (that is noc passes has been simulated). We

get the following history graph:

{23, (X1 ,{x1,b1 1) (X2 ,{x2 ,82 ,b2})
L] : e [ ]
s s5

_89_



£l

,b3, (X, {x,b)
- s6

{x,a,b},cx,{x,a,;?\ []

s2

s9
{x'b}'(X'{Xiiiifffﬂ“ﬂff" ]
» e s7

{x,a,b),(X,{x,a,b3) =[]

s10
{x,bF, 2 = L]
Wﬂﬂﬂﬁwﬂwwﬂwmwwwﬁﬂww s8
[J=="""
—

84 MMMM,
{x,a,b}, T [
s11

Corresponding to this history graph we have the following entries in
the PLAN and GOTO table entries:

SXK1I PLAN GOTO
(s1,{z» {23, X1,{x1,b1X3) (x2,{x2,a2,b2}), {f} s5
(s2,{x,bx)  {x,b}, (X,{x,b}), {cX sé
(s3,{x,b})  Lx,b}, (X,{x,b}), {c} s7
(st ,{x,b}) {x,bX,n , {c3 s8
(s2,{x,a,b} {x,a,b}, (X,{x,a,b}), {c,d> s9
(s3,{x,a,b}) {x,a,b}, (X,{x,a,b}), {c,d> s10
(s4,{x,a,b}) {x,a,b},n , {c,dX s11

The new states are

s5 = ((p1,Q83,04,85) ,{z,f,x1,b1,¢1,%x2,82,b2,c2,d23)
s6 = ((p2,04,04) ,{x0,b0,c0,x,b,c})
s?7 = ((p3,Q4,Q4) ,{x0,00,c0,x,b,c})
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s8 ((p&,04) ,{x,b,c)
s9 = ((p2,Q5,Q5),ACX0) U ALX))
s10 = ((p3,Q85,Q5) ,A(X0) U ACX))
s11 = ((p4,Q5),A(X))
where the graphs @3, Q4 and Q5 are defined in example 4.

/17
L. Construction of the evaluator.

When constructing an evaluator specifying a k Left-to-right pass
evaluation strategy we will apply algorithm 4 k times. Each application

corresponds to the simulation of yet another pass over a tree.

ALGORITHM 5:
Input: an AG 6 = (V,B,R,Z) and an integer k
Output: if G is k~LR-pass then an evaluator E(G)
Method:
1. Apply algorithm 1 to G and k;
IF the algorithm fails THEN stop, G is not k—-LR-pass.
2. Construct the initial history graph HO
3. FORm :=1 T0 k DO
apply algorithm 4 to H(m=1) and
Let Hm be the resulting history graph
4. Let § consist of the states of Hk and
let I be the set of input sets labelling the arcs;
let E(G) = (§,s0,I,PLAN,GOTO) be the evaluator
117
EXAMPLE 7:
Let us apply algorithm 5 to the AG of the previous examples for k = 2.
The history graph H1 was given in example 6. The history graph H2 1ds (we

have not mentioned the labels on the arcs that was present in H1)

{z3,(X1,{x1,a1,013) (X2 ,{x2,a82,b23})
£l o [ ] = [ ]
s1 s5 s12




LI Lx,8,b},(X,{x,a,b>)
I

\ //39

,a,b},(X,{x,a,b})

L] = a,bx,(X,{x,a,b}

N
s7 hm%w%m““““%wg._
[3 [1
83\\\\\x\‘\ Wwfwmww““”MW”Mwﬁ/’WM-’;1D
[1—x,8,b3,(X,{x,a,b})
s10

//"[]“Mm- {x,a, b},x
>EJ
\\\\\\\W.\ e 11

%N“N

s

e

L]—"" {x,a b}, A
s11

Corresponding to this history graph we have the PLAN and GOTO entries

from example 6 and these new onhes:

sX1I PLAN GOTO
(s5,{z}1 @, X1,{x1,a1,b1H(X2,{x2,a2,b2}), {e} si12
(s6,{x,a,b>) {al}, (X,{x,a,b>), {d> s9
(s7,{x,a,b}) {aX, (X,{x,a,b}), {d} s10
(s8,{x,a,b}) Lar, »n, {d2 s11
(s9,{x,a,b}) @, (X,{x,a,b}), O s9
(s10,{x,a,b}) 0, (X,{x,a,b}), 0O s10
(s11,{x,a,b}) @,) , 0 s11

We have the new state s12 = ((p1,085,85),ACZ) U ACX1) U ACX2)).
/117

Ofcause several lemmas and theorems have to be proved in order to show
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that these algorithms construct an evaluator correctly. The two main things
to be shown are
~ the evaluator specifies a k left-to-right pass evaluation strategy when
applied to a derivation tree
- all the attributes at the root of the tree have been evaluated when
returning from the last call of VISIT to the root of the tree.

If the algorithms are applied to an AG augmented with dummy syn-
thesized attributes as described at the end of section 5.1 then all the at-
tributes associated with the nodes of a derivation tree will be evaluated
when the evaluator is applied to the tree. But ofcause it requires a formal

proof.

As we put restrictions on the AGs in chapter & in order to obtain some
simplified states of the evaluators we may do the same here.

One possibility is to consider the AGs with the k Lleft-to-right pass
property and where there can be constructed an evaluator with states
(p+',A) where p+ = (P,Q,Q1,082,...,8n), p: X 2:= X1 X2 ... Xn and @ and Qj
are SYM-graphs for X and resp. Xj for 1<j<n. That is we assume that the
weights are fixed when the SYM-graphs are known.

Another possibility is to remove all information about the SYM-graphs
from the state, i.e. the states have the form (p,A). This class of AGs has
some resemblance with the benign (and adiquate) AGs.

Also the A-part of the state may be simplified and we can obtain sub-
classes of AGs with evaluators with states of the form (p+,m) or (p,m)
where m is the number of passes that have been performed. The subclass of
AGs with evaluators with states (p,m) are (presumable) equivalent to the
multipass AGs of [Boc76].

However further research are required in order to investigate these

and other subclasses of AGs.
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6. CONCLUSION

In this chapter I will briefly review the main results discussed 1in

this thesis and I will give some proposals for further research.

The chapter consists of three sections. In the first one I briefly
mention the main results and outline some results that have to be improved.

In section 6.2 I discuss how some of the results developed above can
be considered as the very beginning of a theory about how to compose and
decompose AGs.

And at last, in section 6.3, I give my final comments.

©.1 REVIEW

As mentioned 1in chapter 1 the AGs have not been considered very much
from a theoretical point of view. In fact no commonly accepted definition
of an AG, 1its language and 1its translation seem to exist.

The first part of this thesis (chapter 2 and 3) has been an attempt to
clarify concepts concerning how to define the language and the +translation
specified by an AG. Let me mention three of the aspects from these chapters
that I think are among the most interesting and promising ones.

The translation of a string can be defined as the minimal fixpoint of
a certain function. This is ensured by requiring that the domains of the
attributes are complete lattices and that the semantic functions are con-
tinuous functions operating on the complete lattices. The definition makes
it much easier to prove the equivalence and correctness of various
evaluation methods. Another important property of the definition is that it
constitutes a descriptive rather than an algorithmic definition of the
translation specified by an AG. An  interesting observation 1is, however,
that most of the alternative definitions coincide for the well-defined AGs.

As the second point I think that both the translational and the
traditional approach to language definition are legitimate. In a compiler
writing system one will (presumably) not let the translation of a program
be an attribute of the start symbol as in the translational approach since

that may give considerable space problems. Several proposals to overcome

_94_



the problem exist e.g. in [RYi771, L[JMR781, and [Wil78]1. These three
proposals have some resemblance with the traditional approach. One can,
however, note that some of the proposals put restrictions on the type of
translations that can be specified by the various systems.

The third aspect that I want to emphasize is the fintroduction of the
subclasses of unambiguous and determinate AGs. I think that these subclas-
ses will turn out to be very natural although some research have to be
done. For dnstance the AGs considered by [Mad79] are subclasses of the
unambiguous AGs whereas one usually only consider subclasses of the deter-
minate AGs. An interesting observation is, however, that the determinate
AGs are able to specify exactly the recursive sets whereas the unambiguous
AGs are able to define any recursive enumérabLe set. Thus we have for

Languages recognized by AGs (relying on the Church-Turing thesis)

arbitrary

AGs \"‘"’\N

recursive enumerable

sets
unambiguouswwwwﬂwwmwwwfwwwm
AGs
determinate recursive
AGs sets

In the second part of the thesis (chapter 4 and 5) I dntroduce new
methods by which the AGs may be characterized.
Usually an AG is characterized by that it belongs to a subclass of
AGs. The subclasses are often defined by putting some restrictions on the
type of dependencies that may be between the attributes. Some examples are:
- the L-attribute grammars of L[LRS741, [Boc763, and [May78]
- the multipass AGs of [Boc76] and [Sch761]
- the alternating pass AGs of LJaWr5], [Sch76l1, [RYi771, and [Poz791
- the ordered AGs of [Kas78] and L[Sch76l]
- the adequate (or absolutely well-defined) AGs of [KeW76] and [Sch76l
~ the benign AGs of [May78l]
- the one~visit (or reordered) AGs of [EnfF79] and [May78]
- the well-defined AGs of [Knur1l1, [Sch76l1, [May78] and L[CoH79]
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These subclasses give rise to the following hierarchy of AGs. (We use
a general version of the multipass and alternating pass AGs as e.g.
proposed in chapter 5 for the multipass case. If we instead use the
original definitions of [Boc76] and [JaW751 then the multipass and alter-
nating pass AGs will be subclasses of the ordered AGs.) I expect the uncon-
nected subclasses to be incomparable whereas the arrows represent proper

inclusions.

arbitrary
AGs
benign alternating pass
AGs AGs
A N
adequate multipass
AGs \ AGs
A .. Al
one-visit
AGs $\\x%
ordered - T~ L-attribute
AGs AGs

These subclasses are defined on the basis of properties of the gram-
mars and not the translations specified by the grammars. For instance the
transformation of a well-defined AG into a partly uniform AG in chapter 3
shows that the well-defined, the benign and the adequate AGs are able to
specify the same translations. An obvious topic for further research will
be to compare the classes of translations specified by the subclasses of
AGs above.

If we know that an AG is k-visit we will have more information about
how 'complicated' the translation specified by the AG is than if we only
know that it dJs e.g. benign. Thus I think that the k-visit and the
k=LR-pass properties will be useful properties of the AGs when considering
the translations specified by AGs. However also here much research remains.

The k-visit and k-LR-pass AGs constitute hierarches as shown on the
figure below. The same dinclusions hold for the classes of translations

specified by the classes of AGs.
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3-visit AGs

3-LR-pass AGs
P

2-visit AGs o~

T=-visit AGs G\\N\%\\\\\

(= L-attribute grammars)

2-LR-pass AGs

Ao

1-LR-pass AGs

The k-visit and the k-LR-pass properties have (at least) one weakness:
they are defined on the basis of a specific definition of a visit and this
definition is in turn inspired by a specific structure of an evaluation al-
gorithm. I think that it is very difficult to remove this weakness entirely

although something may be done. Nevertheless the definitions may be useful.

Some of the results presented 1in chapter 4 and 5 can presumably be im—
proved. Let me mention three of them:

We have that there exist a translation that can be specified by a
k=visit AG but which cannot be specified by a (k=1)-visit AG over the same
semantic domain and with the same underlying grammar. I think that the con-
dition 'with the same underlying grammar' can be removed. Similarly the
same condition may be removed from the result about 1-visit and k-LR-pass
AGs 1in chapter 5.

Another problem that has to be solved is how (deterministically) to
determine the minimal k such that an AG is k-visit. We have only considered
how to find bounds within which the minimal k will be.

The third of the results that ought to be improved is the test for the
k=LR-pass property. Given an AG and a k we have seen how to test whether
the AG is k-LR-pass. But we may be interested in testing whether the AG is
k—-LR-pass for any k.

Furthermore 1in all the previous chapters the complexity of the various

tests and constructions have to be analysed.
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The results in chapter 5 may be considered as the very beginning of a
theory for composition and decomposition of AGs.

Consider two AGs Gl and G2 with wunderlying grammars G1'! =
wnt ,Vt1,R1,21) and G2' = (Vn2,Vt2,R2,Z2) satisfying

- there 1is a homomorphism h: V1 -> V2

- 9f p: X = X1 X2 ... Xn dis in RT then p': h(X) :1:= h(X1) h(X2) ...
h(Xn) is 1in R2.

Let us denote this property of the AGs with structural equivalence.

We may then define the composition of 61 and G2 denoted G = G1 + G2 as
an AG structural equivalent to G1 and G2. The set of attributes associated
with a symbol in G will be the union of the attributes for the correspon-
ding symbol 1in G1 and G2. The semantic rules of a production in G is the
'union' of those for the corresponding productions in G1 and G2.

The composition can easily be extended to any number of AGs: G = G +

G2 + ... + Gk where the Gj's are structural equivalent for 1<j<k.

Composition of AGs becomes especially interesting when we put an
ordering on the AGs. Let G1, G2, ..., Gk be a set of structural equivalent
AGs. We will allow the semantic rules of Gj to have attribute variables
occurring 1in Gi as parameters for 1<i<j and 1<j<k. Intuitively the trans-
Lation specified by 6 = 61 + 62 + ... + Gk can be obtained as follows:

Let t0 be an initial semantic tree and use an evaluator for G1 to con-
struct a semantic tree t1. In stead of using an initial semantic tree as
"input tree' when evaluating the attributes of G2 we will use t1. The
resulting semantic tree t2 will contain the values of the attributes for
the symbols in both G1 and G2. By letting t(j-1) be the 'input tree' to an
evaluator for Gj and tj the resulting semantic tree for 1<j<k we will have
that tk dis the semantic tree constructed by applying an evaluator for the
AG G to the initial semantic tree tO.

Formally this ordering may be expressed by the introduction of a third
kind of attributes for the symbols in the AG: the 1intrinsic attributes
defined by [Schr76]. The value of an intrinsic attribute is defined by an

external semantic rule and thus it may be treated as a constant by the AG.
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The results of chapter 5 may be considered as testing whether an AG G
can be decomposed into k L-attribute grammars for a given k and 1if it s
possible then to determine the AGs G1, 62, ..., Gk such that G = G1 + G2 +
«». + Gk. This can easily be seen by changing a state (p+,A) in the
evaluator to a production:

Let pt = (p,Q,01,082,...,8n) and p: X 1= X1 X2 «v. Xn. We will con-
struct a production p': X' z:= X1' X2' ... Xn' where X' = (X,Q,A N ACX)
and Xj' = (Xj,Qj,A N ACXj)) for 1<j<n. The underlying grammar of G1 will
contain the productions obtained from the initial states. The underlying
grammar for Gj will contain the productions obtained from states that the
nedes of a tree may be 1in after the (j=1)'th pass over the tree. The
homomorphism h in the definition of structural equivalence of AGs can be
obtained from the GOTO table.

0f cause one may be interested in the decomposition of AGs into other
than L-attribute grammars and here much (almost all) research remains. The
same is the case if one consider composition of AGs. Let for dnstance G1,
G2, «<., Gk be 1-visit AGs. One can then ask: will G = 61 + G2 + ... + Gk
be a benign AG or is it possible to choose the 1-visit AGs such that G 1is

not benign?

In the introduction I mentioned two important aspects of compiler
writing systems based on attribute grammars:
- How can we determine an order for evaluating the attributes associated
with a derivation tree
- What kind of information can be stored in the attributes and what kind
of operations are allowed in the semantic rules.
And I asked the question: how important are the wvarious restrictions
on the AGs for the translations that can be specified.
Although much research remains we can give some preliminary answers.
The results about the k-visit and the k-LR-pass hierarchies show that
the domains for the attributes and the operations on the attributes are
very 1important for the translations that can be specified.
-We have seen two methods that can be used to construct evaluators for

AGs. They represent different strategies for choosing an order in which the
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attributes of a derivation tree can be evaluated.
If one care about the domains of and the operations on the attributes
then we see that different strategies may result in different classes of

translations.
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