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Abstract

A general algorithm for computing the solutiocns to a set of
recursive equations of a general form is given. The form of
the recursive equations is closely related to results on LR-
theory. The algorithm appears as intuitively understandable
in an abstract form. The correctness of the algorithm is
proved. An analysis of the complexity shows that the algo-
rithm compares well to existing algorithms. Examples of ap-
plication of the general algorithm to elements of LR-theory,
as LALR(1)-lookahead computation and LR(1)-testing, are in-
cluded.
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1. Introduction

A general algorithm for computing the minimal solution to a

set of recursive equations of a general form is presented.

The form of the recursive equations is closely related to
results on LR-theory presented in [Kristensen & Madsen 79a,
79b1. The algorithm is based on an outline to an algorithm for
computing LALR(k)-lookahead given in [Kristensen & Madsen 79a].
This outline is an improvement of a basic algorithm given in
[Kristensen & Madsen 79al] which computes a soclution for a single
argument only, i.e. for an item, I,in a state, T, the LALR(K)-
lookahead is computed. In the general algorithm solutions for a
number of arguments are computed as a by-product, i.e. LALR(k]-
lookahead may be computed for the initial argument, (I, TJ€ item
x state as well as for any argument (J, S)€ item x state on which
the computation for (I, T) may depend, according to a set of re-

cursive equations for LALR(k)-lookahead.

We give an informal introduction of the principle used in the
general algorithm, and state the algorithm in abstract form. A

theorem on the correctness of the algorithm is proved.

An analysis of the complexity of the algorithm is given, in-

cluding remarks on implementation.

When Interpreting the task of the algorithm in terms of strongly
connected components of directed graphs, the complexity of the

algorithm can compare with the results in [Tarjan 72].

As examples on the usability of the general algorithm, especial-
ly in LR-theory, we give algorithms for computing LALR(1)-look-
ahead and for LR(1)-testing.
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[2.2]

(*)

2. A General Algorithm

We assume a set of recursive equations on the form defined as

follows:

Definitiaon 2.1

Let F : D > P(R) be a function defined by the set of equations:

Let a € D then

Fla)

1

G(a)u U{F(b) | b € P}
where G 1s a function

G : 0~ P(R)

and {Pa} ep is a family of powersets of D.

Let FO denote the minimal solution to [2.2), in the sense that

if F1 is another solution to [2.2] then

vdeD : F (d) « F,{d}.
0 — 1

2.1 The Basic Algorithm

The following algorithm computes FO(aJ.

FOR beP_ WHERE B DO S ENDFOR

meaning

FOR beP_ DO

IF B THEN S ENDIF

ENDFOR

(*) U{F(b) | beP_} means W/ F(b)
. beP

We use the construct

[]



Algorithm 2.3 [Kristensen & Madsen 79a]

FUNCTION F(a : D) : SET OF R;

VAR RES : SET 0OF R;

FIN, STACK : SET OF DO

PROCEDURE FF(a : DJ);

BEGTN
STACK = STACK u{al;
RES = RES U G(a);
FOR h € Pa WHERE b ¢ STACK U FIN DO

FF(b);

ENDFOR;
STACK = STACK ~ {a};
FIN = FIN U {a};

END FF;

BEGIN

RES = FIN := STACK = 07;
FF(a);
F := RES;



Theorem 2.4 [Kristensen & Madsen 79a]

If the domain D is finite and the function G is correctly
implemented then Fo[a) is correctly computed by F(a) in al-
gorithm 2.3. [j‘

We remark that the sets FIN and STACK can be replaced by a

single set, without affecting the results of algorithm 2.3.

An upper bound on the number of activations of the procedure

FF of algorithm 2.3 for a single activation of F is
oC|Dl),

The corresponding upper bound for activations of F for all

a € D 1is

ool tely

In the remaining part of this section we shall modify algorithm

2.3 to improve this last bound considerably.

2.2 An Improved Version

We notice that in algorithm 2.3 Fo(a) is computed by invoking
FF(a) to deliver the result. Then FF may invoke itself recur-
sively by arguments b € D to deliver partial results of Fo[a].
The total set of arguments for FF for an initial argument, a,
may be denoted as CLDSUREO(a), - and is defined as the minimal

solution to the following set of recursive equations:

Let a € D. Then
CLOSURE(a) = {a}U U{CLOSURE(b) | b € Pl

The purpose of this section is to improve algorithm 2.3 to com-
pute Fo(b) for all b € CLDSUREO(a] as a by-product, given the

initial argument a.

We extend algorithm 2.3 to save the partial result computed by
each activation of FF, by collecting the contributions to RES

for each activation of FF and all its recursive activations.

For argument a € D let this partial result be denoted RES(a).



[2.5]

[2.6a]

[2.6b]

[2.6c]

[2.7a]

[2.7b]

[2.7¢c]

If
A b € CLDSURED(SJ : a € CLOSURE (b)
then RES(a) = Fo(a) and we may place a in FIN with its final

value.

If [2.5] is false, we may have that RES(a) < FO(aJ. In this
case we have that CLDSUREO(a] = CLOSURED(b) and FO(aJ = Fo(b).
In the algorithm this situation may be detected in a number of
ways:
b € STACK : we include a dependency marker
(#b) in RES(a) to indicate that RES(b) must be
added to RES(a), in order to complete RES(a) to
Fo(a).

b € FIN, but RES(b) 1s incomplete, i.e. RES(b) contains
a nonempty set of dependency markers corresponding
to arguments in STACK. We include RES(b) in RES(a)

in this case.

FF(b) is activated, but the result RES(b) is incomplete.
Similar to [2.6B].

Finally when all b € Pa have been treated one of three cases

exists (assume DF = {#a | a € D}):

Let RES®(a) denote RES(a) N B and RES® (a) denote RES(a) n DF,
such that RES(a) = RES(a) U RES%(a) and RESD(a] n RES%(al = 7,

REs¥(a) = @ then RES(a) - F_(a).

4a} then RES%(a) = Folal,

res¥(a) # 0 A RES®(a) # {4a} then for all # c € REs*(a) ~ [#a},
RES(c) must be added to complete RES(a) to FO(a).

RES#(a)

i

In [2.7b] and in [2.7c] if # a € RES (a),we use implicitly
that F_ is the minimal solution to [2.2], by including 0.
Any set may be included to have a solution to [2.2] in these

Cases .

In any of the cases [2.7] a is placed in FIN with RES(a) being
RES(a) ~ {#a}, complete or incomplete.



[2.8]

[2.9a]

[2.9b]

[2.9c]

In [2.6b] and [2.6c] it is assumed that %ceREsé(b) = CESTACK.

As a 1s removed from STACK we need to keep this condition in-
variant by replacing any occurrence of #a in RES%(C) for ¢ €

FIN by the result of the activation FF(a), namely
RES(a) ~ {#al.

A number of improvements are immediately possible to the above

outline:

In [2.7¢c] let the runtimestack corresponding to STACK have the

form

ad B

such that
d € RES%(a) ~{#a}) A 2 c € : % c € RES%(a) ~ {%a}

i.e. d is lowest in STACK.

We define

MIN$(RES&[a) ~ {#a}) = {#d}.

When the execution of FF with argument d is continued, then for
all #c € RES%(a) ~ {#al}, such that c # d, we have that RES(c) <
RES(d) and that the activation of FF with argument c has been
terminated. Thus in [2.7c¢c] the result may be restricted to
RES®(a) U {#d}.

Again in [2.7c¢] we may, based on [2.9al, place a in FIN with the
value {#d} but return RES%(a) U {¥d} as the result of the activa-
tion FF(a).

In [2.81 any occurrence of #a may now be replaced by #d in case
[2.7¢c].

The optimizations in [2.91 have been included in the following

algorithm based on the above outline.
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m 2.10

= {¢ga | a € D};

= SET OF(R v 0%

TABLE (INDEX D, ELEMENT RT);

: SET QE 0;

F(a : D)
CK : SET QE 0;

CTION FF (a : D)

Algorith
type pf
ot
VAR RES
FIN
FUNCTION
VAR STA
FUN
BEG

IN

SET OF R;

i

0
P

STACK := STACK U {a};

RES(a) := G(a);
FOR b € P_ DO

IF b € FIN THEN RES(a)

:= RES(a)

ELSEIF b € STACK THEN RES(a)

ELSE RES(a)
ENDIF;
ENDFOR;

RES(a)

U FF(b)

U RES(b)

RES(a)

U {#b}
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39
40
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42
43
44

"
ASSUME RES(a) = RES(a) N R, RES"(a) = RES(a) n D&;

IF Res¥(a) = @ THEN FF :-

ELSE

IF RES¥(a) = {#a} THEN
FF := RES“(a);
RES(a) := RES"(a);

ELSE
4d = mIn, (REs¥(a));
FF := RES(a) U {#d};
RES(a) := {#d};

ENDIF;

RES® (a)

ASSUME FIN_ = {beFIN | RES(b) = {#a}};

FOR b€e FIN_ DO RES(b)

RES(al); ENDFOR;

ENDIF;
STACK := STACK ~ {al};
FIN := FIN U {a};
END FF;
BEGIN
IF a € FIN THEN F := RES(a)
ELSE
STACK := (1;
F 1= FF(a);
ENDIF;
END F;

L]



Let P=
YV b € FIN : RES{(b) = FD(bJ A CLDSUREO[b] c FIN

The following theorem states that algorithm 2.10 computes the

results discussed:

Theorem 2.11

Let F be given as in algorithm 2.10.
Then
{prp}

L := F(a)

{P A a€ FINAL =F (a)}

Proof: Straightforward using lemma 2.13 in section 2.5. I:

2.3 Complexity and Implementation.

An upper bound on the number of activations of the procedure FF
of algorithm 2.10, when activating F for a single argument a € D,
is

oc|nl)
The same bound is valid when activating F for all a € D, i.e. we

may compute Fo(a] for all a € D within this bound on the activa-
tions of FF.

For each activation of FF the number of U-operations of the FOR-

loop in 14-19 is linear in ]Pa , i.e. for 0(|D]) activations of

FF we have 0( X ]Pag) U-operations. The number of := operations
a€Dl

of the FOR-loop at 32 is linear in |D|,i.e. for 0(|D|) activations

of FF we have 0(|D|?) := operations. Because |pa| < |D] for all

a € D,we may conclude that to compute Fo(a] for all a € D we

use at most
0(|D]?)

U- and := - operations.

We remark that the ELSE-part in 22-33 is only used when circula-
rity exists in the recursive equations [2.2], i.e. when [2.5]
does not hold.
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In the following we give an implementation of the sets RES%(a)
for a € D, reducing these bounds. By implementing the sets

FINa (see line 31 of algorithm 2.10) directly, the problem
may be transformed into the UNION-FIND problem discussed in
[Aho, Hopcroft & Ullman 76]. The changes to the algorithm

may then be cutlined as:

For b € FIN,we let RES(b) = {#} denocte that b € FINC for some

C.
The FIND-operation 1s then used at 15 when RES(b) = {4}:

LET b € FIN ; "c := FIND(b)}"

J— C ’

RES(a) := RES(a) U {#c};
Line 31 is deleted.

Line 32 is inserted as line 25.1. The TRAVERSAL-operation of
the elements of a given set may be added to the UNION-FIND
implementation, e.g. by chaining the elements of a set. We
remark that the sets are disjoint and that any element is

visited in a TRAVERSAL-operation at most one time.
Line 29 is replaced by

RES(a) := {k};

FINg := FIN, U FIN_;  "UNION(a,d,d)”
FINg := FIN, U {al; "INSERT(a,d)”
Let ng = I !Pa|'
ael

For 0(|D|) activations of FF we have that the changes in algo-

rithm 2.10 outlined above imply that
the number of FIND-operations is O(no).
the number of UNION-operations is 0(|D]),

and the number of :=, U, etc-operations is O(nol.

Using the efficent implementation of UNION-FIND as given in
[Aho, Hopcroft & Ullman 761 then, when F of algorithm 2.10
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is activated for all a € D,we have at most

O(nOG(nOJ)

executions of elementary operations (i.e. :=, U and the ope-
rations used to implement FIND and UNION), The G-function may
be treated as constant for all pratical values given as argu-

ment, e.g. G(n)<5 for all n§265536.

2.4 Comparison

After the publication of [Kristensen & Madsen 79al] an indepen-
dent work on a method for efficient computation of LALR(1)-look-
ahead sets has been published in [DeRemer & Pennello 79]. This
method is based on an efficient algorithm for computing the
transitive closure of a relation given in [Eve & Kurki-Suonio 7717.
This method is itself based on an algorithm in [Tarjan 721 for
finding the strongly connected components (SCC's) in a directed
graph. This SCC-algorithm is treated thoroughly in [Aho, Hopcroft
& Ullman 767.

On this background we shall compare algorithm 2.10 to the

above mentioned algorithms by interpreting algorithm 2.10 in
terms of directed graphs. By letting the elements a € D be ver-
tices, then an edge, (a,b), is given in the directed graph

if and only if b € Pa. In this terminology the effect of algo-
rithm 2.10 is to traverse a connected subgraph according to the

depth first search principle, and to compute some results based

on the values at the vertices encountered on the traversal. The
presence of strongly connected components implies circularity

and is the reason for the introduction of the dependency markings.

Interpreted in this way algorithm 2.10 may be seen as an approach
to the SCC-problem, distinct to the method in [Tarjan 72]1. In that
method the SCC's of the graph are handled by an extended stack-
concept during the traversal: The elements of a strangly connected
component are kept on the stack until all its elements are known;
then the entire set is popped off the stack. The dependency mark-
ing is performed by means of indices in the stack. It seems that

these differences from our approach have the effect on the com-
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plexity that the factor G(no] may be omitted. We notice that
in the applications of algorithm 2.10 on LR-theory, the SCC’'s
will appear very infrequent and that the dependency marking

in algorithm 2.10 is not involved if no SCC is present. In
this case algorithm 2.10 directly gives the upper bound O(nD),

as mentioned in section 2.3.

2.5 A Proof of the Improved Algorithm

We introduce a list of definitions:

[2.12a] PFIN = V¥ b € FIN:

((Fo(bl = RES(h))
v(RES(b) = {#c} A c € STACK A Fo(b) = Fo(c)))

AP, < STACK U FIN))

b

[2.12b] Let b € D and let the runtimestack corresponding to STACK have

the form

Qb blbz...bn

It b = b1 then

TOP(b,STACK) = {bl,bz,...,bn}

U ULTOP(c,STACK) | 4c € RES&(bi] Ai€ [1,n1}

As TOP is defined by a set of recursive equations, we shall as-
sume TOP to be the minimal solution to these equations. TOP
captures a topmost part of the runtimestack, namely the largest

#
part reachable through RES (bi], recursively.

[2.12c] Let Qa for a € D denote the subset of Pa for which the statement
of the FOR-1oop at 14-18 has been executed. Precisely,Qa may be
added to the algorithm as follows:
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insert line 10.1 : VAR Qa : SET OF D;
insert line 12.1 : Qa 1=

v;
insert line 18.1 : Qa HE Qa U {b};

[2.12d] Let b € D such that b € STACK. Then

A
F(b, STACK) = U{F(c) | ¢ € TOP(b,STACK)}

where
A

_ 0
Fle) = RES (e) U ULF_(d) | d € P_ N 0.}

[2.12e] Let L < R. Then

PSTACK[L] =V b € STACK: N
(F (b) = L U F(b, STACK))

A (V 8c € REST(b) : ¢ € STACK)

Lemma 2.13

4
Let L < R# and let L°, LY be defined as for RES. Let FF be given
as in algorithm 2.10 and let

P = PFIN A STACK = STACK' A STACK n FIN

1
2

Then

{P A P (@) A FIN = FIN' A a ¢ STACK U FIN}

S TACK

L := FF(a)
{P A FIN' @« FIN A @ € FIN A

((L=F (a) AP (1))
0 STACK

(L°) A ¢ € STACK A Fola) = F_(e)))

vt = {301 a P
| STACK

}
Proof:
Let Py = PFIN A STACK n FIN = B A STACK = STACK' u {a}

A FIN' = FIN

fl

After line 13,0, = D and RES(a) G(a) and thus we have that P,

is valid:

~

P, = F_(a) = Fla, STACK) A P1 A Pgrpapk(P)-
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At line 14-139 a cycle of the FOR-loop includes FD(bJ in RES(a)

using an expression of Fo(b) given by either PFIN’ PSTACKEB] or
the invariant for FF. At line ’|7,PSTACK
P (#) by including L° =RES®(b) in RES(a). Before line 19,

STACK
P, is still wvalid.

(L°) is restored to

After line 19 P43 is valid:
P, Z p, A Qa = Pa'
The cases at line 21 and line 23-25 are treated using P3. At line
27-29 the identity
TOP(MIN, (REST(a),STACK)) = U{TOP(c,STACK) | 4o € REST(a)}

may be used.

The remaining steps are then straightforward, using at line 34
that

~

F (a) = FF~ U Fla, STACK~{al}l)

where FFZ, FEF may be defined as for RES.

The recursion will terminate, because the set FIN is increased

[]

with one element for each activation of FF.



[3.2]

[3.3]

15

3. Examples from LR-theary

Before we give the algorithms, we restate the necessary defini-

tions and notation as used in [Kristensen & Madsen 79a, 78b].

3.1 Definitions

We use the terminology and conventions from [Aho & Ullman 72,
731. Any CFG, G = (N, £, P, S) is assumed to be extended with
a new start symbol S' and the production S' - S~ik where -1 ¢
(N U 2).

Definition 3.1

Let 6 be a CFG, then the LR(k)-machine for G is

IS GDTDG],

LRI ke 1Sk K

G
K
where ME is a set of (LR(k)-)states, one for each set of items
in the canonical collection of LR(k)-items. We do not distinguish
between a state and its corresponding set of items. ISE is the

initial state. GOTDE is the GOTD-function defined an ME x (N U £)
.
-+ M

- | .
For a given grammar G we will assume the existence of its LRME
on this form. The superscript G is omitted when this causes no

confusion. GDTDk is extended in the obvious way to
LMKJ x (N U Z)* » Mk'

Definitions

Let G be a CFG, with LR(k)-states M k > 0.

kl

Let T € M then

k,
LR ([A>a.81,T) = {u | [Ava.B8, ul € TI.

Let [A»0.B, ul] be a LR(k)-item and 1let S € M then

kl
CORE ([A»a.B, ul) = [A=0.B], and

CORE(S) = {CORE(1I) |1 € S}.

We shall not distinguish between the items [A+a.B8, el and
[A+a.B].
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[3.4] Let T € MD’ then
URCORE, (T) = {S € M | CORE(S) = T}.
[3.5] Let T € MO’ then

LALR) ([A»a.B], T) = U{LR ([A+a.B],S) | S € URCORE, (T},

[3.6] Let T € Mk’ X € (Nuy ) and oo € (NUZ)*, then
{T} if o = e
PRED(T,a) =
U{PRED(S,a') | GOTO,(8,X) = T} if o = o’X
[3.7] Let T € MO and [A»a.m], [B+g.8] € T and A B¢ Z*k, then
LRCONDK(A,[A+@.W], B, [B»g.68], T) =

v S € URCOREK(TJ:
(*) A@k LRK([A+a.ﬂ], Sy n B 0, LRk([B+B.6], S) =

[3.8] Let T € My and [A»0.B] € T and A < Z*k, then

0

BDTTOMKEA, [A»a.B], T) =

(*%*) (o #e=|A] . > k) A

min

(oo = & =
VY [B»p.A¥] € T:

BOTTOM, ( A ®

¢ (¥), [B»o@.A¥], T))

FIRST

K Kk

(*) The $k~operator has higher precedence than the N-opertor.

(**)] Let A < Z*k then | A | is the length of the shortest string

min
in A, if A # 0, - and 0 if A = 0.
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3.2 LALR(1)-Lookahead Algorithm

In [Kristensen & Madsen 79al we have proved that the following

set of recursive equations is valid for LALRk as defined in [3.51:

[3.9] Let T € MD and [A»0.B8] € T such that [A>a.B] # [S'+.S*ﬁ]. Then

LALRK([A+u.B], T) =

U {FIRSTK(WJ®kLALRk([B+@.AW], S)

| S € PRED(T,a) A [B>@.AY]ES]

In the pratical case for k=1, [Kristensen & Madsen 79al includes
the result, that LALR

variant of [3.9]:

y is the minimal solution to the following

[3.10] Let T € My and [A+~a.B8] € T. Then

LALR, ([A>a.B8], T) = u{L(S,A) | S € PRED(T,al}
where
L(S,A) = U{FIRST, (¥} | [B>e.A¥] € S} ~ {e}

U U{LALR, ([B>@.A¥], S) | [B>p.A¥] € S A y=* g}

By theorem 2.11 we may thenuse the general algorithm 2.10 to
produce a special algorithm for computing LALRq—lookahead based
on [3.10].

The equations in [3.10] have not exactly the form assumed in

[2.2] but a simple transformation will do.

The LALRq—lookahead computation is realized by the following

algorithm:
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Algorithm 3.11

TYPE D = item x state;

nt {#(1,T) | (I,T) € D};

A SET OF (& U nty,
VAR RES : TABLE(INDEX DB, ELEMENT Z%);
FIN : SET OF D;

1

FUNCTION LALR-1 ((I,T):D) : SET OF %;
VAR STACK : SET QE D;

FUNCTION LALR(C(I,T):D) - 2t
BEGIN
STACK := STACK U {(I,T)};
ASSUME I = [A~0.B];
RES(I,T) := @;

FOR S € PRED(T,w) DO
FOR [B+p.AY¥] € S DO
RES(T,T) := RES(I,T) u (FIRST (¥) ~ {el);
IF e € FIRST,(¥) THEN
ASSUME 1 = [B+o.AV];

IF (J,S) € FIN THEN RES(I,T) := RES(I,T) U RES(J,S)
ELSEIF (J,S) € STACK THEN
RES(I,T) := RES(I,T) u {#(3,3)}
ELSE RES(I,T) := RES(I,T) U LALR(J,S);
ENDIF;
ENDIF;
ENDFOR;

ENDFOR;



ASSUME RES®(I,T) = RES(I,T) n z, restcr, )
IF RES*(I,T) = @ THEN LALR := RESC(T,T)
ELSE
IF RES%(I,T) {#(I,7T)} THEN
LALR := RES?(I,T);
RES(I,T) := RESP(I,T);
ELSE
E(T',T") MIN, (RES® (1,713
LALR := RESP(I,T) U {E(I',T")};
RES(I,T) = {#(I',T")};
ENDIF;
ASSUME FIN . o
FOR(I',T') € FIN [ 4y DO
RES(I’,T') := RES(I,T);
ENDFOR;
ENDIF;
STACK := STACK ~ {(I,T)};
FIN := FIN U {(I,T)};
END LALR;
BEGIN
IF (I,T) € FIN THEN LALR-1 := RES(TI,T)
ELSE
STACK := -
LALR-1 := LALR(I,T);
ENDTF;

END LALR-1;

i

it

{(I',T")EFIN | RES(I'

19

¥
= RES(I,T) n D

LT ) ={#(1,T)}};

.
»
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3.3 Algorithm for LR(1)-Testing

In [Kristensen & Madsen 79b] we have proved that the following
set of recursive equations 1is valid for LRCDNDk as defined in
[3.71:

[3.12] Let T € MD and [A»aB.n], [B=B.8] € T and A,B < Z*k. Then

LRCONDK(A, [A+aB.m], B, [B>B.8], T) =

(BOTTDMK[B, [B+B.8], T) =

A ®k LALRK([A+QB.W], T) N B @k LALRK[[B+B~6], T) = 0)
A

EﬂBDTTOMk(B, [B+R.S81, T) =

v S € PRED(T, B):
vV [C>p.BY] € S:

LRCONDK(A, [A>0.Bm], B ®, FIRST, (¥), [C»p.B¥], S))

Kk k

Again we restrict the discussion to the practical case for k=1.

In [Kristensen & Madsen 79b] it is proved that LRCOND, is the

1
minimal solution to the following variant of [3.12]:

[3.13] Let T € MU and [A»aB.m]l, [B>R.8] € T. Then

LRCONDq({e}, [A~aB.7m], {e}, [B>B.S], T) =

v S € PRED(T,R):
(V[C>p.BY¥] € S where ¥=* g;
LRCDNDq({e}, [A~o.Bm], {e}, [C>p.B¥], S))

A

(LALR, ([A>a.pm]l, S) n (U{FIRST,(¥) | [C>p.B¥] € S} ~ {e}) = 0)

Using the following result, which is an immediate conseguence

of combining the LR(k)-definition and [3.7]:



[3.14]
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G is LR(k) if and only if

VTEMD:

v [A»a.m], [B>B.] € T:

LRCDNDK(EFFK(W), [A»o.7], {el}, [B~»B.], T)

we may then base an algorithm for LR(1)-testing according

to [3.13], on the scheme given by algorithm 2.10.

The equations in [2.2] are formulated in terms of sets, while
the eguations for LRCOND1 in [3.13] are in terms of boolean
values. We may resolve this problem by implementing boolean
as a set. The type boolean# is a combination of boolean and

the dependency markers, defined as follows:

Let the set of dependency markers be described by DF, then

boolean' = {TRUE,FALSE} U SET OF DnF.

Let @ be of type boolean# and b of type boolean, then

o
it

il

0 means b (FALSE ¢ Q)

Q u | {TRUE} 1if b
{FALSE} if =b.

fan]
[t

Q U b means

£
i}

The LR(1)-testing is realized by the following algorithm:
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Algorothm 3.15

TYPE D = item x item x state;
o = {$(1,3,T) | (I,3,T) € D};

VAR RES : TABLE(INDEX D, ELEMENT boolean#);
FIN : SET OF D;

FUNCTION LRCOND-1 ((I,J,T):D):boolean;
VAR STACK : SET OF D;
FUNCTION LRCOND((I,J,T):D):boolean’ ;
BEGIN
STACK := STACK U {(I,J,T)};
ASSUME I = [A»aB.m], J = [B>B.81;
RES(I,J,T) := {TRUE};
FOR S € PRED(T,B) DO
RES(I,J,T) := RES(I,J,T) U (LALR, ([A»a.gm], S) n
(U {FIRSTq(W) [C>@.BY] € SiN {e}) = 0);
FOR [C>p.BY] € S DO
IF e € FIRST,(¥) THEN

ASSUME I’ = [A»o.Bm], 3’ = [C>0.BY];
IF (I',3',S8) € FIN THEN
RES(I,J,T) := RES(I,J,T) U RES(I',J,S)
ELSEIF (I’,J3',S) € STACK THEN
RES(I,J,T) := RES(I,J,T) u {#(1',3",3)}
ELSE RES(I,J,T) := RES(I,J,T) U LRCOND(I',J',S)
ENDIF;
ENDIF;
ENDFOR;

ENOFOR;
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ASSUME RES®(T1,3,T) = RES(I,1,T) n {TRUE, FALSE},
res*(1,3,7) = RES(I,3,T) n D%
IF REST(1,3,7) = @ THEN LRCOND := RESO(T,J,T)

1

i

ELSE

IF restir,a,m - (#(I,3,T)} THEN
LRCOND := RES®(I,3,T);
RES(I,J,T) := RES®(I,I,T);

ELSE
$(I7,37,T") 1= MINﬁ(RESﬂ(I,J,TJJ;
LRCOND := RES®(I,J,T) U {K(I",3",T")};
RES(I,J3,T) := {#(I",3",T")};

ENDIF;

ASSUME FIN(I,J,T):{(I ,J7, T )ERIN

| RES(I",J3",T")={®(I1,3,T)}};

FOR (I",3",T") € FIN(; 5 1, DO
RES(I”,J3”,T") := RES(I,J,T);
ENDFOR;
ENDIF;
STACK := STACK ~ {(I,3,T)};
FIN := FIN U {(I,J,T)};
END LRCOND;
BEGIN
IF(I,J,T) € FIN THEN LRCOND-1 := RES(I,J,T)
ELSE
STACK := 0;
ASSUME T = [A»a.m]l, J = [B>B.];
LRCOND-1 2= ((EFF,(m) ~ {e}) n LALR, (1, T) = @)
A LRCOND(I,3,T);
ENDIF;

END LRCOND-1;
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