ISSN 0105-8517

COMPILER GENERATION
FROM DENOTATIONAL SEMANTICS

by

Neil O, Jones
and

David A. Schridt

DAIMI PB-113
March 1980

Computer Science Department
AARHUS UNIVERSITY T 1
My Mupkegade — DK 8003 Agrnus C - DERMARE J(

o
Eﬁ{ I
1y
T
==

Tl

Teleptione 6 - 1285 53

Compiler Generation from Denotational Semantics

Neil D, donesl’zz
David A. Schmidt™

University of Kansas, Lawrence, Kansas, USA
University of Aarhus, Aarhus, Denmark
Kansas State University, Manhattan, Kansas, USA

This publication contains material which may be used in this
author's forthcoming doctoral dissertation.

Steven S. Muchnick was also involved in the earlier stages
of this research,

DAIMI PB-113
March 1980

Computer Science Department [
AARHUS UNIVERSITY

Ny Munkegade — DK 8000 Aarhus C ~ DENMARK T '—
Telephone: 06 — 12 83 55 1

—=

INTRODUCTION

Recent advances in the formal definition of programming languages
[STO77] and the verification of translators constructed to formal spe-
cifications ([MOR731, [MIS76], [ADJ79]) have motivated attempts to
generate provably correct translators automatically from language
specifications ([GAN79], [MOS79], [RAS79]). This paper describes
one solution to this problem: a method which, when given a language
definition in the style of denotational semantics ([STO77], [GOR79}),

will produce a correct translator into a specific target language.

In part |, we establish the existence of univer‘sal-compiler‘s and compiler
generators., First, some definitions are given concerning terminology
and the nature of compilation. The target language (a flowchart-iike
language called State Transition Machines, or STMs) is described,
followed by descriptions of the compiling and compiler generation
methods. This leads to the definition of a. compiling scheme: a formalism
for associating with each correctly parsed source program a cor-
responding object program. Next, a specific scheme is presented

which translates lambda-expressions into STM form. The existence of
the latter scheme allows us to show that for every denotational definition
there is a corresponding scheme which translates source programs into
STM code.

Since the object programs produced by this method are inefficient,

part 1l briefly describes optimization techniques. These use the concepts
of mixed computation (or partial evaluation) [ERS78] and abstract
interpretation (or flow analysis) [COU77]. First, a method is given to
optimize a fixed STM, transforming it into an STM in which every state
transition performs an action whose effects cannot be predicted at com~
pile time. This method can be applied to the output of a universal compiler.
Second, methods are described to perform a flow analysis on an STM
scheme, determining at compiler generation time those computations
performable at compile time (e.g., symbol table or environment lookups)
and those executable at run time. The effect is to split the STM scheme
into two parts - a compile time executable portion and a portion generating
run time transition rules. This makes possible the automatic generation of

compilers which produce more efficient code.

PART | EXISTENCE OF COMPILER GENERATORS

Compilers and Interpreters

The compiler generation process to be described is concerned entirely
with semantic issues. The parsing problem is well understood [Ahu74],
so we assume that the source program is presented in the form of a

parse tree . The set Parsetrees of all parse trees for a specific pro-
gramming language £ will be structured as an abstract syntax algebra
(e.g. [McC63]), so each production is viewed as a tree-construction
operator, Assuming that each program 7 denotes a function from a set of
Inputs to a set of Outputs, a semantics maps each program into its denoted
Input-Output function. An interpreter realizes this function directly,
while a compiler produces an object program whose denotation is the same

as the denotation of .

semantics: Parsetrees 2 {Inputs =+ Outputs)

interpreter: Parsetrees X Inputs -+ Outputs
compiler: Parsetrees + Targetprograms

target semantics: Targetprograms - (Inputs - Outputs)

We will use an object language which is first-order and closer to

machine codes, namely the set of state transition machines, or STMs
for short.

In a sense one could define a compiler from an interpreter:

compiler(m) =X i€ Inputs. interpreter(f,i)

by freezing the first argument of the interpreter. This approach requires
the entire language implementation machinery to be present in the object
program, including parts for constructions which may not be present in

the program 7. Further, the object program compiler(m) is not

specialized to 7 - for example all while loops inf would be processed

by the same part of "interpreter!, This contrasts sharply with conventional
compiled code, in which distinct parts of the parse tree give rise to
distinct parts of the object program. The compilers which we generate will

generate code which is specialized in this sense.

Our goals naturally lead to consideration of the language definition itself
as a parameter. A denotational semantics of a language £ associates with
each syntactic form A = A = ‘An and each related semantic function C

C : A-trees -+ denotations, a corresponding definition clause
A-*Al...An:C[[A] = .. C[[A1 T... C[An T-.-.

This defines C[[?TAB for a tree 'ﬂA of sort A in terms of the denotations of
its subtrees. The right side of this equation is an expression, usually in
some extension of the lambda-calculus. We will use the term LAMC to

describe a suitable extension of the lambda~calculus.

Now fet DDs be the set of denotational definitions of programming languages
in terms of LAMC. The compiler~interpreter distinctions above naturally

generalize as follows:

universal interpreter: Ul =DDs x Parsetrees X Inputs - Outputs
universal compiler ¢ UC =DDs xParsetrees » Targetprograms
compiler generator : CG=DDs «+ Compilers

compiler semantics : Compilers - (Parsetrees - Targetprograms)

Note: The term ''universal' refers to the fact that the denotational definition
is nearly arbitrary, the only restrictions being expressibility in LAMC,
and that inputs and outputs be first-order objects (this restriction comes
from the fact that our object program language of STMs involves only

first-order data sets).

A denotational definition C[[]] may be viewed as a single lambda~-expression
A which denotes a function: Parsetrees - (Inputs + Outputs). For any parse

tree T, the lambda-expression Alf) (A applied to) denotes the meaning of ;

this meaning may be applied computationally to an input i by forming
(A(m))i and B-reducing the expression as far as possible. Actually,
many of these reductions will be independent of i. The semantics imple-

mentation system SIS of [MOS75] contains a set of rules which B~reduce

A(m) to normal form in the absence of i. The resulting reduced \ -expression

may be considered as an object program for T, so SIS may be regarded

as a universal compiler.

From a practical view this approach has two drawbacks: first, the object
programs are in the A-calculus (although some researchers favor higher-
order machine languages, e.g. [BER76] and [BAC 78]); and second, the

compiler may enter an infinite loop if the semantics is badly defined.

Compiling Schemes

We propose the following solution for the above restrictions, Let .S',] , S,z
be source and target languages. Following [MOR'?B] and [ADJ?Q] a
compiler com: £1 -» .,\Zz may be described by putting appropriate algebraic
structures on S;] and X,z (typically 521 becomes a free "'syntax! algebra) so
that a compiler '""com!" becomes a homomorphism. A syntax algebra £1
is finitely generated, so com may be finitely specified by a compiling
scheme which associates with each abstract syntax production

p: A 4 A1 . An a corresponding operator 6 in the target language algebra.

For generality we want to use the same target language for many source '

languages. This is easily done by representing B as a derived operator,

described by an expression involving the natural operators of ,\‘12.

As an example, any denotational definition A may be viewed as a compiling
scheme A: £ » LAMC. To do this we put an algebraic structure on L.AMC

with sort "lambda expression! and operators "apply", "abstraction! etc.

Clearly a semantic rule C[A] = ... CIIAI:‘Q ces C[[An]] ... associates
with each syntax operator (i.e. production)p: A - A1 - An of £, a
corresponding LAMC derived operator '5(&1 sorey an) =.o.oap...a ...

Given a parse tree 7, the LAMC expression Alr) may be computed by a

syntax-~directed transduction involving only syntactic substitution.

Compiler Generation

Given a compiler ¢: LAMC + STM, where LAMC and STM are the source
and target algebras, ¢o A defines a compiler from £ to STM - a parse

tree f is compiled by first constructing the LAMC expression Af and

then applying ¢ to the result. The action of computing (p(_A-w) constitutes
universal compitation. Further, the function cg which takes a denotational
definition Ainto cg(A) = ¢o A is a natural compiler generator, as the result

has functionality £-Parsetrees + STM,

Formally, since D: £ +LAMC is a homomorphism into the derived theory

of LAMC, and ¢: LAMC + STM is also a homomorphic map, the STM algebra
can be extended to an f-algebra, and ¢ may also be extended. In this
fashion ¢o A:$ +STM becomes an $~homomorphism and thus an £-compiler.
Pragmatically, a compiling scheme which maps $-terms directly into
STM-terms is constructed by treating both Z and ¢ as syntax directed
transductions. Given production p: A » A1 . An of £ and its corresponding
derived operator B(aI yeeey an)»expr'essed in LAMC, apply ¢ directly to

5, expanding the LAMC~term into an STM-term with free variables

CTRREFE The result is a derived operator for o A which can be used
for a direct translation from £ to STM, and which is easily realized as a

syntax-directed transduction.

State Transition Machines

We now define the target language previously mentioned. The set of STMs
provides a useful target language because an STM at the same time is close
to conventional flow charts and has a semantics closely related to the

A-calculus.

An STM is a system of equations which defines a function from one first
order data set to another. (A data set is first order if it can be defined
by a finite set of possibly recursive set equations involving predefined
base sets, +, and x, e.g. ATOM =N+ T, LIST = ATOM + LIST x LIST).

An STM possesses a finite number of control states s; with each is
associated a local memory state x, ranging over some first order data
set. Each equation defines a rule for transition from one state to another
(or to a final answer), An STM has a strong resemblance to an automaton
or a flow chart, one difference from the latter being that the memory
state is not global but is attached to each control state. Another is that
control state names can be treated as data, allowing simulation of

"computed gotos'' and function call/return linkages.

Intuitively, application of an STM to a data value proceeds by a series of

state transitions sv =+ slvl 9 sty =+, ., where each transition involves

only application of base functions and testing of conditions. An STM is
easily translated into efficient code on conventional architectures, since
all memory, data binding and control flow activities are explicitly spe-~
cified (see [KIT80]).

Definition An STM I is a sequence of transition rules s.x = sex

0 ERRE)
S X = sex where x is a variable name, Sqgr ey S, are distinct control

state names (so is the entry state), and each sex, has one of the forms

i) ex a halt transition, producing a final answer;
i) t ex an explicit transition to control state t;
(not necessarily one of Sgreee ,sn);
i) ex + sex', sex!'" a conditional transition; or

iv) fexﬁexz a pop transition,
In this each ex is an expression built from x and primitive operators
such as "+, U=t < > 1 (tupling and subscripting).

.

Aside from the pop transitions, an STM is merely a flow chart represented
in the form of a system of equations. An STM to compute n! iteratively

might have transition rules

sgX = 51<x,!>

n
X
i

(x41=0 21, sp <xi1-1, xI1 % x12>)

The second rule can be syntactically sugared:

<n,acc> ={nh=041, s,<n-1, nx acc>)

s 2

1

An operational semantics for an STM I is now described. For each initial
data object a, M will have a computation history $ga = t1a1, thln, - -
where the ti's and ai's are control states and memory states. The history
is built in this manner: For any i = 1, suppose Il has the transition rule

a.

tix = sex;. Then ti 41

+1 = next(sexi, ai) where the '"next" function is

defined as follows.

Let eval(ex, a) be the value of expression "ex!', given that variable x is

bound to value a. Then
~

eval(ex, a) if sex = ex
t eval{ex, a) if sex =t ex
next(sex!, a) if sex = ex - sex!, sex'
next(sex, a) = and eval(ex, a) = true
next(sex!, a) if sex = ex = sex!, sex!
and eval(ex, a) = false
t<c,d> if sex = [ex,] ex,,
- eval(ex,, a) = <t, c> and

eval(ex,, a)=d

Closures and pop transitions are used to naturally model call by name,

upward FUNARGs etc. A closure is a tuple <s, Viseees V> whose first
component is a control state name. Typically it is used to represent a

function X X s s X X with free variables, where s is the entry state

+1
of an STM to compute 'ex!, and ViseresV, are the free variables of ex.
A pop transition is an expression [c] eX gt ex. which occurs in a

transition rule. Computationally the effect is this: suppose the value of ¢
is the closure c = <s, Viseeos V> then control is transferred to the

state

el g@X >
S<V1’ *Vimr e 7N

Figure 1 illustrates the ease with which this mechanism allows translation

of a recursive definition into STM form, via continuation semantics.

STM RULES

SoX = loop <x, <halt>>

loop <x, c> = (x=042[c]1, loop <x-1, <exit x ¢ >>
exit <x,c,y> = [c] glx,y)

halt y =y

COMPUTATION FOR x = 2

$52 = loop <2, <halt>>
= loop <1, <exit, 2, <halt>>>
= loop <0, <exit, 1, <exit, 2, <halt>>>>
= exit <1, <exit, <halt>>, 1>
= halt g(2, o(1,1))
= g(z, 9(1,1))

Figure 1. STM for f(x) = if x = 0 then 1 else glx, f{x-1))

STM Compiling Schemes

The techniques described earlier can be applied to STMs provided we give
them a suitable algebraic structure. There will be one carrier, namely
the set STM of all state transition machines and one operator for each

n=0,1,2,... used to combine n STMs into a single STM.

To define the combination operator, identify certain control state names

s1 s sz, ... as linkage states. Given STMs m1 yeeey mh we define
combine (TT\1 seees mn) =mleom ! (concatenated equation sequence)

where !, ..., M ! are obtained as follows:

a) rename states as necessary so no two equations have the same

left—-hand~side control state

b) identify linkage states s1 B sz, ey s” with the entry states

of m1 geee ,mn, respectively.

A compiling scheme £ 4 STM will associate with each syntax operator
A A1 . An of £ a derived STM operator defined by a term involving
licombine!l. Figure 3 is an example of a compiling scheme ¢: SAL » STM
from a simple assignment language SAL into STM code (a continuation
semantics for the same language is given in Figure 2 - note its similarity

to the continuation semantics. For example, Figure 3 specifies that

(p[[stmt1;stmt2:[] =
combine ({s, <p,0,c> = sg (stmt;) <p,0,<s;,0,¢>,
sy <py0,c> = 54 (stmt,) <p,0,¢>1},

ol stmtl]], o[stmt,]

where so(stmtI) and sy(stmt,) are linkage states, identified with the

entry states of p[[stmt,]| and o[stmt,]l

Note that ¢ may be easily realized as a syntax—directed transduction.

SYNTACTIC DOMAINS

prog = stmt
stmt -~ id :=id | new id; stmt | stmt; stmt

id - identifier

SEMANTIC FUNCTIONS

run PROG =+ N =+ N (input and output in variable X
at location 0)
exec STMT 2 ENV S 2C 4N

SEMANTIC DOMAINS

loc LOC =N (location)
0 : ENV =N x (ID + LOC) (an environment is a pair
<max loc allocated, allocation function>)

C : C=S N (statement continuations)

BASE DOMAINS AND FUNCTIONS (undefined here)

[of . S (store)

inits ;. N=S (initial store - n in loc 0, O elsewhere)
fetch : S x LOC = N (load from store)

update : S x LOCx N=S (store into store)

SEMANTIC EQUATIONS

1. prog - stmt
runprog]n = execl[stmtTp inits(n) (A g. fetch(g, 0))
wherep =<0,Aid. id =X~ 0,4 >

2. stmt =+ stmt,; stmt2

exec[[stmtfo o ¢ = exec[stmt Tp ald c.exec[stmtzﬂp o c)

3. stmt < new id; stmt,
exec[stmtfo ¢ ¢ = exec[stmt]]p‘ oc
where o' =<pl1+1,pl2 + [idimpil + 1]>
4. stmt ~ id 1= id!

exec[stmtp ¢ ¢ = clupdate(g, (0 12)id', fetch(g, (o ! 2)id)))

Figure 2, Continuation Semantics of Simple Assignment Language

prog = stmt

S = so(stmt) <0,<5,>> inits(n) <s,>
s, ide = (id =X = [clo,L) [{initial environment]}
S, 0 = fetch{c, 0) {final answer in loc 0]

stmt - stmtl; stmt2

§0pgc = so(stmt1)og<51pc> {dostmtl}

5'1 pco = so(stmtz)p o c {then do stmt2}

stmt =+ new id; stmt

sg PO c = splstmty)<pil+d, <.S1p>>o'c {do stmt,}
s, pidc= (id=id" = [c]pti+1, [pi2]idc) { new env lookup
! function

stmt = id := id!

sg POC = [pi2]id' <s;poc> §find i'dlloc}
s, pocloc = [pi2] id <s, lococ> {find 1d. loc}
Sy loc g ¢ loc! = [c] update (g, loc!, fetchlo, loc)) {do assignment}

Figure 3. Compiling Scheme for Simple Assignment Language

Note: Tuple brackets on state arguments have been omitted, e.g.

the functionality of so inline 4 is so: ENV x S x C =+ N. For convenience,

inits, fetch, and update are taken as primitive operators upon the memory

state ¢.

12 13

A = prog 1. SO(A) n= SO(B)< 0,<s](A)>> inits(n) < SZ(A)> SYNTACTIC DOMAINS
ST(A) idc=(id =X = [c] 0,.1) prog + ex
3. sylAlo = fetch(o, 0) ex = con | var | exy ex, | Avar.ex, | base function | fix A var.ex, |
B = stmt 4, SO(B)p gc= so(c) <pl1+1, <s1(B)p> g c SEMANTIC DOMAINS
5. sBlo idc =id=Y4pli+, [p12] idc
C = VAL =+ A continuations
THUNK = C =+ A meanings of call-by name operands
VAL = CON + [THUNK + THUNK]
C= stmt 6. sO(C) oocC ={p12] X <ST<C)O o c> ENV = VAR = THUNK
7 s4(Clo o cloc=[pi2] Y <s,(C) loco c>
8. SZ(C) loc g ¢ loc! = SEMANTIC FUNCTIONS
[¢] update(g, loc!, fetchlg, loc}) run : CON =+ CON
new Y; Yoi=X ev : EXP 4 ENV =+ THUNK
SEMANTIC EQUATIONS
Figure 4, Example of a Compiled Program
runfprog] v = ev[prog](x xc. L)\ . f(x c.cv)(X vi. V1))
evlconp c = c(valuel[con])
ev[varTp ¢ = pfvar] c
ev[ex1ex2]] pc = evl]:ex1:f] o\ f. f(ev[ex2] p)c)
ev[[x x. exl]}p c = c(\ t.ev[[exd}(p + [xw t]))
ev[baseflp ¢ = cli tch.t{k v. v €& CON = cl{basefen(v)), error))
A Compiling Scheme from LAMC to STM ev[exy * exy, e><3]] oc=-eV[exﬂ]p (A\b. b € CON =
' (b= eV[exz]] pc, ev[ex3:ﬂ p ¢
Figure 6 contains a scheme for translation of LAMC terms to STM programs. error)
The scheme was developed by applying methods in [REY72] to figure 5 evfix X f.ex]pc = ev[ex]pc
and performing ad-hoc optimization. The conventions and techniques used where p! = X x ¢, (x=f~ ev[exﬂ}p' c, p[[x:[] c)

with figur‘e 3 can also be applied here to give a compiler.
Figure 5, Continuation Semantics of LAMC

prog + ex

%0

ex = con

so<p,c>

ex ¥ X.

so<p,c>

ex (ex1ex2)

so <p,C>

ex 4 Ax -exy

SO <p,c>

ex =+ basef ex,

50<p'c>
s1<i,c>

= so(ex) << >, <finish>>
= fc11l <valuefcond cl2>
= (x=pll)» [pi2] c, sy<pl3,c>

= So(ex1)<97 <<op, <So(e><2)1p>>; c>>

= (cl1i1 =9Q) ad SO(exl) <%, <cl 112>, P> ci2>,

err

so(ex1)<p, <<s >, c>>
[ci1] <basefen(i), ci2>

- ? ex,,ex
ex + ex, 21 6%3

so<p,c>

s, <€i,c>

1

= so(ex1)<P, <Ls P>, C>>

= |{=2s exz) <p,c>, SO(ex3) 49,(:)

o

ex + fix A X .exy

50<P,c>

= 50(8X1) <K, <SO’P>’ p>, c>

Figure 6. LAMC to STM Compiling Scheme

Construction and Correctness of STM-Schemes

Earlier we constructed a compiler by composing two syntax directed
translation schemes: one, the denotational definition A: L -+ LAMC,

the other, a map ¢: LAMC - STM. Now we show that the construction
method is universal, and computations using the translated programs

are correct. The key step in showing correctness is in describing a
close correspondence between computation in STMs versus leftmost
B-reduction in LAMC. Now, given a ¢, such as the one in figure 6, if

it can be shown that computation by a translated LAMC expression faithfully
simulates B-reduction, then ¢ can be considered ''correct!. This theorem
is proved in [Sch80] for one such @; it is shown there that the STM com—
putation simulates leftmost f~reduction upon head redexes {CUFSB}.

This allows us to state:

Theorem: For each language £ whose semantics is described by a denota~
tional definition C, there exists a compiling scheme from § into STM code

which produces programs correct with respect to C.

Proof By the above, (Zo ©)T is an STM equivalent to m, for any pro-
gram &£ in 7. Further, Ao @ may be described as a compiling scheme as
follows: For any production A -+ A1. . .An and semantic rule

C[A] =... A ... ClA.J ..., apply the LAMC-STM compiling
scheme to ... C[Aﬂ] . C[[An]] -++, and replace each C[A] in the re~
sult by SO(Ai)' This derived operator on STM associates with each pro-
duction and semantic rule a finite set of STM transition rules, and so

defines the required compiling scheme.

Remark This construction associates with each production a derived
operator on the STM algebra, specified as a term involving 'combine!.
These terms may be ''flattened! using properties of "combine! to yield

a specification in the style of example 3 or 6. For example if C. and C

0 1

are constant STMs then

combine(Cb, combine(C1,><)) = combine(C,! C

1
0]:x)

where CO‘ and C1‘ are obtained from C0 and C] by renaming control states.

This establishes the existence of compiler generators from (nearly)
arbitrary denotational definitions into STM code. Clearly the same ideas
could be used to translate into other object languages, or further trans-

lation could be applied to the STM object programs (one such example

is found in [KIT807).

Although the fundamental task has been achieved, a number of pragmatic
issLJes need resolution. Foremost is the improvement of the STMs produced
for programs in £. These tend to contain many compile-time evaluable
operations, such as symbol table fookups derived from §'s semantics and
trivial interface transitions used to join together STMs corresponding to
subtrees of a source program (both may be seen in figure 3). Part i
describes the use of flow analysis and mixed computation to produce more

economical STMs.

PART I OPTIMIZATION OF THE OBJECT CODE (Overview)

Assume we are given a state transition machine M which computes a
function f: IN =+ OUT. For a given control state, define its argument

to be dynamic (or runtime} if it depends functionally on

the input to M, and static otherwise. This notion is also generalized

to parts of a data item, e.g. a component of a tuple. A transition rule

is said to be dynamic if it cannot be carried out without knowledge of the
input value, i.e., if a dynamic object is involved in an essential way,
such as in a test, as operand of a base function, or as operand of a pop

transition,

Note that in the example of figure 3 transition rules 1, 3, 8and 10

are dynamic. Rules 4, 6, and 9 are used to pass control to other rules
associated with other nodes of the input parse tree; these rules are static.
Other examples of static computations are the access and update of environ-

ments (symbol tables), e.g. rules 2, 6, and 7.

Optimization after STM Creation

A general analysis and optimization of an arbitrary STM M can be achieved
in the following stages

i) analyze M to determine which state arguments or parts thereof
are static and which are dynamic. Compute the values of the
static arguments;

i) mark those transition rules which are static;

iii) combine each static transition rule with its successor
(which is unique since the transition is static). This is
known as chain collapsing.

iv) remove those static arguments whose values were computed in
i) as they no longer affect the computation. This is known as

argument simplification.

These steps create an STM in which each transition and data item depends

Argument type & Descripti N
upon the input arguments. The optimization resembles Ershov's mixed ription Lattice ¢

computation [ERS78] in that, to compile, one executes the program as Primitive domain N Nu |idepj where VY x € N, [ide
b - E

H N
completely as possible in the absence of input data, and outputs as the Product domain D e 'XDn D - .x'f)
. C f n
object program those residual program parts not executable at compile losure domain D 1X’ : .an D;
where D, s a domain 2 » & powerset lattice

time.
of control state names

A straightforward symbolic execution is not adequate, due to states which
may be repeatedly entered during execution, The solution is to do a flow In the first case the lattice is of the form
analysis, or abstract interpretation in the sense of Cousot [cou?7]
(certain extensions are needed to handle pop transitions). Briefly, the idep
idea is as follows. l

2
Abstract interpretation is done by associating with each control state s
an argument description &(s). The values of &(s) are elements of a description
lattice appropriate to the argument domain of s. Initially, each Q(s) equals
1 (indicating that nothing is known about the argument of s) except that the

e

entry state s, is described by &(s]) = jdep (indicating that its argument is

1

input dependent). The program is now abstractly executed in parallel, The special treatment given to clos : .
. . N))))) S ure domains stems from their elements!
updating each state descriptor d(s) as soon as new information is obtained use in pop transitions - it is a control domain Hence analysi fcl
. " aiysis of closure
about the argument of s. objects analyzes control,

. Viz. the set of possible successor states of a
given program state. The abstract interpretation needs to determine a set

Thus an atomic argument may have one of 4 descriptions: L (no information); of possible successors, and so the powerset lattice form i ired
Is required. To

a specific value, e.g. 17; ?, indicating that the value is not input depen- maintain the finite chain property we only record the state; the oth
3 e other

dent but is not known at compile time; and idep, input dependent. components may be recovered from the argument description at th |
a e place
where the closure was created.
We note that the principal domain types of STM states are primitive domains

and domain products. These and a third type, the set of closures, are The STM is viewed as defining a continuous fucntion G: AD - AD h
. , Where

assigned descriptors. Noting that the set of closures is a set of tupled AD is the domain of functions \ s.@(s). The minimal fixpoint fix G is th
* nx0 is the

esj i i f
desired analysis. Figure 7 contains the result of abstract interpretation on
lattices are as follows. the program of figure 4,

objects, one of whose members is a control state name, the description

Given this information, chain collapsing and argument simplification are
straightforward. Drawbacks to this method are;

20

1. Abstract interpretation is expensive in
time :(G must be jterated until each as has converged.

space : Retention of the memory state descriptions is necessary.

2 Properties invariant with respect to the language definition are

rediscovered each time a program is compiled.

3 The algorithm is a post processor rather than a compiler

generator.,
o sO(A) = idep
o s (A) = <X,§s1(C)}>
o SZ(A) = idep
wsyB) = < <0, {s(A)] > idep,ls,(A)] >
o s,(8) = < <0, {s(A)}>, ?,{51(c), s5,(C) >
a sy(C) = < <1, {si(e) } >, Idep,{s,(A) | >
as,(C) = <<1, {s](e)}>,ideg,{sz(A)}, 0>
a s,(C) = <0, Tis,A), 1>

Figure 7, Result of Abstract interpretation of Figure 4,

Scheme Analysis and Compiler Generation

Current research centers on the development of methods suited for flow
analysis of the compiling schemes themselves. Application of such algorithms
to the schemes would determine which elements of the definition are static
regardless of the input program being compiled, and hence can be

evaluated at compile time. For example, consider the language rule

Hstmt =+ new id; stmt]" from the scheme of figure 3. The associated STM
rules have two generic states - an entry state so(stmt) p o c, and an
environment application state sl(stmt) p id c. Analysis of the language'
scheme would reveal that p and c are static in so(stmt), but g is dynamic.
For si(stmt), all of p, id, and c are found to be static in behavior but

receive multiple values during compilation (i.e., their flow analytic values

map to '?!), The conclusion is that both transition rules are static {no
computation with dynamic arguments occurs). Since so(stmt) has a unique
successor, it can be collapsed with its successor rule. sl(stmt) has many
predecessors, but only a single successor for each. Thus it may be
eliminated in favor of a compile time computation which performs the

rule's transition each time it is encountered.

Such an analysis could be used to determine in advance which parts of the
scheme must appear in the object program and which parts may be evaluated
at compile time. Analysis of figure 3 reveals that all environment and
location computations are performable at compile time and that only rules

1, 3, and 10 need appear in object programs.

Further, such analysis could reveal those state arguments which can
receive only one value description during abstract interpretation. Using
this information and that above, a more efficient compiling algorithm may be
visualized which does not explicitly build the full STM, abstractly interpret
it, and then reduce it as described above. Instead, the algorithm accom-
plishes all these effects simultaneously by traversing the parse tree in a
way corresponding to the possible flow of control in the STM, keeping in
memory only those descriptions of STM states which are needed to do the
abstract interpretation. During the traversal, compile time values are
computed (e.g. p, loc). Whenever a runtime transition rule is encountered,
the necessary compile time parameters are inserted (e.g. loc in rule 10)
and the residual rule is added to the object program.

This method would appear to have both time and space advantages over
the preceding one.

22
23

References [McC63] McCarthy, J. Towards a Mathematical Science of Computation,
in IFIP 62, C.M. Poppelwell, ed., North-Holland
[ADJ79] Thatcher, J.W., Wagner, E.G., and Wright, J.B. Amsterdam, 21-28. ’
More Advice on Structuring Compilers and Proving Them
Correct, 6th Colloquium, Automata, Languages, and [MiS76] Milne, R., and Strachey, C. A Theory of Programming Language
Programming, Graz, Austria, 1979, Springer Lecture Semantics, Chapman and Hall, London, 1976,
Notes in Computer Science 71,

[MOR’73] Morris, F.L. Advice on Structuring Compilers and Proving

[AhU72] Aho, A.V., and Ullman, J.D. The Theory of Parsing, Translation, Them Correct, ist ACM Symposium on Princip] :
ples o
and Compiling, Prentice-Hall, Englewood Cliffs, N.J. 1972. Programming Languages, Boston, 1973, 144-152
4 ’ ’ - .
[BAC78] Backus, J. Can Programming Be Liberated from the von Neumann [MOs75) Mosses, P.D. Mathematical Semanticé and Compiler Ge ti
neration
Style? Comm. ACM 21-8, 1978, 613641, Ph.D. Thesis, University of Oxford, 1975,)
[BER?G] Berkling, K.J. Reduction LLanguages for Reduction Machines, [MOS?Q] Mosses, P.D. A Constructive Approach to Compiler Correct
. rectness
Rpt. 1SF~76-8, Gesellschaft fur Mathematik und DAIMI IR~16, University of Aarhus, 1979 ’
’ 3 .

Datenverarbeitung MbH, Bonn, 1976.
[RAS79] Raskovsky, M., and Turner, R. Compiler Generation and

[cou77] Cousot, P., and Cousot, R. Abstract interpretation: A Unified Denotational Semantics, Fundamentals of Computation Theory
Lattice Model for Static Analysis of Programs by Con- 1979, !
Struction or Approximation of Fixpoints, 4th ACM
Symposium onPrinciples of Programming Languages, [REY?Z} Reynolds, J.C. Definitional Interpreters for Higher-Order
Los Angeles, 1977, 234-252. Programming Languages, Proc. of the SCM National Con-

ference, Boston, 1972, 717-740.
[ERS78] Ershov, A.P. On the Essence of Compilation, in Formal
Description of Programming Language Concepts, [REY74] Reynolds, J.C. On the Relation Between Direct and Continuation
E.J. Neuhold, ed., North-Holland, Amsterdam, 1976, 391-420. Semantics, 2nd Colloquium on Automata, Languages, and
? b
Programming, Saarbrlcken, Springer~Verlag, Berling
[GAN79] Ganzinger, H. Some Principles for the Development of Compiler 1974, 141-156. ,
Descriptions from Denotational L.anguage Definitions,
Tech. Rpt., Technical University of Munich, 1979, [SCH80] Schmidt, D.A. Compiler Generation from Lambda-Calculus
Definitions of Programming L.anguages, Ph.D. Thesis,
[GOR79] Gordon, M.J.C. The Denotational Description of Programming Kansas State University, Manhattan, Kansas forthcomin
b .
L.anguages, Springer-~Verlag, Berlin, 1979. ’ ’
[SsTO77] Stoy, J.E. Denotational Semantics, MIT Press, Cambridge,
[KITBO] Kitchen, C. Compiling State Transition Machines into Machine Mass., 1977.

L.anguage, M.S. Thesis, University of Kansas, forthcoming.

