ISSN 0105-8517

PARALLELISM IN ADA :

PROGRAM DESIGN AND MEANING

by
Brian Mayoh

DAIMI PB-103
September 1979

Computer Science Department | []I]

AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55

T[]
=L
—

Part 1 . DESIGN

The art of designing parallel programs is underdeveloped because we
do not understand parallelism clearly, This paper suggests a program-
ming methodology and it gives a precise definition of the ADA form of
parallelism. The methodology is based on the ideas of Milner and it can
be used when designhing parallel programs in languages other than ADA.
For us a parallel program consists of one or more tasks and several
arrows from one task to another. We shall use the example of producers
and consumers, communicating through a postbox, to illustrate our

design method.

In all our pictures different arrows may have the same head but they
always have different tails. From our picture for producers and con-
sumers we see that the post box decides which consumer to communi-
cate with. If we reversed the arrows to the consumers, we would have

the usual interplay between producers and consumers : a shared buffer.

The first phase of our design method is to draw a picture of tasks with
named arrows between them. Arrows with the same head must have the
same name. Because the ADA equivalent of a first phase picture is a
list of partially defined task interfaces whose entries correspond to the
heads of arrows, we shall hereafter use the word '"entry! instead of

""name of arrow!l,

For our example we have

task Postbox is
entry arrive
-~ calls entries; depart 1 and depart 2

end task Postbox interface;

task First Consumer is
entry depart 1

end task First Consumer interface;

task Second Consumer is

entry depart 2

end task Second Consumer interface;

task First Producer is
—— calls entry : arrive
end task First Producer;

~-— other producers similar.

The second phase of our design method is to describe the programs for each
task to the extent of fixing the places where the task may communicate

with another task. We can use a convention of Milner's [] to indicate
which task arrows are ready to communicate and which are not : dotted

half arrows correspond to arrows that are not ready to communicate

a task not ready for any communication
a task waiting for an entry

a task calling an entry

Al - - _ 7
> - - ..’:;<\ a task calling another entry
- ~

N
If a task has N arrows, then there are at most 2 of these "peady to
communicate!' symbols, but each of them may cotrrespond to many places
in the task program; the bound on the humber of Milner Symbols is not

a bound on the complexity of a task program.

A useful way of describing the task programs during the second phase of

our method is to give a set of process equations. (A process equation

expresses a process as a sum of capabilities.v) The left side is a letter
that denotes a process, and the right side is a sequence of zero, one,

or more capabilities separated by “+“.‘ Any sequence of |letters followed
by a colon or semicolon is a port, and a port followed by a letter denoting
a process is a cagability.' The set of process equations for the task

Post Box in our example might be

Pog = arrive : Py
Py = depart 1, P,
P, = arrive: Ps
p3 = depart 2; po

The ports for the arrows to (from) Post Box end with a colon (semicolon).

For the producer tasks we might have the one equation

d9 = arrive; A

The task First Consumer might have the two equations

-
Il

depart 1 ; o

5
Il

Print Message; "o

and the task Second Consumer might have the two equations

=+
Il

depart 2 : t

where the last equation corresponds to the death of the task because its
right side is empty (consists of no capabilities). If we were cohcerned
by the fact that post box cannot accept more than one communication
after the death of Second Consumer, we could change the post box equa-

tions to :

arrive : p'1

depart 1; pb + depart 2; pb

T T
_ 0
1 i

so that Post box can handle any humber of communications. Here we are
presenting a design method, not trying to design a good producer-
consumer program. One aspect of the second phase of our method is
deciding which producers are available to a task program and where
they are to be used. The port "Print Message; " in the First

Consumer process equation could well denote the call of a procedure
named "Print Message'l. For the same reason as the ADA designers, we
do not distinguish between eniry calls and procedure calls - the

ports for both end with semicolons. The ADA eduivalent of a set
of process eqguations is a partially defined task body. For the producer-

consumer example we would have

task body First Producer is
begin

end First Producer.
-~ other producers similar

task body Postbox is

begin
loop
accept arrive ...
depart 1 ...
accept arrive
depart 2 ...
end loop

end Postbox

task body First Consumer is
procedure Print Message....

begin
loop

accept depart 1 ...
FPrint Message;
end loop;
end First Consumer

task body Second Consumer is
begin
accept depart 2 ...
end Second Consumer;

If we were concerned about the death of Second Consumer we would

rewrite the Postbox as

task body Postbox is

begin
loop

accept arrive
depart 1 ...

end loop

end Poxtbox

(Note for ADA experts : we cannot express depart 1, p'0 + depart 2; p'o

clearly because select only works for a task!s own entries.)

L et us return to the sets of process equations for a task. If we suppose
that a process is a predicate on sequences of parts, we can solve a set
of process equations.. The solutuion to the equations will give a predicate
Path Set(p) to each right-side p; Path Set(p) 1 will be true if the path
sequence T enjoys this predicate, otherwise Path Set(p) T will be false.

The equation sets for our producer consumer example have the solution :

Path Set (po) T

il

il

Path Set (p1) T

Path Set (pz) T

IH

il

Path Set (p3) T

I

Path Set (qo) T

i

Path Set (l"o) T

11

Path Set (r‘1) T

Path Set (to) T

1l

I

Path Set (t1) T

T Is an infinite sequence of repetitions

arrive : depart 1 ; arrive : depart 2.

T is an infinite sequence of repetitions

depart 1 ; arrive: depart 2 ; arrive :

T Is an infinite sequence of repetitions

arrive : depart 2 ; arrive : depart 2;

T is an infinite sequence of repetitions

depart 2 ; arrive: depart 1 ; arrive :

T is an infinite sequence of repetitions

arrive ;

T is an infinite sequence of repetitions

depart 1 : print message ;

T is an infinite sequence of repetitions

print message ; depart 1 :
T is the sequence (depart 2:)

T is the empty port sequence ()

of

of

of

of

of

of

of

The reader should not confuse the predicate HAL.T that is only

true for the empty port sequence with the predicate DEADLOCK

which is never true.

The third and last phase of our design method is to complete the task

program by describing variables and procedures, inserting statements

and so on. We can use process equations to document this design phase,

too. Suppose we replace the procedure Print Message in our task First

Consumer by the ADA statements :

loop
S1;

exit when B 3

S2;
end loop;
S35

We can document this by replacing the process equation

r, = Print-Message; r

1 0

by the four equations

ry = [S1]; ro,
r, = [notBJ; ry + [B]; r,
ry = [S2]; ry
P, = [S3]; o

In these new equations we use ports that begin with ”[”, continue with
program, and end with " [; ", If a new equation contains more than one
capability, then the choice between them is determined by the value of
the variables, when the thread of control is at the corresponding place
in the program. When a program equation is replaced, we may get much
useful information about possible computation paths by solving the new
set of equations with the predicate HAL.T assigned to the processes that
are not on the left side of a new equation. In our example solving the

new equations with HALT assigned to r. gives

0
Path Set (r,)7 = (1 s [S,15 ') and Path Set (r,) 1!

Path Set (r“z)’l' = 17 is infinite sequence of repetitions of
(notB]; [S,]5[5,];
or T is finite sequence of repetitions of
[notB]; [S,]; [S,]; followedby [] [S;];
Path Set (r*3)T = (71is [Szj H [51] ; 7') and Path Set (r,) 1!

Path Set (r‘4)fr = 7 is the sequence ([53];)

Sometimes trees are a useful way of representing path set solutions of

equations :

1Sy

r

It does not seem unreasonable to assume that the reader knows how to
convert a sequential program or flow diagram into a set of equations

because she has met the method in the context of program verification,
predicate transformer semantics, or dynamic logic. Processes in our
equations correspond to other authors! !'program control points!, the

ports in our equations correspond to other author!s '"elementary actions!!,

Part 2 : MEANING

How can we give a precise meaning to a network of tasks with named
arrows between them, when we have a set of process equations for each
task in the collection ? By building one big network equation set from the
task equation sets, then solving the network equation set. Let us begin
by describing how equation sets are combined. Suppose we have equation
sets for the tasks, First-Producer and Post Box, and these tasks are

combined in the network

Suppose the equation set for First~-Producer gives the Milner symbol

G

and the equation set for Post Box gives the Milher symbols

.7 >
;s / "J\ ~"°"
- ‘~> 7 p ~ -.> -7'

where the full arrow in the first symbol shows the possibility of communi-
cation, but communication may not actually happen because the first symbol
also has half arrows that are not dotted. Note the labels in our symbols,
each label in a one task symbol denotes a process in the task, each way

of choosing a label at a task in a network symbol denotes a process in the

network.

10

For our network consisting of First Producer and Post Box we have

two processes which we denote qolpO and qolp2 from the first symbol,

and two processes which we denote qolp1 and qofp3 from the other symbols.

The network eguations for qO]p1 abd qo,p3 are no problem, but the network
equations for qolpo and qolpz must reflect the possibility of communicating

through the entry "arrive!', they must have the rendezvous port "arrive !,

If the task equation sets were

{qo = arrive ; qo}

{pPg = ar‘r‘ive:p’_l , py=depart1;p,, P, = arrive:p,, p;=depart 2; pg}
then the network equations would be

(qO I po) = arrive! (qo | p1) + arrive : (qO | p1)
(ag | py) = depart 13 (q, | p,)
(q0 [pz) = arrive! (qo] p1) + arrive : (qO | pi)

(ay | p5) = depart 25 (a4 | py)

The port "arrive:' is in these equations, but the port "arrive;!" is not -
the equations reflect the assymmetry of ADA'!s rendezvous concept. Note
also that the ports !"depart 1;!' and ""depart 2;!" remain in the network

equations because they correspond to calls on entries outside the network.

The precise rules for writing down the right side of the network equation

for the left side (p | q) are:

1) if the right side of the equation for p has the capability P; and y does

not correspond to the call of an entry in the q task, then (p [q) has

the capability y(loi | a3

2) if the right side of the equation for g has the capability vy a; and vy
does not correspond to the call of an entry in the p task, then

(p | a) has the capability vip | qJ.) ;

11

3) if the right side of the equation for p has the capability ol P;
and the right side of the equatlon for q has the capability 4 ; q.

then (p | q) has the capability 4! (p Jq) H

4) if the right side of the equation for p has the capability as Py
and the right side of the equation for q has the capability o’ qj
then (p |) has the capability ! (P; [qj) 3

5) the right side of the network equation for (p | q) is the sum of

the capabilities given by the other rules.

Because these rules are associative and symmetric in p and q, the net-
work equations for a network of many tasks do not depend on the order
in which the tasks are combined | except for the names of the network
process variables, i.e. ((p|q)|r)for (p|(a|r)), (p|a)for(q|p)].
Several applications of the rules in our producer-consumer example

give the equations.

(pO]r‘o[tO) = arrivel (p1]r‘olto) + arrive : (p1 fr*o{to)
+ depart 1 : (p0|r*1]to) + depart 2 : (pO]r‘O]too)

(pojr‘oltoo) = arrive! (p1 [PO]tQQ) + arrive : (p1 [r‘o]too) + depart 1 : (polr‘1 [t..)

(pO]P1 [to) = arrive! (p1]r‘1 [to) + arrive : (p1 Ir~1 [to)
+ Print Message ; (po]r'olto) + depart 2 : (polr1 [too)

(pO[r‘1 [t.) = arrive! (p1]r‘1 |t,) + arrive : (p1]r~1 [t.)

+ Print Message ; (pO]r‘O]too)
(p1]r‘O‘to) = depart 1! (pz]r'1 lto) + depart 1 : (p1 lr‘1 !to) + depart 2: (|o1 [r*1 [t)
(p1]roltm) = depart 1! (pzlr‘1 |t,) + depart 1 : (p1 [r‘1 [t.)

) + depart 2 : (p1]r‘1 [t.)

(p1 lr\1 !to) = Print Message; (91 If‘olto

(p1 |p1 [t,) = Print Message; (D1 lf‘oftoo)

(pzlro[to)=ar‘r‘ive!‘ (p3]r‘ |t) + arrive : (p3]r‘olt
+ depart 1 : [r‘]t)+depar‘t2 Py lr]t)

(szr‘o|too) = arrive! (p3]r‘0]too) + arrive: (p3[r~oltoo)+depar~t 1:(py[rglty)

12

(pzlr‘1 [tg) =
(py|rylte) =
(p3lro|to) =

(pylrglte) =

(p3|r‘1 Ito) =

(p3lr‘1 ltgo) -

arrive! (p3|r‘1]to) + arrive : (p3[r*1]to)
+ Print Message (pz[r‘olto) + depart 2 : (pzfr‘1 [t.)

arrivel (p3[r‘1 |t.) + arrive : (p3|r‘1 [to)

+ Print Message; (pZ[r‘oltoo)

depart 2! (polr*o[too) + depart 2 : (p3‘r~oltoo)
+ depart 1 : (p3]r~1]to)

depart 1 : (p3lr*1 [t.)

depart 21 (p,[r, [t,) + depart 2 : (p;|r]t,)
+ Print Message; (p3]r‘olto)

Print Message; (p;|r,|t,)

in these equations we have used (polr'olto) instead of the more strict

(ag) (al) (a) (pg) rg) t)))

We have shortened names in accordance with the network Milner symbols :

13

4

oo

!
|
, I
1
}
[
'

O

/

/ .- 7
AY ’
/ RS \
’
/! , 7
) N ’
/ \ 2
/ \ .
,. 3 _,
i O
- TN -=""N
7 \\ ¢ A 7 o
, \ VA BN
AN
i
§

coO0 O

A AR
H

N
AN
O

14

How do we change the network equations, when we realize that there
are no more tasks in the network ? We remove all capabilities of the
form o : p, we destroy all the half-arrows in the Milner symbols. This

changes the network equations for our producer-consumer example to

(po[r‘o[to) = arrivel (p1[r*0]to)

(pof r‘o]too) = arrive! (p1 [r*oltoo)
(pojr‘1 [to) = arrive! (p1]r'1 [to) + Print Message; (pOfPO[tO)
(pylry lt) = arrivel (p, [Py [t} + Print Message; (pg|rg|t,)

(py|rylty) = depart 1 Lpy|ry lty)

(p1 lroltoo) = depart 1 v (p2[r~1 lt.)

(p1 !r‘1 lto) = Print Message; (p1 [r'olto)

(P,]r~1 |t,) = Print Message; (p1 \r‘o It.)

(pzkro‘to) = arrivel! (p3}PO]tO)

(p,|rglte = arrive! (P5rglte)

(pzlr‘1]to) = arrive!l (p3|r‘1]to) + Print Message; (pzlrofto)
(p2]r~1 [t) = arrive! (p3[r'1 |t.) + Print Message; (pzjr‘oltoo)
(p3|rolto) = depart 2! (pO[r‘O[too)

(pylrglte =

(ps[r'1 !to) = depart 2! (polr‘1 ft1) + Print Message (p3[r*0|t0)

(93[P1[too) = Print Message, (p3["'oltoo)

If we assign the predicate HAL T to the no capability process (p3}r~0[too),

we have the path set solution

(p|ra|t
O’ Ol 0 arrivel

pPyiralt
1! Ol 0 depart 1!

P, |r.]t
21ry o)\pi?t Message !
arrive/ pzjr‘o[to)

(p.lr, |t Print arrive!
31 1' 0 Message;

depart2! p3[r'0]t0)

(po“‘1 lt Print

1
00 Message ; depart 2!

ivel
arrivel Po ! ro |t

(p1 [f‘1 |t Print arrive!
\\we\ssage;

(p1 Jr‘oftoo)

o)

depart 1!

(PPt

arrivel \wﬂint Message

(o r) 11 (Palroltd

Print Message! arrive!

(py [rglt)

15

16

We should have solved the equations with the always false predicate
DEADLOCK assigned to the process (p3|r*0[t1), because the termination
of a network should imply termination of every task in the network. Con-

sider the example

NV

The appropriate path set solution of the network equations

(Pglag) =
(pglay) = YoOUl (py]ay)
(pylag) = MEL (pylay)

(pylay) =

has "infinite repetition of YOU! ME ! " for (po]qI)
"infinite repetition of ME! YOU! " for (|:>1 [qo)
and DEADLOCK for (p,[q,) and (p, [q,).

The predicate HAL. T should only be assigned to a no capability network
process (a[b . o [c) when none of the task processes a, b... ¢ has

a capability.

There is a close connection between realisation of parallel programs in a
computer and path set solution of task and network equations. Suppose
we have control cells, P and Q, a (fictive) file HISTORY, and the

network equations in the computer,

control cells network equations

P I >—> Compiled Code
Q .

J

2 >

HISTORY

17

Suppose the computer is in some "control state!' with integers i,] in the
cells P and Q. Suppose we say that the control state is jammed, if the first
port in HISTORY does not occur on the right side of the network equation
for process (pi Iqj). If the computer is not jammed in our control state

{1, > there is a capability
y(pqul) where vy is the first port in HISTORY

on the right side of the network equation for process (|oi [qj). There is a

next control state for each of these capabilities

— put the integer k in the cell P
- put the integer | in the cell Q
- remove the first port in HISTORY

Having many next control states is inconvenient and unimplementable;
instead we suppose the ports in HISTORY can be decorated with integers
that determine which capability should be chosen, e.g. if D is the first
port in HISTORY, then the next control state is given by the second

occurence of the port y on the right side of the relevant equation.

Given the network equations we can draw a control state transition

diagram

If we start the computer in an initial conirol state g we will reach a
jammed control state g, because files in real computers are finite.
Some jammed control states are better than others; some of them are

acceptable control states : jammed because the HISTORY file is empty;

some of them are final control states : not only acceptable but the inte-
gers in P and Q satisfy the ''termination criteria, If ¢ is a final control
state, then the port sequence given by removing decorations in ¢o's
history should be in the path set solution of the network equations. This

path set solution should also include an infinite port sequence

(1=r1 Mo Ty enee)

18

3) ... as the values of the file HISTORY

gives only acceptable conirol states. We shall say no more about infi-

i f taking (rr1) then (ﬂz) then (rr

nite path sequences, because they are controversial (Park...) and
they play no part in the semantics we shall give for paraliel programs.
Instead we describe another computer realization — we replace nei-
work equations by task equations. At the beginning of this section we
gave five rules that defined the capabilities on the right side of the
equation for (p|q) in terms of the capabilities in the task equations for

p and g. Instead of matching the first component of HISTORY with the
right side of the network equation for (p]q), the computer now maiches
the first components with the right side of the task equations for p and g.

The new computer realization is equivalent to the old in that

1) it jams, when the old realization jammed
2) when it does not jam, it gives the same next control

state as the old realization.

The hew computer realization is a natural generalization of the usual
computer realization of serial programs, task equations correspond

to compiled code, and control cells correspond to instruction pointers.

Pg = YOU; py
P~code
Pl | e——7 P TME P
0 \
qo M= q1 Q~code
> ME ! > qq = YoU:q,

HISTORY

Another close relative of network equations should be mentioned :

finite automata. Process variables correspond to automaton states, parts

correspond to input symbols, and capabilities correspond to transitions.
The transition table for the automaton that corresponds to our producer-

consumer example is

Input
Symbol
Stateé arrive ! depart 11 depart 2 MeF;;i;;e;

(polrglty) | (pylrglty)
(bglrolt) | Py lrglts) (
(bylrylty) (pylrylty) (Pylrglty)
(Polrylts | (Pylrylt) (Pglrglt)
(py [rylty) (py [Py [ty
(pyIrglty) (py [y [t
(py Py It (pylrglty)
(pyrylte) (pylrolty)
(Pylrgltg) | (P3lrglty)
(pylrglte) | (P5lrglte)
(Palryltgh | (pglrylty) (pylrglty)
(Pylryltd | (pglrylty) (P, [Pg It
(pglrolty) (P lrolty)
(P [rg It
(pylry [ty (Polrylte) | (p5lrglty)
(P ry [t (P5]rglte)

It would be very satisfying if the theory of decomposition of finite

automata into cascades and the like could be applied fruitfully to the

practical design of parallel programs.

So far we have said nothing about dynamic networks, about the birth

19

and death of tasks. Now we suppose that tasks have parents that can be

called by tasks in the network . (Birth)When a task calls a parent, the

20

network equations are changed to allow for the tasks that are children
of the parent (Death). Networks never shrink, but some of the tasks in

the network may have no capabilities |eft.

Remember our equation set for the task First-Consumer

5
Il

depart 1 : ry

5
il

Print Message ; "o

I Print Message is the parent of two tasks

boy girl

then the equation set for First—-Consumer changes to the infinite set

o = depart 1 : g

r, = Message; (r‘oiboolgoo)

(Polbwl g,) = depart 1 : (r*1 |b,, |)
() [Bur]) = Message 5 (rg [bo| s [b,]
(o [Gho [P [900) = depart 15 (ry by || b, | oo)

There would be analogous changes in the network equations for the whole
producer-consumer example. (For ADA experts : if the body of Print
Message contained initiate boy, girl as well as the call of the procedure

Message, these equations would be

I

r

0 depart 1 : ry

r Message ; (r [by|g,)

1
(r‘o[boo|goo) = depart 1; (r, Ib, | a)

(r, |b,|9,) = Message ; (r‘olboo[goo]bolgo)
(r‘O[bOO]goofboolgm) = depart 1 : (r, Ibmlgoo]bo]go)

——

21

and we would have new equations like
(rolbolgo) = depart 1 : (r‘1 [bolgo) + (Po[boolgo)+she; (Polbolgoo)
(rolbcolgo) = depart 1 : (r‘1 |boo|go) +she; (Po[boolgoo)
(rolbgla) = depart 1: (r, [by[g,) +he; (ry|b,,[a,)
(rolbglaglbglag) = depart 15 (ry[bglgylbglgy)
+he 5 (rglby,|gglbglgg) +shelr by la, [bglgy)
+ he ; (r‘O]bO|go!boo|g0)+she(r‘0[b0|90[b0[goo)

There would be analogous changes in the network equations for the whole

producer-consumer example).

In ADA parents are procedures and the main program is the parent of the

program task. If the main program has no other children, and its proce-

dures have no children, then the main program is sequential, the network
equations are the program task equations, and we have no rendezvous

ports. The program task, like every other task, has a start process;

the meaning of a sequential program is the meaning given to this start

process when we solve the program task equations,

LLet us consider the situation when the main program has more than one
child. Suppose Print~-Message is the main program, and the initial

picture is

Message; m

The network equations are
(mO[bo|gO) = Message; (moo,bojgo)+He; (mO[boo]gO)+She; (molbojgco)
(molbolgoo) = Message (moolbo_[gm)+He; (mojboo]goo)
(mofboo[go) = Message; (moolboglgo) + She; (mO]bOO]gQO)
(mO]boolgoo) = Message; (m,|b,|g,)

(moolbolgo) = He; (moolboo[go)+5he; (mm[bolgm)

22

(Meo [b [Ged) = He; (my, |bg, |g0)
(moo[boo,go) = She;(moolbool Yoo

(M | B [G) =

The meaning of our program is the meaning given to the process variable

(startprocess, Poos goo) when we solve the network equations. The path

set solution gives the meaning
""port sequence is (Message;)"

when we take mg, as the start process (For ADA experts : if we replaced

mo=Message; m,, by mg = initiate Boy, Girl; My and added my =

m; = Message; m_ the fourth equation would be
(mO]boolgoo) = initiate Boy, Girl; (m1[b0[go)
and the path set meaning of the program would be

"port sequence consists of initiate Boy, Girl;

followed by 'Message; !, 'He;!, !She;! in any order!),

Remember our computer realization. The initial control state for the

execution of Print Message would be

control cells Neiwork equations
M O "\
B 9 7| Computed code
G e &

= >

HISTORY

and the next control state has *« in the three control cells. [f we replaced
Mgy = Message; m by Mgy = Print messagej; m_ ; the fourth network
equation would become (molbm]goo) = Print Message; (m,|by |9 | b | 9o

and the next control state would have been

23

control cells Network equations
M oo -
B 00 Computed code
G o0 -
B! o0 -
G! 0 -

> >

HISTORY

Whenever a computer execuies a program from a well defined initial
state, it will either terminate in some final state or run for ever (in
practice overrun a time limit). Our problem is to give a meaning to

a parallel program that pays due attention to the possibility of different
executions of the same program from the same initial state 4giving
different final states and/or running for ever. Remember the way we
could realize parallel programs in the computer using control cells

and a HISTORY file. If we suppose the current values of all the variables

(the memory state) are part of the control state, then we can define

control cells Network Equation Memory state
“~
P />ﬁ values of
Q - Computed Code all
variables

> >

HISTORY

the next control state by

1) the first part in HISTORY gives a capability y(pqul) in the
network equation given by the control cells

2) the integers k and | are put in the appropriate control cells

3) the memory state is changed in accordance with v

4) the first port in HISTORY is deleted.

24

Because files in a real computer are finite, we will always reach a
jammed control state when we start the computer in an initial control
state. The semantics of the programming language may give us a func-
tion from memory states to memory states for each port that occurs in
HISTORY. If it does, our realization gives the function g from initial

control states to final control states defined by :

g (old-control-cells, old-HISTORY, old-memory state)

= if old-HISTORY is empty or no capability for first

port in old-HISTORY

then (old-control-cells, old-HISTORY, old-memory-state)

else let old-HISTORY = (v, new-HISTORY)
and new-—contr‘ol—cells' be given by capability for vy
and f be the function for vy
in if f is defined for old-memory-state
then (new-control-cells, new-HISTORY, f(old-memory-state))

else (old-control-cells, old-HISTORY, old-memory-state)

We can use the function g to define a predicate-transformer semantics when

we have a predicate FINAL on control states :

INITIAL(old-control-celis, old-HISTORY, old-memory-state)
= FINAL (g(old-control-cells, old-HISTORY, old-memory-states))

We get a path set solution of our network equation for every choice of old-

memory-state by :

If INITIAL(old-control-cells, old-HISTORY, old-memory-state)
holds then the port sequence,given by removing decorations
in old-HISTORY, is put in the path set for the process

"old-control—cells',

The path sets in these solutions are subsets of those in the path set
solution we described earlier : there are no infinite port sequences, and
some finite port sequence may be absent. These solutions agree when
no finite port sequence is absent; In particular they agree when the

functions assigned to ports are defined for all memory states and the

25

truth value of
FINAL (old-control-cells, old-HISTORY, old-memory-state)

does not depend non old-—memor‘y—state.b

Straightforward development of the ideas in the last paragraph would
give a '"resumption!’ semantics for ADA similar to those given for
other languages by Plotkin (4). We prefer the flexibility of continua-
tions; we replace a function f from memory states to memory states

by the function
A
f (old — local-continuation) = old-local-continuation of ;

and we replace a function g from control states to control states by the

function

g (old-global-continuation) = old-global-continuation o g.

These replacements are only meaningful If we define

Local-Continuation = Memory staie -» Answer

I

Global-Continuation = Control state » Answer
so the definitions of f and g can be weritten

A
f (old-local-continuation) old-memory state
= |et new-memory-state = f (old-memory-state)

in old=local-continuation (new-memory~state)

3 (old-global~continuation) old-control-state
= let new~-control-state = g(old-control-state)

in old-global~continuation (new-control~state).

We assume that all functions are total and all domains have an '"unde-
fined" element. We replace the function g from control states to control

states by :

26

g : Global-Continuations - Global-Continuations

(old-global-continuation) (old-control-cells, old-HISTORY,

>

old-memory-state)
= if old~HISTORY is empty
or no capability for first port in old-HISTORY
then old-global-continuation (old-control-cells, old-HISTORY,
old-memory~state)
else let old-HISTORY = (y, new-HISTORY)
and new-control-cells be given by the capability for y
and f be the function for vy
and old-local-continuation (new-memory-state)
= old-global-continuation (new-control-cells,
new-HISTORY, new-memory-state)

A
in f (old-local-continuation) (old~memory-state).

We get the replaced function g as the least fixed point of § containing the

identity function if we have

Answer = Control state;
we get the predicate INITIAL as the least fixed point of § containing the
predicate FINAL if we have

Answer = {true, false}

(assuming History is a '"flat domain! and false is the undefined answer
element). Our continuation approach is so flexible that it can give good

meaning to non-terminating programs; if we have
Answer = Trace”®

and a function OUTPUT from memory sets to traces we can replace the

last line in our definition of g by

in (OUTPUT(old-memory-state), f(old-local-continuation)

(old=-memory-state)

Continuations are used in the draft formal semantics for ADA ()
because they also give a convenient way of describing exceptions and

other language constructs that affect the run-time behaviour of a program.

27

Now we give a semantics for parallel ADA programs on the assumption
that a set of network equations is equivalent to a parallel program, so
our function g gives the meaning of the parallel program. Part 3 of this
paper is devoted to the justification of this assumption, here we discuss
the ADA form of the HISTORY file. The components of HISTORY can give

1) the name of an entry or a procedure;
2) the name of a task calling this entry or procedure;

3) the code to be executed.

The denotational semantics version of this is

HISTORY = PORT* (flat domain)
PORT = Name X Task Name X Code

The semantics of a procedure port (procedure name, T, S) is the function

f from local continuations to local continuations, given S by the draft ADA
semantics when the variables refer to the T-part of the memory state,

In our definition of the function § from global continuations to global con-
tinuations we had the condition '"no capability for first port in old-HISTORY!,
When this first port is (procedure-name, T, S), this condition is ful-

filled when the control cell for T does not indicate a call of a procedure

whose body is S.

To deal with such ADA features as - initiate, guarded select statements,
and the possibility of escaping from a select statement without making a
rendezvous - we introduce special procedure ports. We can think of
"initiate T1, Tz; " as the name of a procedure. The tasks T1 and T2
exist when this procedure is called because their parenis are in the
scope of the calling task. The code to be attached to a port that begins

with initialize T1, Tz“ should be such that the semantics of the port is :

? ¢ Local Continuation - LLocal Continuation

19(8)(3) = if T, and T2 are dead in old-memory~state

then 0 (s with T, and T, alive)

1 2
else undefined-answer

28

As this paper is already long enough, we do not discuss the semantics
of exception handling in ADA ; we have used undefined-answer, where

we should have raised an exception.b We have also used the memory state
to remember whether a task is alive or dead; To maintain this information

) where S__ is

we suppose that we have procedure ports (kill;, T, ST T

such that we have the semantics

fo)(s) = if T is alive but all its children are dead in s
then 0 (s with T dead)

else undefined-answer

This semantics reflects the ADA rules about children of terminating tasks

(first sentence on page 11-4 of SIGPL.AN Notices June 1979, part B).

Now consider the case then the first port in HISTORY Iis an entry port :
(entry-name, T, S). the § condition '"nmo capability for first port in
old-HISTORY! is fulfilled when '

either the control cell for T does not indicate the call of entry name
or the control cell for the owner of entry-name does not indicate

the possibility of a rendezvous on accept entry-name do S end

The semantics of our entry port is the function /1; from local continuations
to local continuations, given S by the draft ADA semantics for the part

of memory state for the owner of entry name. When we have a select
statement with N guards there will be ZN network equations (ZN possible
values in the control cell), one for each assignment of truth values to

the guards. For the case when all guards evaluete to FALSE, the net-
work equation will allow us to escape from the guarded select statement

if the statement has an else por‘t.' We can escape from an unguarded

select statement if we have procedure ports (delay; , T, S) with the
semantics, given S by the draft ADA semantics when the variables refer

to the T—port of the memory state. The g condition '"no capability for

first port in old-HISTORY!" is fulfilled when the first port is (delay; T, S)
but the control cell for T does not indicate the possiblity of delay(...) doS end.

29

A brief look at our producer—~consumer example will illustrate our seman-

tics and suggest a way of treating ports with parameters. Suppose we have

task body Post Box is

begin
loop
accept arrive do count : = count + 1 end ;
depart 1 ;
accept arrive do count : = count + 1 end ;
depart 2 ;
end loop ;

end Post Box j

restrict (TEXT_IO)
task body First Consumer is

begin
1 oop

accept depart 1 ,
TEXT_IO. PUT(count) ; —- Print Message

end loop
end First Consumer;
If we assume count is the only global variable, we can make the definition

Memory State = Integer Answer = Integer®

SO

Local Continuation = Integer - Integer™.

The function from local continuations to local continuations for

"count : = count + 1!
F(6)(count) = 6 (count + 1)

would be the semantics of the port (arrivel!, T, count : = count + 1),

The corresponding function for TEXT_IO. PUT(count) :

%(6)(count) = (count, 8(count))

30

would be the semantics of the procedure port

(Print Message; First Consumer, TEXT_lO. PUT(count)).

What should change if we had had

task body Post Box Is
begin

loop
accept arrive (in out formal : INTEGER)

do count : = count + formal ; formal : = count end
depart 1 ;
accept arrive (in out formal : INTEGER)

do count : = count + formal j formal : = count end
depart 2 ;

end loop ;
end Post Box

We should redefine Memory State = Integer‘3

Local Continuation = lnteger‘3 - Integer™
and we should introduce the entry name "arrive (actual & formal) !,
The semantics of the port

(arrive (actual & formal), T, count : = count + formal ; formal :=count)
should be

?(8)(count, formal, actual)

= |et s = (count, actual, actual)
and h(6M)(c,f,a) = 81M(c+f c+f a)
and 0! (c,f,a) = 6(c, f,f)

:Y>
—
D
=
—_—
4]
S’

We set the in and inout parameters, we obey the code between do and end,

we copy the out and inout parameters. If we define the semantics of a port

with parameters by :

31

A
f (old~local-continuation)(old-memory-state)
= let new memory-state be the result of setting

In and inout parameters in old~memory-state

A
and h be the semantics of the port without parameters
and new local-continuation (some-memory-state)

= old-local-continuation (result of copying out and inout)

parameters from some-memory-state)

A
in h(new-local-continuation)(new-memory-state)

then our semantics of parallelism in ADA is complete,

32

Part 3 : JUSTIFICATION

How can we justify our assumption that solving network equations gives
the semantics of parallelism in ADA ? L.et us start with the ADA require-

ments :

"I several tasks call the same entry before a corresponding accept is
reached, the cails are queued; there is only one queue associated with
each entry. Each execution of an accept statement removes one call from
the queue. The calls are processed in order of ar‘r*ival;‘ Each task can

only be on one queue!'. (Preliminary ADA reference manual 9. 5).

"There may be several tasks that are ready to be executed by the system
processors. In choosing the processes to be executed, processes with

the highest priority are treated on a firsi-in-first-out basis. The language
does hot specify when a scheduling decision is made" (Preliminary ADA
reference manual, section 9. 8)

These are captured by placing a restriction on initial conirol states :
control cells have a queue structure, this structure may change in the
course of the computation from an initial control state g, but the sequence

of ports in the HIST ORY port of ¢ must respect the control cell structure.

More formally : this requirement is incorporated in the condition : '"no
capability for first port in old-HISTORY! that occurs in our definitions
of the function g from initial control states to final control states and the

function § from global continuations to global continuations.

More practically : this requirement restricts the choice of next control

state in an implementation where HISTORY is replaced by a scheduler :

33

control cells Network equations Memory State

Compiled Values of
Code all

variables

_entry E

Scheduler administering ready and eniry queues

The ADA requirements rule out certain port sequences as values of
HISTORY, some other port sequences may not be relevant for particular
scheduling algorithms, still more port sequences may be ruled out by

the choice of processors because of the Q_e_l_g_y statements in ADA. The
network equations give the meaning of a parallel program for a parti-
cular port sequence, but the question of whether or not this port
sequence can actually occur depends on the choice of processors and

scheduling algorithm.

In this paper we have used the condition '"no capability for first port in
old-HISTORY!" to decide whether or not a port sequence can occur.

Another approach is shown in the diagram

Schedulerz. - <ADA program

with an arrow for every port in the network equations for the ADA pro-

gram. Each network equation gives a Milner symbol

with dotted half arrows for ports that are not on the right side of the
network equation. The semantics in part 2 of this paper assumes that

Scheduler has just one Milner symbol (no dotted half arrows); the ADA

34

requirements at the beginning of this part, and the choice of processors
and scheduling algorithms force Scheduler to have more than one
Milner Symbol. We can even replace network equations for an ADA
program by equations for the individual tasks, if we can accept a com-
plicated Scheduler. The resulting semantics would be very close to a

possible implementation of ADA.

Our approach to scheduling in ADA is similar to our approach to scope and
visibllity in ADA. Variables and other named quantities have a procedure
or module as parent. Because ADA permits recursion, parents may

exist in many incarnations. If there is an Iincarnation of the parent in an
executing task, then a name refers to the latest incarnation of its parent.
We can use the usual display mechanism to divide our memory state into
sections for each parent incarnation. More formally : each executing task

has an ENVIRONMENT
Memory State = L_ocations - VValues
and part of the environment gives a map from variables to locations (we

can also handle exceptions if another part of the environment gives a

map from exceptions to global continuations).

control cells .~ network equations environments memory states

P: ' >

Q: :ﬂ::ﬁ_____
.

HISTORY

A
In part 2 we have assumed that an environment determines a function h
from local continuations to local continuations for each code S. This

assumption is true for the draft formal semantics for ADA

There is a more fundamental doubt about the validity of our assumption
that solving network equations can give the semantics of parallelism

in ADA; how can non-deterministic equations reflect the possibility of

35

true parallelism; when an executing ADA program can use more than
one processor ? We begin our argument for the validity of this assump-

tion by considering the network equations

ry = [Sl];r‘z

ry = [potB]5 r +[B]; r,
ry = [SZ];P1

Py =

for the ADA program fragment

loop
S1;
exit when B
S2;

end loop ;

The process variables Py Ty M3y represent periods (closed intervals
of time) when the fragment is !'resting at a semicolon!'. During execution
intervals between the rest periods, the process variables and network

equations do not apply. Any execution of the fragment gives a time chart

BEFORE ... r r r - 5AFTER

with lines for execution intervals and boxes for periods. If our program
fragment is part of an executing task, we still have such a time chart

even although
1) when the task is in a box (at points in the time chart box)
there need not be a processor assigned to the task ;

2) different processors can be assigned to the task for different

execution intervals in the time chart.

36

Now suppose our task is running in parallel with another task whose

equations are
P, = [S3]5 py.

The network equations become

(rylpy) = [S3]5 (rylpy) + [S1]5 (ry]py)

(r3lpy) = [S3]5 (rglpy) + [S2]5 (r[p))

(rylpy) = [S3]5 (r,|py)

and execution might give a malign time chart

g I"z I"3 r‘1

BEFORE

Py

[S3]5 (rylpg) + [not B]; (r‘3|p1) +[B]; (rylpy)

AFTER

in which the two tasks are never in a box at the same time. It does not

seem unreasonable to assume that

a task can only acquire or relinguish a

processor when it is not executing.

two processors can only exchange infor-
mation when neither is assigned to the

execution interval of a task.

so our two tasks are running on two processors that never exchange infor-

mation, Because of this the speed of the processors has no effect on the

results of an execution,and our execution with a malign time chart gives

the same result as an execution with a benign time chart

37

AFTER

in which the two tasks are never outside -

process variables in the network equations are meaningful for benign

Py

D

a box at the same time. The

time charts. The assumption we are trying to justify asserts that every

malign time chart is equivalent to some benign time chart. This is

obviously true when we have only one processor,

Now consider the case of many tasks on many processors. An execution

may well have a malign time chart

1 2

) S—
S
) S—

5 6

BEFORE

) 10

A4

),.,.,..m

§12
13 14

A4

11

A4

}.m

15

with vertical zig~-zags representing rendezvous and more than one

rendezvous at the same time.

AFTER

In ADA simultaneous rendezvous cannot share a task, because tasks call

and accept entries sequentially

38

two tasks can only make a rendezvous when neither

is in an execution interval

so zig-zags in a time chart join boxes. Now suppose that rendezvous are
a special kind of executiion interval so that zig-zags in a time chart give

lines with the same start and finish instants

1 4 2
> 2 >
BEFORE % AFTER
N 8 7 N
5 4 6 7
.9 12 10 .
’ 8 71 ?
RE 12 14 15)

The time charts for the individual tasks always give a partial ordering

of execution intervals
1< 4< 2< 3

5 4<K6<8K7
g<12<10<8< 11
13<12< 14 <15

which we can embed (by topological sorting) in a linear order

1<5<C9<13<4<12<2<6<10<14<3<K8<K15<K7< 11,

We now have a benignh time chart

BEFORE 1 J_____im__l { 2 > BETWEEN
—— L >
> 1 22— >
: >

39

BETWEEN }_2_{ l"’-é—”‘l > AFTER
I =3 D
> p] o P
> o i >

I you agree that

- a task only acquires or relinguishes a processor when

it is not executing

- processors only exchange information when they are not

executing some task

then you should agree that a malign time chart is equivalent to the

benign time chart given by linearization, the corresponding program
executions give the same result. Our assumption that the semantics of
"true parallelism! in ADA can be captured by solving ""non-deterministic!

network equations is thereby justified.

REFERENCES

(1) Preliminary ADA Reference Manual
SIGPL.AN Notices 14 (1979), nr. 6, part A

(2) Rationale for the design of the ADA programming language
SIGPLAN Notices 14 (1979), nr. 6, part B

(3) R. Milner : "An Algebraic Theory for Synchronizationt

Gl 4 Conference, Springer Lecture Notes 67.

(4) G. Plotkin : Lectures at Copenhagen 1979 Winter School.

	20051010093302_Page_01_Image_0001.tiff
	20051010093302_Page_02_Image_0001.tiff
	20051010093302_Page_03_Image_0001.tiff
	20051010093302_Page_04_Image_0001.tiff
	20051010093302_Page_05_Image_0001.tiff
	20051010093302_Page_06_Image_0001.tiff
	20051010093302_Page_07_Image_0001.tiff
	20051010093302_Page_08_Image_0001.tiff
	20051010093302_Page_09_Image_0001.tiff
	20051010093302_Page_10_Image_0001.tiff
	20051010093302_Page_11_Image_0001.tiff
	20051010093302_Page_12_Image_0001.tiff
	20051010093302_Page_13_Image_0001.tiff
	20051010093302_Page_14_Image_0001.tiff
	20051010093302_Page_15_Image_0001.tiff
	20051010093302_Page_16_Image_0001.tiff
	20051010093302_Page_17_Image_0001.tiff
	20051010093302_Page_18_Image_0001.tiff
	20051010093302_Page_19_Image_0001.tiff
	20051010093302_Page_20_Image_0001.tiff
	20051010093302_Page_21_Image_0001.tiff
	20051010093302_Page_22_Image_0001.tiff
	20051010093302_Page_23_Image_0001.tiff
	20051010093302_Page_24_Image_0001.tiff
	20051010093302_Page_25_Image_0001.tiff
	20051010093302_Page_26_Image_0001.tiff
	20051010093302_Page_27_Image_0001.tiff
	20051010093302_Page_28_Image_0001.tiff
	20051010093302_Page_29_Image_0001.tiff
	20051010093302_Page_30_Image_0001.tiff
	20051010093302_Page_31_Image_0001.tiff
	20051010093302_Page_32_Image_0001.tiff
	20051010093302_Page_33_Image_0001.tiff
	20051010093302_Page_34_Image_0001.tiff
	20051010093302_Page_35_Image_0001.tiff
	20051010093302_Page_36_Image_0001.tiff
	20051010093302_Page_37_Image_0001.tiff
	20051010093302_Page_38_Image_0001.tiff
	20051010093302_Page_39_Image_0001.tiff
	20051010093302_Page_40_Image_0001.tiff

