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ABSTRACT
Let n €N, melN, D EmmX1 and A,Emmxn be given. Assume
that m<n apmd rank(A)=n. Consider the problem: find vector
nx T + . . "
x €R from x=A b where A is the pseudo-inverse of A.

A general scheme for obtaining approximations x to x 1s pro-
posed. It is shown that if the computations are performed with-
out rounding errors then X=x. It 1s demonstrated how some well-
known and commonly used special methods can be found from the
general scheme. In the case where A 1is large and sparse some
general rules (use some sparse matrix technique, choose carefully
the pivotal strategy, select a large drop-tolerance, perform ite-
rative refinement of the solution found by the general scheme),
which often lead to a considerable reduction of the computing time
and/or the storage needed and to an improved accuracy, are given.
Assume that: (A) a part of the computations can be performed with-
out errors. Then from several theorems 1t follows that: (i) there
exists a relationship between the drop-tolerance and the condi-
tion number of the coefficient matrix, (ii) the iterative pro-
cess can sometbtimes be accelerated. Many experiments have been
carried out in order to show that there is a tendency that

(1) and (ii) hold even if the assumption (A) is removed.

The efficiency of the suggested general rules is illustrated

by numerical results.



1. The general k-stage direct method: definition and examples

Let n €W , m e M, b £ RmX1 and A € rM*N be

given. Assume that mzn and rank(A)=n . Denote by A+

the pseudo~inverse (or the Moore—Penrose generalized inverse,

see [30,32] Y of matrix & . It is clear that the assumption
~ . . to,m =1 T . _ )
rank(A)=n implies A'={ATA) AT . Consider the following
. . . = nx1
problem: find an approximation x € R to the vector
x € an1 given by

Note that X can eguivalently be considered: (1) as

a least-squares solution (i.e. &5 the vector which minimizes

Hr||2 where r=b-Ax ) or (ii) as the solution of the
system Ax=b-r where ATr:O is satisfied.
In this paper it will be shown that: (i) most of the

direct methods used in the approximate solution of {(1.1) can
be found as special cases in a quite general scheme, (ii) some
general rules will normally lead to a considerable improvement
in the performance of many special methods in the general schene
when problem (1.1) is large.

Assume that it is possible to replace problem (1.1) Dby

the following problem

(1.2) y =3, B ERT, pe€w, aqa€w, pxa,

where (i) B and c can be computed from A and



b, (ii) +there exists a simple relationship between X
and v
Use the following two steps to obtain an approximation Y4

to the dolution vector Ng of  (1.2)

Step 1 = Generalized decomposition. Compute

(1.3) B. = P.B.Q. + E. , i=1(1)k k € N ,
1 1 1 1

where Pi and Qi are permutation matrices (if Bi is

symmetric for some 1 and if the symmetry is exploited in

(1.3) , then Qi?P? ), E. are perturbation matrices, B,

—_—
is such that B£Z (where A is an arbitrary vector of ap-

propriate order) ‘can easily be computed; if k > 1 then
(1.4) B. = C.C.D. , B. = C.C.C. , i=1(1)k-1

( Di are gsuch that Dzzi N Zi are arbitrary vectors of

appropriate order, can easily be computed).

Step 2 - Generalized back substitution. Compute vector

vy by the use of

k-1 -

k-1
» g L T
(1.5) v, = ([“]Q.Df)QkB{{Pk(mPZC.)lc ,
' 1=1

. 11 171
1=

where it 1s assumed that the terms 1in brackets are equal to the

identity matrix I (of appropriate order ) when k=1.

It ig clear that if Y4 is an approximation to y then

the relationship between be and y can be used to obtain



an approximation X to the soluwtion of (1.1) from Y4
Therefore 1t 1s necessary to prove that ¥4 will be a good
approximation to y when the perturbation matrices B.

1

(i=1(1)k) are sufficiently small. Denote

it R L. = N N axp
(1.6) H = (fijiDi>QkBkPk(fj1Pici) ,  H € g+t
1=1 1=1
and
(1.7) F'=1 - HB,, F e RY*Y, T e gi*d
Then the following theorem holds.
Theorem 1.1 Assume that Ek and Di (i=1(1)k~-1)

have a full column rank. Then

(1.8) F = % H,
j=1"

with

k-1 k-1 J-1

; SN T, (T T T, T

(1.9) u, = (Ifa;poe P (1 1p7C,) PLELa (T 1a 030"

1= 177 1=1
where j=1{1k and all products are assumed to be equal to

the identity matrix of an appropriate order when the upper index

is smaller than the lower one.

Proof By the use of (1.7) , (1.6) , (1.3) and (1.4)

the following equality can be obtained



R R Sl S SN L7
(1.10) F=1- ([:1QiDi)QkBkPk(§:lPiCi) Bg(fmTQiD.) v,
By successive use ( k-2 ‘times ) of (1.10) , (1.3) and

(1.4) +the equality (1.10) will be transformed into

k-1 N _ k-1 T k-1
(1.11) F =1 - (}:1QiDi)QkBkPkBk(£:1QlDi) + ji1HJ

By the use of (1.3) +the last equality can be rewritten as

follows

The second term in the right-hand side of (1.12) is
equal to the identity matrix (the assumption that the matrices
involved in this term have Tull column rank should be used in

the proof of this statement) and, thus, the theorem is proved.

]

Corollary 1.1 1f  ®.=0 (i=1(1)k) then H=B# . If,

moreover, the computations by (1.5) can be performed without

rounding errors, then Y=Y

Of course, the real computations are always connected with
some perturbations (i.e. in the real computations Ei¢0 s
i=1(1)k ). Nevertheless, Theorem 1.1 and Corollary 1.1 in-
dicate that N found by (1.5) can be considered as an ap-

roximation to v and this (in connection with the relation



between X and y ) Jjustifies the following definition (but
does not remove the necessity to check if the approximation ob-
tained satisfies the accuracy requirements; this will be dis-

cussed in Section 2 ).

Definition 1.1 The computational scheme given by Step 1

and 8Step 2 1s called a general k-stage direct method for solv-

Six e€xamples are given below in order to i1llustrate how this
general treatment of the direct methods can be applied to some
particular algorithms which are well-known and commonly used in

practice.

Example 1.1 Let m=n . Then the classical Gaussian

elimination can be found from the k-stage scheme with k=1 and

nxn . . . .
where L &R is a unit lower triangular matrix and

U e r™H is an upper triangular matrix.

g
This example is very simple and will be used as an illustra-

tive example in the following sections. Therefore it is useful

to give the main formula applied in the Gaussian transformations:

1] 1] is "8 ss ss 1] 1]

(1.14) a(§+1> a(s)—a(s>a(s>/a(s) a(s>#0 3§1)~a . € A

Example 1.2 Assume that the normal equations are solved




by some symmetric version of the Gaussian elimination. This

special method can be found from the k-stage scheme with k=1
and

N o _ _ T o=t Ty=1_—-1_-1  —_
(1.15) B,=A"A, c=A"Db, y=x, B,=L D L., B (LC) D, L, s X3y,

where LC e gH*° is a unit lower triangular matrix and
DC e g4 is a dlagonal matrix.
Example 1.3 Consider the method where augmented matrices

and Gaussian elimination are used. This method can be found from

the general k-stage scheme with k=1 and
-1
al A b o T _ 1 1

(1.16) B, = , c= , v , B.=L U , B.=U L ,

1 AT 0 0 « 1T Taa 1 a ~a
wvhere 1f g=m+n then La € R4 is a unit lower triangular
matrix and Ua e g3*¢ is an upper triangular matrix. The ap-
roximation x is the vector formed by the last n coordil-

nates of the approximation ¥y found by (1.5).

Denote by

the singular values of matrix A. Then o~ On/VE in (1.6)
ensures that the spectral condition number of matrix B1 satis~-

fies k(B.) =~ . Vor(a) , see e.g. Bjorck [5] . Note that

1

A) for matrix B1 in Example 1.2. Duff and Reid

[16] report good results with the choice a=1 . However, if



e.g. o, N Ve then the choice a = 1 will give

K(B1) ™ K2(A) (i.e. the same result as the normal equations);

see more details about the choice of a in Bjdrck [5]
Example 1.4 Consider the case where the Peters-Wilkin-

son method is used (see [33]). This method can be found from the

general k-stage scheme with k=2 and

1 T "pp T T 1 1 p‘
T = = =T o =Ty -l=-1--1 =
(1.19) B.=LL , B.=L DL , B.=(L ) D L , x=y._;
2 ppP e ppp 2 ' p PP 71
where Lp e g0 is a unit lower trapezoidal mabtrix, Up € r™H!
is an upper triangular matrix, in € g*H is a unit lower tri-
. = nxn - . .
angular matrix and D€ R 1s a diliagonal matrix.

b

Note that one can expect that the computations in the second
stage will be performed with the same degree of accuracy as those
in the first stage 1°f k(L ) ~ Ve(a) . No theoretical proof
that the Gaussian elimination applied during the first stage
(1.18) produces matrices Lp whose spectral condition numbers

satisfy the above relation is known. However, some heuristic con-

siderations indicate that the ill~conditioning of A reflects
normally in U and the lower matrix L is often well con-
ditioned ([33] , =see also Cline et al. [10]1). Therefore it is

not a surprise that the numerical evidence shows that the method

is often numerically stable (see e.g. [16]).

Lxample 1.5 Consider the case where some orthogonal

decomposition of matrix A ig used. This method can be found from

the general k-stage scheme with k= and



- -1 -1 -1_T -
(1.20) B,=A, c=b, y=x, B,=RDS, B,=8 D R, x=y, ,
where R € mmxn 1s such that RTR =71 € r" R p € g1
. . . nxn . .
is a diagonal matrix and S € R is an upper triangular

matrix. If the Householder method or the Givens method i1s used

then D=1 3 1if the Gentleman-Givens method 1s used then D#T

Example 1.6 Another version of the method described in
Example 1.5 —can be derived as follows. Let k=2 . Assume that
Pi=Qi=I’ i=1,2, Denote by P, Q, &, R, D and S the
matrices used in (1.3) and (1.20) for Example 1.5 (i.e. ig-
nore the index 1 in the matrices used in Example 1.5 ). Then
(1.3) gives PAQ+E=RDS . Now & two—-stage method can be de-—
fined by

(1.21)  B.=ATA, c=A'b, y=x, §1=ATPPRDSQT, E1=ATPLEQT, c.=T1,

Wote that if the method from Example 1.5 is modified as above
then the orthogonal matrix R does not participate in the
computaltion of Yy and, therefore, it 1s not necessary to store

this matrix when the above method is applied.

The general k-stage scheme will be used in the next section
in order to investigate the problem of how to find some general
rules which applied to any particular method will normally im-

prove its efficiency when the problem (1.1) 1is large.



Note that the permutation matrices used in (1.3) and
(1.5) arise from the pivotal interchanges performed during the
generalized decomposition. These interchanges are very important
in the attempt to improve the efficiency of the method when
large problems are solved. By including the permutation matrices
in the description of the general k-stage direct method we
want to emphasize that one should be very careful in the choice
of “hese matrices ( or, in other words, in the choice of the
pivotal strategy; see also Section 6.1 ) and that the method
selected will be improved considerably when the right choice of

these matrices is made (when the problem (1.1) is large).



2. Practical aspects in the implementation of the general k-stage

direct scheme in the solution of large problems

Consider the pseudo-inverse solution (1.1). Assume that:
(1) n is large (say, - n > 100 ) and (ii) A is sparse
(i.e. many of its elements are equal to zero). Suppose that the
problem is to be solved by some direct method selected from the
general k-stage scheme described in Section 1 . In the practical
implementation of the method chosen it is important to satisfy

the following regquirements:

Requirement 1 The storage and the computing time needed

to obtain an approximation x to vector x from (1.1) must

be minimized.

Regquirement 2 Let € be an error tolerance (prescribed

Lwl

in advance). Then an attempt to check whether | oe-xl]] < € or

not has to be carried out.

Note that: (i) normally €, is not very stringent, but
nevertheless the a priort bounds known are very pessimistic
and can not be used in the check from Requirement 2 and (ii) in

general, 1t will be impossible to satisfy simultaneously both Re-
guirement 1 and Reguirement 2, therefore some compromise has to
be found.

Let us begin with Requirement 1 . It is well known that

some sparse technique has to be used in order to satisfy this re-
guirement (see e.g. BjSrck [3,5], Duff and Reid [17], Gustav-

son [26,27], Tewarson [41]). Roughly speaking, this means that:

(i) only the non-zero elements of the matrices Bi and Bi



(i=1(1)k) are stored, (ii) an attempt to perform only the
arithmetic operations which lead to alterpations is carried out
(e.g. the computations by formula (1.14) are not performed when

a.”’'=0 . and/or a(s)

h 63 =0 ), and (iii) +the pivotal interchanges

are used not only as an éttempt to preserve the numerical stability
of the computations but rather to preserve the sparsity of the
matrices Bi- (i=1(1)k). The last statement, (iii), is

very important and 1t 1s necessary to explain it further. Look at

formula (1.1k4) again., It is clear that 1f a§§>30 but neither
, . .
a§5>x0 nor a($>=0, then a€§ 1>%O, 1.e. & new non—zero
18 sJ J
element (fill-in) is created in position (i,j). Such new non-

zero elements are normally created by any direct method. Their

number may sometimes be very large (see e.g. Brayton et al. [8]).
. . nxn

There exist examples where matrix 81 ¢ R has 3n-2 non-

zero elements, while the sum of the non-zero elements of L

g

and Ug (found by the Caussian elimination) is n2 when the
pivotal strategy is not carefully chosen (see e.g. Reid [36],
pp. 108-109). To preserve the sparsity of matrices Bi means
to reduce the number of fill-ins generated in Step 1 of the
general k-stage direct method. It i1s worthwhile underlining here
that the preservation of the sparsity by choosing appropriate
permutation matrices will normally imply a loss of accuracy (this
will be illustrated in Section 6.1).

Another means of preserving the sparsity, which 1s sometimes
extremely efficient, is the use of a special parameter T
("drop-tolerance", see Tewarson [41], Clasen [9] and Wolfe
[47]) so that if an element found during the computations in
(1.3) 1is smaller (in absolute value) than T then it is re-

placed by zero (thus the location occupied by this element becomes

in fact free and can be used to store another element). The use



of large values of T may give.much better preservation of

the sparsity than the use of T=0 (see [48,56,37,53]). Note that
the use of positive values of T is also recommended by

Reid in [35]. However, this will normally lead to a loss of
accuracy also.

The above considerations show that the preservation of spar-
sity {in other words, the efforts to satisfy Regquirement 1) must
as a rule be connected with an attempt to regain the accuracy
lost. This can usually be done by adding iterative refinement

to the general k-stage direct scheme as follows.

Step 3 - Generalized iterative refinement. Continue

the computations after Step 2 in the following way

(2.1) r. =c - By, , i=1(1)p-1;
(2.2) d, = Hr, , i=1(1)p-1;
(2.3) vy, =¥y * o4 i=1(1)p-1;
where different stop-criteria (see Wilkinson [43,44], Stewart

[40] and Bjdrck [4]) are used to terminate the iterative process

after some i=p-1 . This means that yp is usually accepted
as an approximation to v The approximation % has to be
found from yr by the use of the relationship between X

and v

Fortunately, the iterative process gives also an estimation
of | x-x|] i.e. satisfies automaticdally Reguirement 2.

It 1s clear now that a reasonable compromise in the efforts



to satisfy Requirement 1 and . Requirement 2 vhen n is
large and A ig sparse can be found by using an algorithm based
on the following rules:

(i) Select some sparse matrix technique.

(ii) Choose carefully the pivotal strategy (so that it pre-
serves the sparsity better).
(ifi) ©Specify a large value for the drop-tolerance T
(iv) Attempt to regain the accuracy lost during the gene-
ralized decomposition by iﬁerative refinement.

In the following sections it 1s often assumed that the par-
ticular method selected from the general k-stage scheme is im-—
plemented so that the above rules are satisfied. The results given
in Section 3 indicate that there exists a relationship between
the drop-tolerance T and the condition number of matrix B1
A practical device which sometimes accelerates the speed of the
convergence of the iterative process (2.1)-(2.3) 1is proposed in
Section 4. Some numerical examples which illustrate how efficiently
the rules described above can be used 1in the solution of large
problems (with different special methods) are discussed in

I

Section 5. Some concluding remarks are given in Section 0



3. Convergence of the iterative process (2.1>“(2.3)

In this section 1t is not assumed that matrix A 1s sparse,
i.e. the results are also valid if this matrix is dense.

Consider the iterative process defined in Step 3 (see
Section 2). Assume that (1.5) and (2.1)-(2.3) can be performéd

without rounding errors. Rewrite (1.2) in the following form
(3.1) s = c - By, s € RPX1,' Bls = 0

Then the followlng three theorems are needed before the

discussion of the convergence of the iterative process (2.1)-(2.3).

Theorem 3.1 Let {yi} be the seguence of vectors cal-

culatediby (1.5) and (2.3) . Then
o3 i-3-1 N
(3.2) y. =y + F Yy.-y) + (¥ F)us
J -
v=0

where J < i is a fixed positive integer and it i1s assumed that
FO = 1

Proof It is readily seen that
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The assertion of Theorem 3.1 follows by the use of (3.3)
Tor yi“‘]—y’ yi_g—yn s Yj,H‘ZY
u]
Theorem 3.2 Let {di} be the sequence of vectors
found by (2.2) Then
(3.4) a., = F* Ja,
i J
where J < i 1s a Tixed positive integer and it 1s assumed
that FO = I
Proof Congider
. .= . +{d.—-d. = . - Y. = I-H] .
(3.5) dl d1—1 (dl d1—1> d1—1 HB1<y1 y1—1) (1 H81>d1 1
= Fay
Use (3.5) for di_qs di oo , dj+1 It is
clear that the result will be (3.4)
|
Theorem 3.3 Let ki s 1=1(1)§ R be the eigenvalues
of matrix F Assume that
(3.6) RN R PN j=e(1)q,



_ 16 -

(3.7) ] <
Then
> 1
(3.8) vy =y, + 1 d - (HB) Hs
i=v
where ~ v is a Tixed positive integerxr.

1 -»00

Proof It is clear that Zim(yi) exists when (3.7) 1is
satisfied (see e.g. Fadeev and Fadeeva [19], pp.111-11L). From

(3.2) +the following relation can be obtained

(3.9) im(y.) = y + (HB1) Hs
{me T
Use (2.3) anda (3.4) . Then

and (3.8) can easily be found from (3.9) and (3.10)

Corollary 3.1 Let (3.6) and (3.7) hold. Then the

iterative process (2.1)-(2.3) is convergent to the true solution

N of (1.2) only i1f one of the following three conditions is

satisfied

(3.12) H = B, ,



. - T
(3.13) H is of the form HB

Remark 3.1 It is obvious that the iterative process

(2.1)-(2.3) will be convergent if (3.7) 1is replaced by

< 1

(3.14) || 7

where ]i®]| is any matrix norm induced by the vector norm used

(see again [19], p.112).

Remark 3.2 Assume that BU (u=1(1)k) 1s well scaled
and that the drop-tolerance TU (used at stage u of the

general k-stage scheme) is chosen so that

where b]J is the magnitude of the non-zero elements in BU
Agssume that at stage U (u=1(1)k) of the general k-stage

scheme the factorization (1.4) is obtained either by some version

of the Gaussian elimination or by some orthogonal decomposition.

Then

(3.16) e || < ¢ (m,n)EUgU(A) , e = max(g,TU/b ),

where fu(m,n) is some function of m and n which depends
on the method used at stage U, € is the machine accuracy and
gU(A) is some function of the norm of matrix A corresponding
to the norm used in the left-hand side of (3.16). Tor T = 0

U



explicit expressions for fU and g, for some special

methods can be found e.g. in Wilkinson [43,44,45]7, Stewart

[407, Bjoreck [4] and Voevodin [42]. Denote
(3.17) f{m,n) = max {f (m,n)},
T<u<k

max {g (A)},

il

(3.18) g(a)

1<u<k
k—1 k-1
- =t T T_.T T
(3.19) g(a) = max (|| ([ Ja.pl)g B, P ([ 1p.c.)"p  ||.]] @
1 k 'k k 11 H
T<u<k 1=1 1=
-1
TVT
(b e, p)" [}
i=1
Then
(3.20) HF | < xf(m,n)eg(a)g(n) , e = max {e }
T<pu<k
In the case where k=1 and T=0 for many special methods
g(a)g(a) is expressed by the condition number (corresponding
to the matrix norm used) of matrix A (see again [43,44,45,40,

4,42]). Moreover, in the case where the spectral condition number
k(A) = || & HEHAw1 H2 of matrix A is- used for the methods
from Example 2 and Example 6 Bjdreck ([4], p. 163) nas shown

that k(A) can be replaced by

(3.21)  «'(A) = infle(aD)}

D>0
where D is a diagonal matrix and D>0 means that all diagonal
elements of D are positive. BjSrck used the term "relevant"

condition number for k' (A) in [4]



Of course, (3.20) can not be used for a direct estimation
of the norm of matrix ©F . Note that in the above references it
is underlined that the values of fm,n) theoretically found
(when Ck=1 ) are very crude and give a very great overestimate

of the norm of F (this is especially true when m and/or

n are large). However, at least in the cases where g(A)g(A)
can be expressed as a function of the condition number (or the
rélevant condition number (3.21)) of matrix A the bound
(3.20) indicates an important relationship between the condition

number (the relevant condition number)of matrix A and the drop-

tolerance T . From (3.14), (3.16) and (3.20) it follows
that: the drop-tolerance can be chosen larger when the condition
number (the relevant condition number) of matrixz A 18 smaller.

This relationship will be verified (by numerical examples) in
Section 5. It is necessary to emphasize here that the above rule

restricts very strongly the use of large values for the drop-

tolerance T when the normal equations (Exanple 1.2) are
formed.
Remark 3.3 All results in this section are proved under

the assumption that the computations with (1.5) and (0.1)-(2.3)
can be performed without rounding errors. The experimental evi-
dence shows that this is a realistic assumption because the com-
putations connected with the back substitution are usually much
more asccurate than those with the decomposition (for several spe-
cial methods this fact is emphasized e.g. by Wilkinson [44],
Stewart [40] .and Voevodin [42]). Note that this will be %true to
a greater degree when TU>€bU (p=1(1)x) are used during (1.3).
However, 1f matrix A is extremely ill-conditioned, then it may

happen that the iterative process converges to a vector different
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from that in the right-hand side of (3.9), see [44,40]

4. An experimental device for acceleration of the speed of con-

vergence of the iterative process (2.1) - (2.3)
Let a sequence of problems (1.1) with the same matrix A
and different vectors b be solved by some direct mebthod fol-
lowed by iterative refinement. Then Step 1 has to be performed

only once (when the first problem of the sequence is solved), while
the computations by (1.5) and (2.1)-(2.3) have to be carried out
with each problem. Therefore it is very important to reduce the num-
ber, p-1 of iterations in the process (2.1)-(2.3) because
the computing time needed in the solution of each problem after the
first one is, roughly speaking, proportional to D

Assume again, as in Section 3, that the computations in (1.5)
and (2.1)-(2.3) can be carried out without rounding errors. An
experimentally found device, which sometimes accelerates the speed
of convergence of the iterative process (2.1)-(2.3) and which has
successfully been used in connection with the Gaussian elimination
in Zlatev [48], will be generalized for the k-stage direct method

in this section.

Theorem U.1 Consider (1.2). Suppose that (3.7) is satis-
fied and let Vj (with blvj =1) be an cigenvector corres-—
ponding to X .(j=1(1)a) of matrix F . Agsume that Vj L

(j=1(1)q) are linearly independent and that




o010

a.v., a . are constants, a1 # 0

* _
(L.s) d. = Ay eV
_ Q -
(h.6) == = (0 /a)  lav.
jzg J J
Then there exists an integer u such that
*
(bo1) e Il < e lay ]y for i >
1 .
sy Gl DI s
U
* * -1
(4.9)  fly-y Il < e vl + [l (uB)) ‘#s[[;
where
1
L,10 * = +{ 1=, ax*

( ) v yu( ) !

Proof For (HBT)—1H5=O the theorem is proved in
[48] (see Theorem 2.1 in [48]) . The proof for
(HB1>‘1HS#O can be carried out in a similar way ( using
Theorem 3.1 - Theorem 3.3 ).

o
. *
Theorem 4.1 states that if w, d and X are known




- * *
and if ;l(HB1) 1HS H << € “y H K then N can be computed
by (4.10) (instead of Yo from (2.3)) so that a relative
*
accuracy of € will be achieved. However, the theorem is not
*
constructive (since U, dU and %1 are not known). There-
fore the following result is more useful.
Theorem 4.2 Let all assumvtions made in Theorem k.1
be satlsfied. Assume that
(b.11) |A1—A1i < 6‘A1|, 0 < &6 < 1, § being given;
(ho12) [Fl <<y
(L.13) [l o<
Then there exists an integer i such that
CTRT N | (T | P
! N* Py s 1 s ) s |+ nats ]
(h.15)  fy-y o< syl o+ [l (us) T s ]+ maTS|| pHs ]
where
(h.16) v (1-2 )"
. = + 1-A d
y . 1 "
. ‘ N -1 - -1
(b.17) o= 2+ O-|a, )7 T0+a) (=2 ])
Proof For the case where any of the conditions

(3.11)-(3.13) 1is satisfied the proof will be the same as the

proof of Theorem 2.2 in [48]. A similar proof can be performed



when none of these conditions is satisfied. In the latter case

the following equality

(h.18) - d, = F(I-F)y + FHs

should be used.

Note that 1in Theorem 4.2 dU (which is known) 1is

*
used instead of du and A (which is an approximation of

4
|

X1 and can easily be found, e.g. by the power method) is used

instead of X1 . The result is obviously weaker than that in

Theorem 4.1 , however, 1t can be expected that 1if § (which

is a free parameter) is chosen sufficiently small, if k1 is

not too close to one and if the last two terms in (k.15) are

~ %

sufficiently small, then v found by (4.16) will be a better
approximation than yu+1 found by (2.3). Unfortunately, this
theorem i1s not constructive either ( u is not known). Never-—

theless, a practical device can be based on this theorem in the

following way.

(1)
o

- 4
N 1=8,38, 40y

Extrapolation device Assume that
are found by the power method. Let the following relation hold

WO G )

(4.19)  |n " -a, | < 6

Then the speed of convergence of the tterative process

(2.1)-(2.3) will often be accelerated when the extrapolation



(4.20)  y .5 =y, * (z~x§”))m1d

18 applied in the u’th iteration instead of (2.3)

This device is based on the expectation that if g is
chosen sufficiently small then the integer u (for which (L4.19)
is satisfied) 1s larger than or egual to the corresponding integer
u in ‘Theorem 4.2, thus the conditions of Theorem 4.2
hold and (L4.20) will (hopefully) be better than the correspond-
ing approximation obtained by (2.3). The experiments show that
the device can efficiently be used in order to reduce the number
of iterations, i.e. the expectation that the conditions of
Theorem 4.2 hold is often satisfied. The only remaining problem
in the implementation of the device is connected with the con-
tinuation of the computations after the application of (4.20).

The following theorem is needed before the discussion of this

problem.

Theorem 4.3 Let the conditions of Theorem 4.2 be

satisfied. Assume that the computations must be continued after

~ Xk

the use of (h.16). Denote =y and let ' for

yu+1

1>u+1 be computed by the use of (2.3) Then

(h.21) a; = (I-F)(y-y; _4) + Hs
and (for i>u+1 )
S, 1=-u-2
(b.22) y.-y = PPNy sy) ¢ (3 FO)Es
J=0

Proof For the case where one of the relations (3.11)-(3.12



is satisfied the proof is the same as the proof of Theorem 2.3
in [48]. If none of the relations (3.11)-(3.13) 1is satisfied

then Theorem 4.3 can be proved in a similar way.

It is not clear what will happen if (h.20) is used suc-—

cessively several times. Theorem 4.3 indicates that Y

~ %
(i>p+1) is a better approximation .than v if v . is found

i
by (2.3). This means that after the application of the extra-
polation device it 1s necessary to ensure that (2.3) will be
used in the next iterations (hoping that in this way the con-
ditions of Theorem 4.3 will be satisfied). This can be done
by reducing the control parameter é (from (4.19) ), say,

by a factor 0.1.

An algorithm based on the above extrapolation device has
been developed and tested by Zlatev [48] in the case where
m=n and the classical Gaussian elimination is used in the de-
composition of large and sparse matrices. Similar rules have been
used by Nielsen [31] d1n the case where m=n, the Gaussian
elimination is used and matrix A 1gs dense.

Note that the results in this section (and in Section 3)
show that the solution found with iterative refinement may differ
from the true solution when the norm of the residual vector S
is large even if the iterative process is convergent. This is not
a surprise (see e.g. the experimental results given in Bjorck
[4]1). This fact is explained in many papers by the appearance of
the square of the condition number of matrix B1 in the error

estimation (see e.g. Golub and Wilkinson [25]). Of course, our

results can also be explained by means of the condition number of



matrix B1. if B1 is well conditioned then H is a good
approximation of Bi and the terms containing 5 will be

small, If B1 is ill-conditioned then H is not a good ap-
proximation of BT and the computed golution will differ con-

siderably from the true solution.

5. Some numerical i1llustrations

Numerical experiments with the special methods discussed in
Section 1 except the Peters-Wilkinson method have been carried
out. There arise two difficulties when the Peters-Wilkinson method
is used with some sparse technigue. Assume that Gustavson's scheme
(see [26,27]) is implemented (as is done, for example, in the code

MA28, see [15,171). Then after the first stage, see (1.18), the

non-zero elements of B1 are stored in a one-dimensional array

so that they are ordered by rows and in the rows first the non-zero
elements of Lp and then (if the row number 1s smaller than n)
the non-zero elements of U are stored, The first problem ig:

how to separate the elements of Lp and Up and how to

form B2=LTL efficiently and without any use of extra storage?

Tt 1is clear that 1f m>>n and/or if _Lp contains more than

Vn non-zero elements per row 1in average (unfortunately the
latter case occurs in practice; moreover, it is impossgible to
predict this in advance, 1.e. before the beginning of Step 1 )

then i1t is better to store B2 in a two-dimensional array (in

the latbter case this is so because a probabalistic analysis given

in Bjdrck [5] and Bjdrck and Elfving [6] shows that B2 will

often be dense). The second problem is: how to decide when B2

should be stored in a one-dimensiocnal array and when in a two-di-
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mensional array? The reason that the Peters-Wilkinson method has
not been tested is that we have not succeeded in finding satis-
factory answers to the above questions (which, of course, does not
mean that these answers do not exist). Note that the second problem
arises in the solution of (1.1) by forming the normal equations
also, Therefore this method has been tested only with problens

with telatively small n ( n§75) and the coefficient matrix

of the normal system has always been stored in a two dimensional
array.

It i€ necessary to emphasize that the comparison of the dif-
ferent methods is beyond the scope of this paper. In connection
with the numerical results the following topics will be dicussed:
(i) +the effect of the use of a large drop-tolerance (in Step |
of the general k-stage scheme) and iterative refinement (the ad-
ditional step, Step 3, of the general k-stage scheme), (ii) the
choice of the drop-tolerance, (iii) +the dependence of the drop-
tolerance on the_condition number of matrix B ) (iv) the

1

effect of the implementation of the extrapolation device.

5.1, The effect of the use of a large drop-tolerance and

iterative refinement. In the case where m=n and the Gaus-

sian elimination is used (Example 1.1) 192 linear systems in
the range 250<n<1000 have been tested in [48]. In these ex-
periments the use of a large drop—-tolerance T and ilterative
refinement 1s compared with the simple use of Step 1 and

Step 2 (this mode will be called a direct solution, DS ). The
code Yi12M (see[56]1) have been used in this comparison. Some
NAG(*) subroutines (which perform the DS mode only), namely,

FOLAXE and FO1BRE, (based on ideas described in [15]), have

(*)

NAG: Numerical Algorithms Group, Banbury Road 7,0xford



also been used in some examples. A great reduction in the com-
puting time and, sometimes, in the storage used has been obtained
by the use of a large drop-tolerance and iterative refinement.

The reduction in the computing time 1s as much as 10 times

for some examples. The greatest reductions in the storage have
been observed with problems which produced many fi1ll-ins, 1.e.

just when such reductions are most needed). Similar results have
been obtained when the augmented method (Example 1.3), see [48],
and some orthogonalization methods (Example 1.5 and Example 1.6 .
some numerical results are given 1in [53]l have been tested as

above.

5.2. The choice of the drop-tolerance. The efficiency

of the use of iterative refinement depends essentially on the

choice of the drop-tolerance T . Two practical rules which
can successfully be used in the choice of T are described in
[48]. These rules can be used with any method in the general

k-stage scheme. Therefore they are briefly sketched below.

Rule 1 Assume that: (i) matrix B1 is not too ill-con-
ditioned and (1i) all numbers b, = max_(lbi.i) , i=1(1)p,
1<j<q J
.. & BT’ have the same magnitude. Denote g = min_(a.)
] 5 -3 1fi§p

Then T € [10 “a,10 “al will often be a good choice for the
drop-tolerance. The assumption (11) is not very stringent when

row scaling is allowed (but note that if row scaling is

performed, then our experiments show that it is better to restrict

. - .
the interval for T to [10 5a,1o al] ). If k> then the
use of different values of T at the different stages may be
more appropriate (however, the same T can be used in the

method described in Example 1.6 Dbecause in the second stage of

this method the matrices which are already computed during the



— 29

first stage are used). In package Y12M +there is an option where
a is automatically computed and the drop-tolerance is set equal
to ta ( t can be chosen by the user; the recommended va-

. . -5 -3
lues are in the interval [10 7,10 ~1 ).

Rule 2 Consider a set of linear problems (1.1) whose

‘coefflclent matrices are

c LA A

> Y e, A.,A.,...,A.

27 e 1771 i

j1 times times ji times

J.2

Assume that all matrices have the same sparsity pattern
(A and B have the same sparsity pattern if ( a.. € A,
€ B ) aij#O => bij%O and bij#O = aij%o R i=1(1)m,
J= (1)n . Let the corresponding non-zero elements of A
and AU+1 (p=1{(1)i-1) not differ foo much. Set a large
initial value of T (e.g. Tinitial = 10—1a . where a is
as in Rule 1 ) before the beginning of the computations. If
the error requirement (prescribed in advance, see Requirement 2
in Section 2 ) is not satisfied after the solution of the first
problem with matrix Au (py=1(1)i), then decrease the drop-
tolerance (by some factor CT<1 ) and solve the first problem
with matrix AU again. After J-1 (where J is a fixed
positive integer) multiplications of T by CT perform a
last attempt to satisfy the error reguirement by T=0. In this
rule some extra work at the beginning is accepted, hoping to ob-
tain very good results in the remaining part of the computations
and, thus, to reduce the total work. This rule has been used in
[37] where some chemical problems which lead to large linear

systems of ordinary differential equations are discussed. The dis-

cretization of these gsystems by two-stage diagonally implicit



Runge-Kutta methods leads to large sequences (5.1) (with

g = 2, p=1(1)i ) of linear systems of algebralc egquations.
U

A reduction in the computing time by a factor of 1/h and a

considerable reduction in storage have been obsgerved in an

example with m=n=255; see more details in [37,48].

5.3, The dependence of the choice of a drop-Lolerance on Lhe

condition number of matrix BT* The results found in Section 3
indicate that the choice of the drop-tolerance T depends on
the condition number of matrix B, . Many experiments have been

1

carried out in order to confirm this conclusion. Some results are
given in Table 1 . The estimations of the condition numbers,
COND's, have been found by a subroutine proposed by TForsythe,
Malcolm and Moler [20]. The matrices have been generated by a
special subroutine, MATRF2 , developed at the Institute for
Numerical Analysis, Technical University of Denmark [50}. Mat-

rices which depend on five parameters can be generated by this

subroutine as follows: (i) by the parameter M the number
of rows in the desired matrix is specified, (ii) by the
parameber N the number of columns in the desired matrix 1s
specified, (i1i) by the parameter C the positions of
certaln non-zero elements are determined, (iv) Dby the para-
meter INDEX the average number of non-zero elements per row

is specified, (v) by the parameter ALPHA the ratio

) (where a € A, 2 # 0 ) can be

nv

max(lauv|)/min(|auv

varied. In this experiment the first four parameters have been
fixed (M= =22, ¢ =11, INDEX = 2), while the condition
number of the matrix has been changed by ALPHA. Two codes,
SIRSM (based on Gaussian elimination, see [51,52]) and

LLSS01 (based on orthogonal transformations, see [53]), have




Tolerance Gaussian elimination Orthogonal transformations
T ALPHA - coWD| || x-x || | ALPHA COND || x-x ||
2h , 15 : )
0.0 2 LoU3E+1L 8 . hEE-1h 2 1.69E+12]7.09E~ T
_Ll' 16 9 -~ )
10 2 6.T5E+12 2. 79E~11 2 L.o2E+ 8 7.5LE-10
-3 13 p 7 A 0
10 2 1.01E+1116.51E~-12 2 2.35BE+ T!h.66R-40
- )
107¢ 10 1.63E+ 9{3.38E-12 2" 2.U3E+ 5|5.17E-12
Table 1
The dependence of the drop-tolerance T on the condition num-

ber of matrix B1 (the test-matrices have been generated by subrou-
tine MATRF2, COND is the evaluated condition number by the

subroutine proposed by Forsythe et al. [20]).

been tested. At the beginning ALPHA=1 has been used with all
drop-tolerances. If the code succeeded in the solution then
ALPHA was multiplied by 2 (until the code fails). This means
that under "ALPHA" the last value with which the code has suc-
cessfully solved the problem is given in Table 1 (the estima-
tion of the condition number of this last matrix and the largest
error in the last solution are also given in Table 1 ). It is
seen that the behaviour of the codes is similar: with large va-
lues of ALPHA (i.e. when the condition number of the matrix
1s large) small values of the drop-tolerance gshould be chosen.
Note that the iterative process converges even 1f the estimation
of the condition number is much larger than 1/¢ (where >

is the machine accuracy), moreover, this 1s also true when T>>¢.




Note too that the tendencies described above have been ob-
served in many other experiments. Finally,it should be men-
tioned that all inner products have been accumulated in double
precision by the codes used in this experiment (see more de-

tails in Section 6.3).

5.4, The use of the extrapolation device. The effi-

ciency of the device described in Section U4 has been verified

by many experiments. In [48] 96 systems (solved by the Gaus-
sian elimination) have been tested with four different drop-tole-
rances. The version with the extrapolation device gave better
results than the version without the extrapolation device (the
number of iterations has been reduced by 2-3 , in average, when
the extrapolation device has been used; note that this means that
very often the number of i1terations has been reduced by a factor
1/2). If only one problem (1.1) 1s to be solved then this re-
duction of the number of iterations does not lead to a great re-
duction in the computing time (a reduction of 2% -~ 6% has been
found in [487] ). However, if a sequence of problems (whose
matrices are as in (5.1)) 1s to be solved by iterative refinement
and if i is small but the sum j1+j2+...+ji is large,
then the extrapolation device will also give a great reduction

in the computing time. A practical problem (arising from mo-
delling of heat accumilation in underground tanks) where this

situation takes place ( i=12 , j1+jq+.. =1010, m=n=L4T70)
[t

.+j12

is described in Zlatev and Thomsen [55], p. 1058, Example 3.



6. Some remarks

6.1, On the choice of a pivotal strategy. We are not

able to propose some general rules which can be used in the choice
of a pivotal strategy with all special methods in the k-stage
scheme, The pivotal strategy may improve the method considerably.
Both the storage requirements, the computing time and the accu-
racy are dependent on the pivotal strategy when some sparse mat-
rix technique 1s applied. Sometimes even the details can be
very important. An example, which shows that a small change in
the pivotal strategy may lead to a great improvement of the ac-
curacy achieved, is briefly discussed below (more details can
be found in [49,48]).

Let m=n and let the CGaussian elimination be used. Look
at (1.14). Before the beginning of the computations with any

PR
s (531(1)n—1) the pivotal element, a(oj, should be deter-

ss
mined. Consider
(6.1) &, = 1aiS) /e, e 3,
(6.2) 1_={i_ / m=1(1)p(s), 1<p(s)cn-s+1, s<i <n },
(6.3) (ik € IS) A (iq € IS) A (k<q) = r(ik,s) < r(lq,s) ,
(6.4) (i ¢ T ) A (s<i<n) = r(i ,s) < r(i,s)

s == p(s) =

(6.5) B_ = {aij) €a. /| ij> u > mix |a§§)|, i€1_, utl,

ijs
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(6.7) Moo= min M.. o,
s s<i,j<n +d8
ags) € B
1] s
(6.8) ¢ = ‘{agfcf) €eB / M.. =M1}

where r{i,s) and c(j,s) are the numbers of these non-
zero—-elements in row 1 and column ] which belong to
AS. Then any element of CS can be chosen as pivotal.

This pivotal strategy is called a °'GMS (generalized Mar-

kowitz strategy) in [49]. Note that the original Markowitz
strategy can be found from (6.1)—(6.8) for u = o and
p(s)=n-s+1 (see [29]). The pivotal strategies in the codes
described in [11,15,35] can be found from (6.1)-(6.8) with
p(s)=n-s+1 and u € [4,10]. Zlatev [49] proposed choos-
ing the largest in absolute value element in CS as
pivotal. This strategy is called an IGMS (improved generalized
Markowitz strategy) in [49] and has been implemented in
[52,54,56] with u € [4,16] and p(s) < 3 . Since the
elements of CS are also elements of the stability set Bs
the change made to obtain an IGMS seems to be not very impor-
tant for the accuracy of the results. However, in [48] it

is proved that there exist classes of mafrices for which any
IGMS will guarantee stable results while the GMS's may

cause numerical instability. Moreover, in [48,49] +there are
given some examples where the codes based on GMS's produce
much poorer results than the codes based on IGMS's. The same
situation is illustrated in Table 2.The code Y12M (based on
an IGMS , see [56] ) and the NAG subroutines FOTBRE ,

FolAXE (based on a GMS , see [15] ) are used in this ex-

periment. More detailils about the matrices used can be found in



n | FOIBRE + FOLAXE |Y12M-without IR Y12M - with IR
.650' 1. hoE-2 1.06E-5 2.98%-8
T00 2.87TE-2 1.2LE-5 1.498-8
750 1.03E-2 1.388-L 2.98E-8
800 L.13E-1 | 1.60E-5 5.96E-8
850 u;7uE—3 1.79E-5 2.2LE-7
900 T.3UE-1 2.50E-5 9.2LE-T
950 2.61E-2 2.65E-5 1.83E-6
1000 2.02E-1 2.988-59 8.2hE-7

Table 2

Comparison of the accuracy of the computed solution by Gaus-
sian elimination ( m=n ) with the two different pivotal

strategies described in Section 6.1.

[48 49], It is seen (from Table 2) +that small changes in the

pivotal strategy may cause great differences in the perfor-

mance of the method. The accuracy found by the use of iterative

refinement and T = 10 is also given in Table 2.
Discussion of different pivotal strategies can be found

in Duff [14] for the Gaussian elimination and in Duff [13]

for the Givens orthogonalization.A very interesting suggestion

concerning the pivotal strategies with sparse implementation

of the Peters-Wilkinson method is given by Bjdrck in [5].
Finally, note that if iterative refinement (combined

with a large drop-tolerance) is used, then the particular method

seems to be not very sensitive to the pivotal strategy chosen

4

(in [37] good results are reported even in the case where the
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pivotal interchanges are suppressed) .

6.2, On the scaling of the problem. It is well known

that ;f the coefficient matrix is not well scaled (i.e. if the
elements differ significantly in magnitude) then scaling may
give good results. Unfortunately, no general rule, which is ef-
ficient for any matrix, is known (see e.g. Forsythe and HMoler
[21], Reia [34], Stewart [401).

In our experiments with matrices generated by subroutine
MATRF2 ([50], see also Section 5.3) with large values of
ALPHA the simple eguilibration (scale first the rows then
the columns) gave no improvement. The morec sophisticated algo-
rithm based on ideas proposed by Hamming [28] and described in
details in Curtis and Reid [12] (note that similar ideas have
alsoc been exploited by Fulkerson and Wolfe [22]) performed
slightly better for the same matrices.

Duff et al. [18] proposed accepting rounding errors during
the scaling process This means that the scaling factors:
r.=f.8pi and c.:E.BOj ( i=1(1)m, j=1(1)n, g is the

171 J J
base of the floating point representation in the machine,
/8 < ;i’g'

J

stead of the integer exponents Py and Oj . Two versions

< 1 ) are stored and used in the computations in-

of SIRSM (a code based on the use of Gaussian elimination

and iterative refinement, see [52 531) have been tested. In the
first, SIRSMA , +the exponents of the scaling factors have been
stored and used. In the second, SIRSMB , +the scaling factors
themselves have been stored and used. Matrices generated by
MATRF?2 and by large values of ALPHA have been used in this
experiment. The accuracy of the results have been approximately

the same in all examples (except one, where SIRSMB failed



because the iterative process was not convergent ). lowever,
the total number of iterations used by SIRSMB was Jlarger.
Therefore the use of the exponents of the scaling factors
seems Lo be more efficient in connection with iterative re-
finement. It should be mentioned that in our experiment (per-
formed on an IBM 360/165 computer) the simple equilibration
has been used, while the object of the discussion in [18] 1is
the algorithm proposed in [12]

Our experiments show that the iterative refinement without
scaling gives good results in gspite of the fact that the coef-
ficient matrix is badly scaled (see also [37]). This confirms

some results given in Skeel [38,39]

6.3. On the accumulation of the inner products in double
precision. Assume that: (1) the vectors ri, di and
v, (see (1.5) and (2.1)-(2.3)) are stored in double pre-

1
cision and all inner products in (1.5) and (2.1)-(2.3) are
accumulated in double precision (Where the length of the real
numbers is n, binary digits); (ii) +the non-zero elements

of all matrices used in the k-stage scheme are stored in single

precision and all computations in Step 1 are carried out in
single precision (where the length of the real numbers is n,
binary digits); (ii1) n, > 2n1 and {(iv) +the iterative
process (2.1)-(2.3) is convergent. Then about n binary

1
digits will normally be gained in the iterative process (i.e.
the same accuracy as 1f 2n1 digits had been used throughout
the computations is normally achieved). This result has been
shown by Bjorck [1,2,4] for an algorithm developed by BJjdrck

and Golub [7]. Our experiments indicate that this is true for

all special methods discussed in Section 1 (except the Peters-—



Tolerance 0.0 1O~)4 ‘4 10—3 10_2
ALPHA 216 216 é 213 29
Table 3
The same experiment as in Section 5.3. The residual vectors

have been aceumulated in double precision and then rounded %o
single precision. The results should be compared with those

in Table 1 found by the Gaussian elimination.

Wilkinson method which has not been tested). Note that the ac-—
cumulation of the inner products from (1.5) and (2.1)-(2.3)
in double precision causes a considerable increase of the num-
ber of iterations ( 3-4 iterations more per problem in average).
Nevertheless, in our opinion, thisg option is better than the
classical mode where the residual vectors, ri, are accunulated
in double precision and then rounded to single precision . As-
sume that the coefficient matrix is badly scaled and/or ill-
conditioned. In our experiments with such matrices the option
advocated by Bjorck gave much more reliable error estimations
(see the estimations of the accuracy given in [53]). Moreover,
the experiments show a tendency that the subroutines based on
this option are more robust (compare the results in Table 3
found by a subroutine based on the classical option and Gaus-—

sian elimination with the corresponding results in Table 1).

6.4. On the condition rank(A)=n. When the problem

is large 1t is difficult to establish the wvalidity of this con-

dition. Unfortunately, this is not the whole story. Let r < n,



r € I, Then the method under consideration will perform badly
not only if rank(A)=r but also if matrix A is close to a
matrix A with rank(ﬁ)=r (see Wilkinson [45]). Different tests
are used in the code vyieMm ([56]) 1in order to detect the above
situation (call it "rank degeneracy"). There is no guarantee,
however, that the rank degeneracy will always be detected (thbwg%)
deduc¢ing from our experiments, it may be expected that this

will very often happen). Note that, a perfectly reliable deter-
mination of the numerical rank can be obtained only by the sin-
gular value decomposition (proposed by Golub and Kahan [23] in
1965; see also Bjdrck [5], Stewart [40] and Wilkinson [46]),
while the simpler factorizations are unreliable in exposing

near rank degeneracy (see Wilkinson [45], p. 19). A computing
procedure which performs a singular value decomposition for dense
matrices is given by Golub and Reinsch [24]. Unfortunately, we
can not see how the ideas discussed in Section 2 can be applied
in an attempt to perform efficiently the singular value decom-

position in the case where A is large and sparse.

6.5. On the problems (1.2) with large residual vectors.

Consider the case where the residual vector g (see (3.1))
satisfies: s#0 and s | is large. Then it may be more
profitable to attempt to correct both the residual vector S
and the solution vector v of (1.2), see e.g. Bjdrck [4].
The device discussed in this paper, Step 3 , appears also in
Golub and Wilkinson [25]. This device has Dbeen chosen because

in this way a simple treatment of the two cases, s=0 and

s#0, can be performed simultaneously.
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