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MODIFIED DIAGONALLY IMPLICIT RUNGE~KUTTA METHODS

by

Zahari Zlatev

ABSTRACT The experimental evidence indicates that the im-
plementation of Newton's method in the numerical solution of or-
dinary differential equations ( y'=f(t,y), y(a)=yO, t€la,bl )
by implicit computational schemes may cause difficulties. This is
especially true in the situation where (1) f(t,y) and/or
£ (t,y) are quickly varying in t and/or v and (i1) a
low degree of accuracy is required. Such difficulties may also
arise when diagonally implicit Runge-Kutta methods (DIRKM's) are
used and when (i) and (ii) are satisfied. In this situation
the choice of L-stable numerical methods and/or the choice of
numerical methods which use minimal number of simple arithmetical
operations per step will not be very successful if Newton's
method fails to converge at many integration steps. In this paper
some modifications in the DIRKM's are suggested so that the mo-
dified DIRKM's (MDIRKM's) will perform better than the cores-
ponding DIRKM's when the functions £ and f! are quickly
varying only in t and (ii) 1is satisfied (more precisely,
these modifications can be considered as an attempt to improve
the convergence of the Newton's iteration in the above situa-
tion). An error estimation technique for the 2-stage MDIRKM's is
proposed. Finally, it is shown that the MDIRKM's are more effi-
cient than the corresponding DIRKM's when linear systems of or-
dinary differential equations are solved in the situation des-

cribed by (i) and (ii).




1. Introduction

Consider the initial value problem for first order systems
of ordinary differential equations (following Stetter [18] we

~shall call this problem IVP1 )
(1.1)  y'=f(t,y), y(a=y,, t € laplcr, ye P Miapns,

where S and P are positive integers.
Denote the true solution of the IVP1 by y(t). Con-

sider the grid
(1.2) GN={tv €la,b]l / v=0(1)N,tO=a,tv<tv+1 for v=0(1)N—1,tN=b}.

Very often numerical methods afe used to obtain approxima-
tions Y, to y(tv) at the points of the grid Gy ac-
cording to some error tolerance ¢ . The methods introduced by
Ngrsett [13] will be discussed in this paper. Following Alexander
[1] we shall call these methods diagonally implicit Runge-Kutta
methods (DIRKM's). An m-stage DIRKM is based on the following

formulae:

i
(1.3) ki(hn+1)=f(tn+uihn+1,yn+hn+1ji B..k (hn+1)), i=1(1)m;
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m
(1.4) yn+1=yn+hn+1ii1pik1(hn+1)
where hn+1=tn+1_tn is the stepsize used at step n+1
(n=0(1)N=-1), Bii=y (i=1(1)m) and it is assumed that all
yj (j=1(1)n) are already computed.

Denote: tn=x, h =h and Ay=y(x+h)-y(x). Assume that

n+1




yn=y(xn) . Let
m
(1.5) o, (h) = Ay—hii1piki(h) .
Use the Taylor expansion ( 0 < 6 < 1)
(1.6) o ) = 3 (I/3nelI () + WP/ (1) P (en)
3=0

It is well-known that the DIRKM defined by (1.3)-(1.4)

is of order (of consistency) P when

(1.7 930 =0, 3=0mp, o 0) # 0
Assume now that a DIRKM of order p>1 is used in the nu-
merical integration of (1.1). In general, some iterative pro-
cess must be used in the computation of ki(h), i=1(1)m, be-
cause (1.3) are implicit. Newton's iterative process is com-
monly used in the integration codes. The use of this process for
the solution of (1.3) is assumed in the further considerations.
Moreover, it is assumed that the simple Gaussian elimination is

applied in the decomposition (the LU factorization) of mat-

rix I—hyf§ (see Section 2). It is well-known that very often
an old decomposition (obtained at some previous step j , Jj<n )
can also be used at step n . Some examples where a new decom-

position is normally computed only when the stepsize is changed
can be constructed and arise in practice. Strategies, which at-
tempt to keep the old decomposition even after small changes of
the stepsize, have also been proposed and it has been verified

that they work perfectly for some problems (1.1) . Unfortu-

nately, there also arise situations where the old decomposition




of I—hyf§ can not be used during more than one step. Moreover,
for some problems (especially when a low degree of accuracy is
reguired) even several decompositions per step are needed. This
is true not only when DIRKM's are used but also for many other
implicit methods. Two examples are given below in order to show
that the average number of decompositions per step can be larger
than one. In Table 1 the numerical results given by Enright
et al [9, p. 23, Table 1] are used to compute the average numbers
of decompositions per step for five different codes and for three
values for the error tolerance. A wide range of test-problems is
used in [9]. It should be mentioned that the numerical results
for some of the test-problems are not taken into account in

[9, p. 23, Table 1]. This is so e.g. for problem D6 . The im-

plicit Runge-Kutta method, IMPRK , uses about 24.92 decom-
positions per step in the integration of D6 with e=10_2 (see
[9, p.46]). The numerical results obtained by SIRKUS (a code
Tolerance GEAR SDBASIC TRAPEX IMPRK GENRK
1072 0.27 1.47 1.72 6.67 2.67
1074 0.15 0.89 1.00 0.84 1.99
107° 0.09 0.61 0.55 0.23 1.87
Table 1

The average numbers of decompositions per step for the five co-

des tested by Enright et al (see [9, p. 23, Table 1]).

based on a DIRKM derived in [13]) in the integration of two che-
mical problems (described in [2,10]) are shown in Table 2. Note

that for the bigger problem (s=63) the average numbers of de-




Tolerance s = 15 s = 63
1071 1.79 2.27
1072 0.53 1.75
1073 0.12 0.89

Table 2

The average numbers of decompositions per step found in the in-

tegration of two chemical problems by the code STRKUS .

compositions per step are much larger.

The results in Table 1 and Table 2 show that it is worth-
while attempting to answer the following questions. When can an
old decomposition be used several times? If the problem is such
that more than one decomposition per step will be needed when a
DIRKM is used what can be done in order to improve the perfor-
mance of the DIRKM under consideration?

The following definitions will be useful in our efforts to
answer the above questions.

Definition 1.1. The IVP1 has property S 1if £f(t,y) and

f&(t,y) are slowly varying in t and vy

Definition 1.2. The IVP1 has property S if at least

one of the functions £(t,y) and f&(t,y) is gquickly varying
in t and both functions are slowly varying in vy

Definition 1.3. The 1IVP1 has property S* if at least

one of the functions f(t,y) and f&(t,y) is quickly varying
in t and at least one of these functions is quickly varying in
Y .

Consider the case where the error tolerance is moderately

large. In Section 2 a theorem proved by Kantorovich in 1956 (see




[11,12] is modified for the use of Newton's method for the so-
lution of (1.3) when (1.1) is solved by a DIRKM. The theorem
indicates that the average number of decompositions per step will
be smaller than 1 if the IVP1 has property &. The theorem shows
also that the success of the choice Bii:Y in the DIRKM's, in
an attempt to reduce the number of simple arithmetic operations
per step, depends on the convergence of the Newton's process. If
the problem has property S and/or if the error tolerance is
stringent, then the choice will be unconditionally successful
(the same conclusion holds for the implicit Runge-Kutta methods
derived by the Butcher transformation [5], see also [3] and [7]).
If this is not so then the Newton iteration will often fail to
converge and the number of decompositions per step may be larger
than 1 . 1In Section 3 some modifications in the DIREKM's are
proposed. The modified methods (MDIRKM's) can efficiently be
used when the problems solved have property S. An error estima-
tion technique for the MDIRKM's is proposed in Section 4. In
Section 5 it is shown that in the case where (1.1) is a linear
IVP1 the MDIRKM's will perform better than the corresponding
DIRKM's even if the problem has property S*. A brief discussion

of the results is given in Section 6.




2. On the use of Newton's method in connection with DIRKM's

Assume that some approximations kg(h), i=1(1)m, to the so-
lutions of (1.3) are available (only in this section the nota-
*
tion ki(h) will be used for the solution of the i'th system
(1.3)). Let (for i=1(1)m and g=0,1,...)
_ i-1

(2.1) £ (tm) ~ £0(t +a;h,y +h 2

k. (h)+hvkT(h)) .
3=1613 J( ) +hy l( ))

It is well-known that (1.3) can be solved by the quasi

Newton iterative process (QNIP) defined by (i=1(1)m, g=0,1,...)

(2.2)  [I-hyE) (r,m) 1k () -kF )1 = pxm)),

i
(2.3) P(ki(h)) = ki(h)—f(tn+aih’yn+hji18ijkj(h))'

For the QNIP the following theorem holds.

Theorem 2.1 Assume that

(2.4) I = [I-hyEf (T,n)]_1

y

exists. Let the following conditions be satisfied when kg(h) € Qi

14

(where @, is the closed sphere defined by I\ki(h)—kg(h) || < r
i=1(1)m):

i



(2.5 Jlre {m) || <A, i=1(1)m;
(2.6) |l el k() || < 5, i=1(1)m;
(2.7) IITPi%ki(h)) | < &, ki (h) € a; , i=1(1)m .
Then we have:
(1) Existence and unigqueness. If

- - 2 .
(2.8) hi = Kini/(’lméi) < 0.5, 8, < 1, i=1(1)m;
(2.9) T, > (1=V1-2h) (1-6,) /K, , i=1(1)m;
when for any i€ {1,2,...,m} the equation (1.3) has a solution

ki(h) € Qi y which is unigue if
(2.10) r, < (14/1-2R) (1-8,) /K, , i=1(Mm .

(1i) Convergence. If (2.5)-(2.10) hold the QNIP is

convergent (i.e. kj(h) € . , i=1(1)m, q=0,1,... ,and k3(h) = k¥(h)

é_s_qéoo).

(iii) Speed of convergence. If {k?(h)} is found by the

ONIP then (for i=1(1)m and g=0,1,...)

9 < [1=(1- 1-op 19+
(2.11) || k¥ (h)-kj(h) || < [1-(1 ai)V1 2h, 177 /Ky



Remark 2.1 The above theorem is a slight modification of

a theorem given by Kantorovich [11], see also [12,Chapter XVili]e
Similar results can be found in Robertson and Williams [14]
(where some conditions containing the eigenvalues of f§ are
used, see [14, p. 28]1). We prefer the formulation given by Kan-
torovich because it is very simple and allows us to draw imme-
diately some conclusions about the qualitative behaviour of the
ONIP (note that (2.6) measures the failure of T +to be equal
to P;1(kg(h)) and (2.5) measures the failure of kg(h) to
be a good starting approximation) .

Remark 2.2 Consider (2.8) . From (2.6), (2.4) and (2.3)

it follows that one can expect Gi to be small if f§(t,y) is
slowly varying in t and y . From (2.5) and (2.3) it fol-
lows that one can expect ;i to be small if the starting
approximations are good. In general, some extrapolation rules

are used to obtain starting approximations when implicit Runge-
Kutta methods are used. These rules will normally work well when
f(t,y) 4is slowly varying in t and y . Therefore one can ex-
pect that the same decomposition of I‘hYE&(T,n) can be used
several times (even if e is large) when the IVP1 has pro-
perty S .

Remark 2.3 If the IVP1 has property S or property S*

and if e is large then the strategy of keeping the old decom-
positions as long as possible is not efficient; this leads to

many rejected steps and extra computational work. In the above
situation the results will be poorer if an attempt to keep the

0ld decomposition even after small changes of the stepsize is



carried out (the number of rejections will be larger). If one of
the above strategies is combined with restrictions in the changes
of the stepsize then the algorithm so found may verform very bad-
ly (the convergence of the ONIP depends not only on h but

rather on f§ and f in this case). Therefore the last strategy
o L

may result both inVliarge number of steps and igwiarge number of
rejections. However, note that the implementation of any of the
above strategies will work very well if the IVP1 has property S

and/or if the error tolerance is stringent. See e.g. the perfor-

mance of IMPRK for problem D6 with e=10—2 and e=10_6 in

“2  {he results are catastrophic: 5657

decompositions and 231 steps. When e=10_6 the results are

[2, p. 46]. When =10

much better: 69 decompositions and 15 steps (note too that
the computing time is reduced by a factor larger than 100 ).

Remark 2.4 Ngorsett's condition, 8 vy (i=1(1)m), nor-

ii™

mally ensures that at most one decomposition per step is needed
when the IVP1 has property S. However, if the IVP1 has property

S or property S* and if e is large then one should be prepared
for an integration process where more than one decomposition per
step will be needed even if I—hyf&(tn+a1h,yn+hyk?(h)) is decom-
posed at each step. This is very unfortunate if, in addition,

the system (1.1) is large (the computational cost per decom-
position is O(sB) simple arithmetic operations, while the
computational cost of the QNIP without the decompositions is

O(sz)). Therefore some modifications in the DIRKM's in order

to improve their performance in the above situation are desirable.

Remark 2.5 The performance of the QNIP in the implicit

numerical schemes for solving IVP's 1 can also be improved by
the use of predictor formulae which produce better starting ap-

proximations. This approach is discussed in [14].
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3. Modified diagonally implicit Runge-Kutta methods

Introduce the sets: A={ui/i=1(1)m}, B={Bij/i=1(1)m,j=1(1)i},
and P={pi/i=1(1)m}. Denote the method (1.3)-(1.4) by DIRKM(A,B;P).
Consider also the set A*={ai=y*/i=1(1)m}. The method found from
a DIRKM(A,B;P) by replacing A with A* will be called a modified

diagonally implicit Runge-Kutta method (MDIRKM) coresponding to

the DIRKM(A,B;P) if both methods are of the same order. An answer
to the guestion of whether MDIRKM's can be constructed is given
by the following theorem.

Theorem 3.1 MDIRKM's of order up to 2 can be constructed.

Proof (a) Order 2 is attainable. The order of con-

sistency is 2 when (see (1.5)-(1.7))

The first of these equalities is trivially satisfied. Con-
sider the second equation. By the use of (Ay) '=d(Ay)/dh=y' (x+h)

=f (x+h,y(x+h)) it is clear that

1 m m
(3.2) wm( )(h)=f(x+h,y(x+h))—_E piki(h)—h.E pi(dki(h)/dh)
i=1 i=1
where
i
(3.3) dki(h)/dh=Y*f£(X+Y*h'yn+hji1Bijkj(h))
i i i
+£f' (x+vy*h,y_+h T , . k. (h X ,.K.(h)+h 2 .. (dk. (h)/d .
OV Ry R T 6y gk ()2 8y gicy (4 T 6y (@ky () /an) )

From (3.2) and (1.3) it follows that
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m
(3.4) o (O)=(1—_Z1pi)f(x,y(X))
l:

and therefore wm(1)(0)=0 implies

Consider the third equation (3.1). By the use of (ay) "
=d2(Ay)/dh2=f£(x+h,y(x+h))+f§(x+h,y(x+h))f(x+h,y(x+h)) the fol-
lowing equality can be obtained

m

(3.6) (2) ()= (ay) " =2 I b, (aK. (h) /dh) <k I p. (d%k. (h) /dn2)
. @m ( = Y i=1pi i i=1pi i

From (3.6), (1.3) and (3.3) it follows that

m
(3.7 @!? (0)=(1-2¢*

lh1pi)f£(x,y(X))

m
+(1-2y* © p

1_1'i.

i
T R,L)E(x,y(x))E(x,y(x))
3:

1ij Y
and it is clear that w£2)(0)=0 implies

(3.8) vy*¥=0.5 and

It is readily seen that the coefficients of the method can
be chosen so that (3.5) and (3.8) are satisfied (and the or-
der is 2 ). If e.g. m=2 is chosen then the same set of coef-
ficients (p1, Pyi Byy and y) as the set considered by Ngrsett
[13, p. 43, formulae 6.9] will be found. Therefore MDIRKM's of
order 2 can be constructed.

(b) No MDIRKM of order 3 can be constructed. This is

trivial; a quadrature formula based on one point cannot be of
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order higher than 2

[m}

Corollary 3.1 It is possible to construct L-stable

MDIRKM's of order 2

Proof Assume that an MDIRKM of order 2 with m=2 corres-
ponding to any of the Ngrset methods in [13, p. 43, formulae
6.9] with v satisfying y2—2y+0.5=0 is constructed as described
in the proof of Theorem 3.1. Apply the method so found to the
test-equation y'=Ay (A€R_). Then the two methods (the MDIRKM
and the Ngrsett method) are equivalent. Therefore the MDIRKM is
L-stable (because the corresponding Ngrsett method is).

o

Remark 3.1 In this paper we shall consider only L-stable

MDIRKM's with m=p=2. For these methods A*¥={0.5, 0.5}. We shall
compare¥Yperformance of such MDIRKM's with the performance of the
corresponding DIRKM's (i.e. DIRKM's which have the same sets of
coefficients B and P as the MDIRKM's under consideration).

Remark 3.2 If the IVP1 has property S and/or the error

tolerance is stringent then the use of a MDIRKM will not give
any advantage compared with the use of one of the corresponding
DIRKM's. Note that if the IVP1 has property S and if it is re-
written in autonomous form, then both methods will perform
in the same way. Note too, that in this case the use of DIRKM's
of order larger than 2 may be more efficient than the use of
a MDIRKM (see also Section 6).

Remark 3.3 Let € Dbe large. Assume that it has been es-

tablished in some way that the IVP1 has property S. Then

b,y +hykd (1) 10T () -3 () 1=p (kT ()

(3.9) [I—hyf&(tn+a1
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can be used instead of (2.2) in the QNIP. This means that we
agree to perform a decomposition at each step but we shall at-
tempt to avoid the use of more than one decomposition per step.
If any 2-stage DIRKM is used then (3.9) will not help very much
(often the QNIP will not converge at the second stage because
u1#u2). It is clear that the use af a 2-stage MDIRKM (where
u1=a2=0.5) will be more efficient in this case.

Remark 3.4 The modification of the OQNIP as in Remark 3.3

is the most efficient way to solve non-linear problems (1.1)

(in the situation described above) with MDIRKM's. But
this is not the only way to use the MDIRKM's. They can also be
used with a QNIP based on (2.2). However, for the special situa-
tion considered here the use of the ONIP based on (3.9) is much
more efficient.

Remark 3.5 Theorem 3.1 and Corollary 3.1 have been

proved for linear systems of ordinary differential equations in
[16], where the 1linear function (with regard to the second

argument y ) A(t)y+b(t) is used instead of f(t,y).
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4. Error estimation technique

A device which can be used to control the local truncation
error during the integration process performed by some 2-stage
MDIRKM of order 2 will be described in this section. The follow-
ing statements, which are well-known (and only slightly modified
for our methods), are needed before the formulation of the main
result in this section (Theorem 4.2).

Definition 4.1 Consider the IVP1 defined by

(4.1) y’=f(trY) 7 y(tn)=yn .

Assume that an m-stage Runge-Kutta method (not necessarily

an MDIRKM or a DIRKM) of order p is used to find Y41 - Then
Dy (Pt+T) P -
(4.2) T, 4=(0, (0)/(p+1) 1)h (h=h_, )

will be called the principal part of the local truncation error.

Theorem 4.1 Assume that vy is computed by an MDIRKM

n+1

(with m=p=2). Consider another Runge-Kutta method of order 3

defined as follows: k1(h) and kz(h) are the vectors computed

by the MDIRKM®,

m
(4.3) ki(h)=f(tn+uih,yn+hj=1Bijkj(h)) ’ i=3(1)m ,

(4.4) 9n+1=yn+h

Then if the terms which contain h4 are neglected in (1.6)

the principal part of the local truncation error can be written

in the following way
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2 A

nt1 " Yn+1 Y4 ™h

i

(4.5) T

I oo
I~ 3
o]

l,_l.
-
=

{ﬁi‘pi)ki‘h’+hi
The problem is: how to choose the auxiliary method

(4.3)-(4.4)? It is not possible to construct an MDIRKM of order

3 (see Theorem 3.1). It is not desirable to use implicit formulae

in (4.3) (this may cause extra decompositions). Therefore the

only choice, which will ensure that the arithmetical cost of the

error estimator formulae (4.3)-(4.4) is O(sz) , 1is B 0,

ij
i=3(1)m, j>i. By this choice the following theorem can be proved.

Theorem 4.2 The smallest number m which allows us to

construct an error estimator (4.3)-(4.4) with explicit formulae

(4.3) for a 2-stage MDIRKM of order 2 is four.

Proof The method (4.4) will be of order 3 if its coef-

ficients satisfy the following conditions:

m
(4.7) L §i=1 ,
i=1
m A
(4-8) z piOf/i=O-5 ’
i=1
m A 1
(4.9) 2 p, I B,.=0.5
i=1 13- 13 '
m
A2
(4.10) .Z piui~1/3 ,
i=1
m A 1
4.11 I P.a. I B..=1/3 ,
( ) i=1plal =1Blj /
m A 1
4.12 LD, oz .=1/6 ,
( ) i=1plj=1alﬁlj /
(4.13) - ] 1/6
. I P, L B,. ¥ B, = )
i=1 ty=1 tIy=q IV
m 1
(4.14) B, (= si.)2=1/3
i=1 *t g=1 HJ



16.

(a) Let us choose m=3. Then it is easily seen that the
system (4.7)-(4.14) has no solution (consider e.g. (4.7), (4.8)
and (4.10) and take into account that (3.5) and (3.8) must also
be satisfied). Note that when m=3 system (4.7)-(4.14) is a
system of 8 equations with 6 unknown variables.

(b) Assume that m=4. Then (4.7)-(4.14) is a system of

8 equations with 11 unknowns. It can be proved that this system

has a solution.

Remark 4.1 If the system is linear, then (4.14) can be

removed. Nevertheless, again only a 4-stage error estimator with
the 2-stage MDIRKM's can be constructed, see [16]. Fowever, it
is possible to construct special error estimators for linear sys-
tems; see more details in the next section, where the difference
in the behaviour of the MDIRKM's for non-linear and for linear

systems is discussed.

5. Application of MDIRKM's in the solution of linear systems

Assume that

(5.1) f(t,y) = A(t)y + b(t)
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The use of a 2-stage MDIRKM in this case may be very ef-
ficient. This can be explained as follows.

(i) The discretization of a linear IVP1 leads (at each
step n , n=1(1)N) to the solution of two linear algebraic sys-
tems with the same coefficient matrix, I—hyA(tn+0.5h), when
a 2-stage MDIRKM is applied. The use of the corresponding DIRKM
results in two linear algebraic systems also, however their coef-
ficient matrices are different. This means that if one replaces
the QNIP by the simple Gaussian elimination (GE) then the MDIRKM
will require one decomposition per successful step, while two
decompositions are needed with any 2-stage DIRKM.

(ii) If a two-stage MDIRKM is used with GE then the problem
of finding good starting approximations kg(h) is avoided. Note
that the problem of determination of good starting approximations
is very important for the performance of the QNIP, see (2.8),
(2.5), (2.2) and Remark 2.2. When linear multistep methods are
implemented the starting approximations are normally computed by
some explicit formula which is of the same order as the implicit
formula used at step n (n=1(1)N) and one may expect them to
be good. It is not so easy to find good approximations when im-
plicit Runge-Kutta methods are used. Therefore when the problem
is linear the use of GE , where starting approximations are
not needed,may be very efficient (see [16,17]). The problem of
finding good starting approximations will also be avoided if
DIRKM's are used with GE (but the use of DIRKM's with GE is
not so efficient, see (i)). If DIRKM's are used with QNIP then
an old decomposition (obtained at some previous step j) can be
used to compute starting approximations at the current step n
(n>j), however this will be successful when the linear IVP1 has

property S and/or when ¢ is small. If this is not so then one
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can attempt to use the QNIP with (3.9). In this way no problems
with the starting approximations arise at the first stage of the
DIRKM. However, the second stage may cause difficulties (rejec-
tions of the step; this is very unfortunate because if this hap-
pens then the first stage has to be recomputed also).

(iii) The linearity of the IVP1 can be used to develop spe-
cial computational schemes for linear problems (the computational
scheme consists of the basic MDIRKM and of the error estimator
(4.3)-(4.4)). In this case (4.14) is not needed (this condition
arises from equating the coefficient before f&& to zero; note
that for the DIRKM's where ai=.E18ij (4.14) is equivalent to
(4.10) and (4.11) and we can no%usee how the linearity of the
IVP1 can be exploited to develop special computational schemes
whose basic method is a DIRKM and which are valid only for linear
problems). A special scheme for linear systems (see [16]) is
given below.

(5.2) k (h)=A(tn)yn+b(tn) '

3
(5.3) A=I—h(1—v§/2)A(tn+h/2) ,

(5.4) Ak1(h)=A(tn+h/2)yn+b(tn+h/2) ,

(5.5) Akz(h)=A(tn+h/2)[yn+h(v§—1)k1(h)]+b(tn+h/2) ,

(5.6) yn+1=yn+(h/2)[k1(h)+k2(h)] '

(5.7)  ky(h)=a(t +h) {y +h[(V2-1) (k; (h) -k, (h))+kq(h) I}+b (£ +h) ,

(5.8) || o2, 1,=(1/6) || k, (h)+k, (h) -k, (h) =k, (h)

NS

This scheme is very efficient because (a) only one decom-
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position per step is needed, (b) only two matrix computations
per step are performed ( A(tn+h) can be used at the next step),
(¢) if the step is rejected and has to be recomputed with a
smaller stepsize then it is not necessary to recompute k3. Note
too that in the code described in [16] matrix i=(1—v5/2)_1h_1A is
used instead of A. In this way the computational cost needed to
obtain the coefficient matrix of the linear algebraic systems
(5.4) and (5.5) is reduced from O(sz) to 0(4s) (here the fact
that the right-hand sides of (5.4) and (5.5) have to be divided
by (1-V2/2)h is also taken into account).

The computational scheme described above has been tested in
the solution of chemical problems arising in the nuclear resonance
theory (see [2,10]) and has been compared with the code SIRKUS
(based on a DIRKM described in [13]; it should be mentioned that
some previous investigations had shown that SIRKUS is the best
solver for these chemical problems among several codes tested

in [15]). The computing time is 3-5 times smaller When the

code Y12NBF (the code based on the above scheme) is used, see

Table 3.
Tolerance s = 15 s = 63
EPS0=500 ’ 11(47) 180 (1067)
EPS0=400 13(51) 231(1081)
EPS0=300 13(53) 231(1105)
EPS0=200 16 (56) 261(1200)
EPS0=100 21(65) 340(1285)
Table 3

The computing times obtained in the solution of two chemical
problems on UNIVAC 1100/82 by Y12NBF and SIRKUS (the results

for SIRKUS are given in brackets, the aefoc tolevanca, EPSO )

s rnteodncedl im [45]},
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It must be mentioned that the linearity is not exploited by
SIRKUS. The results can be improved by using the linearity but
will still be poorer than the results obtained by the code based
on an MDIRKM,

In all considerations in this paragraph it is assumed that
the problem has property S or property S* and that the error
tolerance is not stringent.

(iv) The use of 2-stage MDIRKM's of order 2 with GE will be
very efficient even if the linear IVP1 has property S* (and ¢
is large). This is not so when a2-stage DIRKM is used because it
is not efficient to replace the QNIP with GE (at least if s is
large) and the fact that the IVP1 has property S* will cause
difficulties in the performance of the QNIP (when the QNIP is
based on (3.9) this is true for the second stage).

(v) It is easy to implement sparse matrix technique for
the computational scheme (5.2)-(5.8). This has been done in [17]
by the use of some ideas described in [19,20,22]. Numerical re-

sults are also given in [17].

6. Some concluding remarks

It is necessary to emphasize that the MDIRKM's will be ef-
ficient only when the IVP1 has property S (also property S* when
the problem is linear) and ¢ is large. If this is not so then
DIRKM's of order p>2 may perform better. If the error tolerance
is stringent then the code STRIDE (see [4,7,8]), which is based
on singly implicit Runge-Kutta methods ([3], see also [6]; these
methods are derived by the use of a transformation proposed in
[5]) implemented in a variable stepsize variable formula manner,

will work much better than any MDIRKM (whose order can not ex-




21,

ceed 2). This means that the MDIRKM's must be used carefully.

If the problem is large and if the user can establish that the
non-linear IVP1 (which has to be solved) has property S then

the use of MDIRKM's will normally be very efficient. The use of
MDIRKM's with large linear problems may also be very efficient,
especially if the linearity is exploited. Note that large linear
problems arise often in practice (e.g. in the solution of some
parabolic partial differential equations, see [21], or in che-
mistry, seel17]) and an investigation of the properties of the
problem may result in a considerable improvement of the efficiency

of the numerical integration when the right method is chosen.
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