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Abstract.

Attribute grammars have traditionally been used to define the context—sensitive
syntax of programming Llanguages and translations of these into intermediate
forms or code for (hypothetical) machines. The purpose of this 7paper is to
demonsirate different ways of using attribute grammars to define different kinds
of semantics. The possibilities for defining predicate transformers,
denotational semantics, and operational semantics are treated. The approach to
opperational semantics consists of giving a set of attribute grammar rules that

specifies the possible transformations upon a given program.

A major motivation for this work 1is a desire to construct & general translator
writing system where different kinds of (practical or experimental) trans-
Lators/compilers may be generated based on different kinds of semantic

specifications.

A generative version of attribute grammars called extended attribute grammars
are used. A proposal for making it possible to define the domains of an at-

tribute gremmar within the formalism is given.

Finally an efficient evaluator that works for all attribute grammers Cincluding
some circular ones) are described. This evaluator constructs during a Lleft-to~
right scan of a linear representation of the perse tree (& right-parse) a direc~
ted (acyclic) graph that represents the values of the attributes at the rcot of
the parse tree. The paerse tree fJtself need not to be constructed. During a

(recursive) scan of this graph the attribute values may be evaluated.

(Revised version of DAINMI IR-14, September 1979)
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1. Introduction.

Knuth has introduced attribute grammars (AGs) as a tool to define the semantics
of context-free languages. The wuse of AGs 1in connection with programming
language definitions has mostly been to define the context-sensitive syntax of
the language and to define a translation into code for a hypothetical machine.
The semantics of a program is then defined by the interpreter for this machine
(CKnuth 681, [Wilner 721, [Marcotty et al 761). This is a rather compiler orien-
ted approach to semantics but it has among others resulted in a number of trans-

lator writing systems based upon AGs,

Defining semantics this way is useful for an implementer of a language but is
less useful for a user or designer of a language. It is often assumed that this
is the only way that AGs can be used to define semantics and for this reason AGs
are not really considered as an acceptable way of defining semantics. AGs are
viewed as a compiler writing tool. One of the reasons for this may be that AGs
were not introduced as a complete formalism in the sense that it is not part of

the formalism how to define the domains of the attributes.

We would Like to point out that we find AGs to be a very useable tool for
defining the context-sensitive syntax of a programming language. See e€.g. the

definition of Pascal in [Watt 783.

In the original paper by Knuth it was stated that any semantics for a language
which can be defined as a function of the set of parse trees can be defined by
an AG. The purpose of this paper is to demonstrate different ways and technigues

for using AGs to define different kinds of semantics.

The motivation for this work comes from an interest in practical transtator
Writing systems (TWSs). Having a TUS intended for implementing (parts of) prac-
tical compilers it would be desirable if the same THWS could also be used to make
an experimental 1implementation based on a formal semantics of the language. This

will ease experiments with definitions of new languages.




If several different kinds of complementary formal semantics can be used in the
same TWS then one may start with a rather human oriented semantics as the basis
for an initial (and inefficient) implementation. One may then successively
develop more implementation oriented semantics that give more efficient im—
plementations, and if still too inefficient it may be used as an 'implementation

guide' for a hand written implementation.

In this paper ue shall fdnvestigate the possibilities of defining predicate
transformers, denotational semantics, and operational semantics. The approach
to operational semantics is to specify an AG that defines the possible transfor-
mations upon a representation of the program. The operational approcach is used
(1) to specify abstract data types, (2) to specify semantics of programming
Llanguages, and (3) as a model for defining nondeterministic and concurrent com—

putations.

As mentioned we are interested in exploring the possible uses of an AG based
THS, so we are concerned with what is possible to define by means of AGs, i.e.
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done with respect to intuition, readability, efficiency, etc. This is often a
matter of personal opinion. In connection with this there is no single way of
using AGs. The attributes may be wused 1in different ways just as it may be
natural to use a translation grammar instead of having the trenslation as a syn~

thesised attribute.

The power C(or expressibility) of AGs 1is dependent upon the actual domains
available. We propose that the domains shall be defined by other AGs. In this
way AGs become multi-level instead of two-level. At the bottom we define pure
AGs which have a "built in' set of domain types. We have chosen tree languages
as this basic domain. Pure AGs are then quite similar to vW-grammars (Lvan Wij-
ngaarden et al. 751), and extended affix grammars [Watt 74al, where the basic

domains are context-free (string) languages.

We use a version of AGs called extended attribute grammars (EAGs) (IWatt & Mad~
sen 771). EAGs are generative in the same sense as affix~grammars ([Koster 701)
and vii~grammars, whilst retaining the essential advantages of AGs. In our
opinion EAGs are better suited for analysis and lLead to more readable and

natural descriptions.
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The notions of pure AG and multi-level AG are further refinements of EAGs.

In [Watt & Madsen 771 it 1is also mentioned that the idea of EAGs can be carried
over to translation grammars. We shall also make use of these extended at-
tributed translation grammars (EATGs). EATGs may be a wuseful tool to define
programming Llanguages where the (context—sensitive) syntax and one or more
semantics are defined by an integrated formalism. We dimagine that the input
grammar defines the syntax and a particular semantics is defined by a particular

output grammar.

It s still an open problem how to make a general and efficient implementation
of AGs without enforcing strange reguirements upon the dependencies allowed
between attributes. Such requirements are often introduced in order to have a
well defined (and efficient) order of evaluation of the attributes. We give an
evaluator for AGs where the order of evaluation of attributes is no problem. The
evaluator 1is general as is accepts all AGs and it is ‘'very fast'., However it

still needs space proportional to the size of the parse tree.

We hope to achieve the following:

- demonstrate that AGs are a very powerful meta language for defining dif-
ferent kinds of semantics,

- demonstrate that a TWS based upon AGs can be used for many purposes,

- contribute to a better understanding of AGs and to the theory of AGs and
show how AGs may be turned intc a complete formalism,

- contribute to a unification of different formal semantics. HWe do not claim
that we add anything new to these methods,

- present a general and fast evaluator for AGs.

The rest of the paper is organised as follows:

Section 2 reviews the basic terminology being used. The sections 3~7 fall dnto
three parts: Part I (section 3~5) is about semantic definitions. Verification
generators are ireated in section 3, denotational semantics in section 4 and
operational semantics in section 5. Part II (section 6) is a concluding section
about the AG formalisms. Part III (section 7) describes & general evaluator for

AGs called the DAG-evaluator. The paper 1is concluded in section 8.
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2. Basic Terminology.

He use a generative version of AGs called extended attribute grammars (EAGS)
(CWatt & HMadsen 773) with the modification that we allow the start symbol to
have synthesised attributes. The definition of EAG is repeated below. For a more
expository exposition, the reader is referred to [Watt & Madsen 771 or [Madsen

793.

Defintion 2.1.

o} s e Wit " bt w0t Py A rs = s v e s e

whose elements are defined in the following paragraphs.

D = (01'02""'f1'f2".') is an algebraic structure with domains 01, DZ, cnay

and (partial) functions f1,f2, .s» Operating on Cartesian products of these

e o vt e ey o

V¥ is the vocabulary of G, a finite set of symbols which is partitioned into the
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nonterminal vocabulary V and the terminal vocabulary VT. Associated with each

symbol in V is a fixed number of attribute-positions. Each attribute-position

- 0w s o o s 2o P
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The start-symbol Z and the terminal symbols have only synthesised attribute-

positions.

B 1is a finite collection of attribute variables (or simply variables ). Each

o s T e s 827 e 0w s o 45 22 e
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(a) a constant attribute, or
(b) an attribute variable, or

(¢) a function application f(ei,...,e ), where e1, -anpy, € are attribute expres=—
m m
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sjons and f is an appropriate (partial) function chosen from D.
In the examples, we shall make use of infix operators where convenient.

Let v € V, and let v have p attribute-positions whose domains are 01, eaus, D,
Y

respectively. If a1, .ns, @ are atiributes in the domains D1, ewnp, D , respec-
p p

tively, then

<vfa w.-fa >
1 P

is an attributed symbol corresponding to v. In particular, it is an attributed

nonterminal  (terminal) if v 1is & nonterminal (terminal). Each ¢ stands for

either ¥ of 4, prefixing an inherited or synthesised attribute-position as the

case may be.

AV (AV ) stands for the set of attributed nonterminals (terminals) , AV = AV U
N T N

AVT' and AZ is the set of attributed nonterminals corresponding to the start-
symbol Z.

If eq, .en, € are attribute expressions whose ranges are included in D , awaes
o 1

D , respectively, then
P

vfe ae. e >
1 p
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where m20, and F, FT’ e, F are attributed symbol forms, F being a nonter-
m

minal.

A production rulte Torm defines a set of production rules in the following way:

L papag i S - P

et F 2= F1 eens F be a rule. Take a variable x which occurs 1in this rule,
m




select any attribute @ in the domain of x, and systematically substitute a for x
throughout the rule. Repeat such substitutions until no variables remain, then
evaluate all the attribute expressions. Provided all the attribute expressions

have defined values, this yields a production rule , which will be of the form

oL R T WD e oy o v W o e .

A t:= A cewes A
1 m

where m>0, and A, A1, .esp, A are attributed symbols.
m

The relation => 1is defined as follows:

*
lLet a,g € AV , A€ AVW' and let A ::= b be a production rule,
i

then a Ag=>abyg .

* +
=> and => are define in the usual way.

*
The language generated by G, L(G) a subset of AVT , is'defined as

*
LGy ={w | S$=> wand S € AZ %

Let D1, evs, D be the attribute domains of Z. The translation defined by G,
p

*
T(G) a subset of AVT X(D1X...XD ), is defined as
P

*
TG = L w,m) | m5(@ ,eeepa ), <Ifa ...ta > => w}
1 p 1 p

If Cu,m) € T(G) then m is a meaning of w.

The relation => defines in the usual way an attributed parse tree. An at-

tributed parse tree defines in & unigue way a corresponding parse tree from its

underlying CFG.

£

One may distinguish between the following three kinds of
of an EAG:

ambiguity/unambiguity

s s o 2 et e e s Sy o 2 s e v Bk i e o

T(G) and (w,m2) € T(G).
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(2) G is structurally ambiguous if there is a w € L(G) and w is the frontier

o > 2 s o o3 o o s s s e w0 e oL e a o
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Observe that the distinction between inherited and synthesised attribute makes
no difference to the language and translation defined by the EAG. The distinc—
tion is traditional, may improve the readability and 1is 1important when con—
sidering implementations of EAGs. This 1is also the case for the following

definitions.

Inherited attribute-positions on the Lleft-side and synthesised attribute-

positicns on the right-side of & rule are called defining positions . Syn-

o s s s ot et e s o e e e v s o

thesised attribute-positions on the left-side and inherited attribute-positions

- - >

(a) every variable occurs in at Lleast one defining position 1in each rule in

which it is used; and

() every function used in the composition of an attribute expression 1in a
defining position is injective.
/1

We shall also use the EAG meta syntax for ordinary Knuth-like AGs, which we

define in the following way

[2.2] A Knuth-like AG (or just an AG) is an EAG that satisfies: (1) it is well~
formed, (2) only (attribute—) variables appear in defining positions, and

(3) the same variable appeers in only one defining position.
This definition of an AG differs form the one in [Knuth 681 in the following
ways:
[2.3a1 In Knuth's definition terminals cannot have synthesised attributes.

[2.3b1 In Knuth's definition the semantic functions are apparently required to

be total whereas [2.21 allows them toc be partial.
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£2.3¢c] AGs defined by [2.2] are always in normal form (LBochmann 761). By re-
quiring normal form we avoid a number of tedious (and unimportant) com~
plications in the following sections and we exclude only some obscure

AGs.

[2.3d] In Knuth's definition, a string is assigned a meaning in the following
well known way: (1) A parse tree for the string is constructed. 2y A
node  in the parse tree and an applied attribute-position of that node is
selecteds If the attribute-positions referred to (through attribute
variables) in the expression of the selected attribute have defined
values then the selected attribute-position is assigned the value of the
expression. (3) Step (2) is repeated until either all attribute-positions
have been assigned a value or no more attribute-position can be assigned
a value by this process. (4) The value of a distinguished attribute-
position of the root in the parse tree constitutes the meaning of the

string corresponding to that parse tree.

[2.3el Knuth defines an AG to be well-defined if all attributes can always be

defined, in any conceivable parse tree using the strategy in [2.3dJ. He

then shows that an AG is well-defined if and only if it is non-circular.

[2.3f1 Knuth's model s intended to define the semantics of context~free
languages in the sense that all parse trees may be assigned a meaning in
all well-defined AGs. Cther AG formalisms, such as EAGs (and [2.21) may
be viewed as a language generating device in the sense that not all parse
trees of the underlying CFG may get values assigned to its attributes.
Knuth suggests to let an attribute-position in the root of the parse tree
decide whether the parse tree (string) is 'malformed' or not.

The wuse of partial functions in [2.2] implies that not all parse trees
may be assigned attribute values, even if the AG is non-circular. Fur—
thermore a parse tree may be assighed attribute values even if the AG is
¢ircular. Thus circularity is not an inherent problem in EAGs and AGs as

defined in [2.21. We return to that later in the paper.

One may reformulate Knuth's definition (2.3d) 1in order to obtain a definition

that is eguivalent to [2.2]1:
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£2.41 A string is assigned a meaning in the following way: (1) A parse tree for
the string is constructed. (2) A set of equations corresponding to the
parse tree is constructed. Each attribute-position is an unknouwn; each at—
tribute expression determines an equation in the sense that if a is an at-
tribute expression occupied by the expression e, then a=e is an equation;
variables 1in the expressions are also unknowns and may have to be renamed
properly. (3) The parse tree may be assigned attribute values if and only
if the equations have a solution. (4) The attributes of the root in a
solution constitute the meaning of the string corresponding to the parse

tree,

In some definitions of AGs ([Marcotty et al 761) an AG rule has an associated
constraint which is a predicate over attribute values. This constraint must be

true 1in order that the atiributes of the rule can be assigned values. We inter-

pret constraints in the following way:

[2.51 Each symbol is given a synthesised attribute with a domain consiscing of
one value. The constraint is conhverted to a partial function that assigns
the value to this attribute of the left side symbol if the constraint s

truc.

Consequently if some constraint s false there is an attribute <that cannot be
assigned a value and this is now captured by the definition of AGs in L[2.23 or
[2u4]s

In [Watt & Madsen 771 it is shown how to convert an EAG into an AG by using con-

straintsa

We also make use of egxtended attributed translation grammars (EATGs) (LWatt &
Madsen 773). An EATG consists of a translation grammer (like syntax directed
translation schemes in [Aho & Ullman 721) equipped with attributes in the same
way as an EAG is a CFG equipped with attributes. An EATG 1is naturally divided
into an ipput-grammar and an output~grammar. The terminals of the input-grammar
(output-grammar) are called ipput-symbols ( output-symbols ). As with EAGs in-
put~symbols may have synthesised attributes whereas output—-symbols may have only
inherited attributes. Each rule in the input—-gremmar has an associated rule in

the output~grammar. The output rule may refer to attribute veriables in the in-
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put rule but not vice versa. Pairs of dinput production rules and output produc-
tion rules are obtained by applying the systematic substitution rule to both the

input rule and the corresponding output rule taken together.

An EATG defines a translation from strings of attributed input-symbols to

strings of attributed output-symbols.

There is a choice between defining a translation by using an EATG or by using
synthesised attributes of an EAG as in definition 2.2. The actual choice
depends upon the kind of semantics (or translation) to be defined. It is often a
matter of modularity and by using EATGs one may separate the definition of the

(context—-sensitive) syntax from the definition of the semantics.

e A S P D AT - v 005 vt s T S92 e 40 s o o s s s o o o
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[Watt & Madsen 77] and [Madsen 791.




3. Defining Verification Generators.

Here we treat the possibilities of expressing predicate transformer semantics by
means of EAGs., It is well known that any predicate transformer semantics may be
reformulated as a denctational semantics. In section 4 it is shown how any
dencotational semantics may be defined by an AG. The technique of that section

may then be used to define any predicate transformer semantics.

A predicate transformer semantics may be used as & basis Tor a system which
generates verification conditions. In this section we sketch an example on how
such a verification generator may be defined by means of an EATG. The example is
based upon a forward predicate transformer for partial correctness in the style
of LGerhart 76].

If P is a predicate which is supposed to be true before the execution of a

statement S, then the value of the forward predicate transformer FPT(P,S) is a

PR o s s s 03 B W Ay > e s s e e et s ey

predicate which is true after the execution of §S.
Consider the statements :

if B then $1 else $2 and

while B assert A do S.

Assert A defines an invariant which must be supplied by the programmer. We may

define the following FPTs:
FPT(P, if B then S1 else S2) =
FPT(P AND B, $1) OR FPT(P AND NON B, S§2)

FPT(P, while B assert A do S) = A AND NON B

The FPT for the while-~statement is only true if the so~called verification con-

dition following verify can be proved to be true.

A verification generator for & language can be defined by an EATG, where the in-

put grammar defines the (context—-sensitive) syntax. The output greammar
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generates a sequence of verification conditions, and the symbols have predicates
as attributes. If <stmt> is the nonterminal generating statements, then in the

output grammar <simt> may typically have two attributes:

<stmtyP 4P >
before after
where P is the predicate which 1is true before the execution of the
before
statement generated by <stmt> and P . a predicate which is true after.
atter

An output rule for if-then-else and while-assert-do might look like (in order to

ease the reading, the 1input symbols are dncluded in the rule):

<stmtyPt@ OR R> ::=
if <exptB> then <stmtyP AND B o>
else <stmtyP AND NON B 4fR>

<stmtyP 1A AND NON B> ::=
while <explB> assert <predicatefi>
<stmtyA AND B 14> <verify P => A, Q@ => p>

<exp> has a synthesised attribute B which is the predicate corresponding to the
expression generated by <exp> and simitarly the synthesised attribute of

<predicate> is the invariant supplied by the programmer.

<verify> is an output symbol.

If <prg> is the start symbol of the grammar then we may have a rule
<prgfP> r:= <stwt{ true P>,

where P then will be a predicate which is true after the execution of the
program. Instead of initialising the inherited attribute of <stmt> with true one

might as well do as follows:
<prgtP> ::= assert <predicatetA> <stmtVA $P>,

where A then is an input assertion.

The 1idea of generating a verifier from a grammar appeers in [Mayoh 761 and s
g g
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used in the JaNS-system [Nielsen 751, Most verifiers are designed for a specific
Language. By means of a TWS based on AGs such verifiers can be automatically

constructed from an AG description.

An attribute domain for predicates must be available. In JGNS predicates are
basically text strings with an associated set of operations. This is a simple
solution. It might be desirable to have a more structural definition of
predicates, especially 1if the verifier is combined with a theorem prover. The

domains mentioned in chap. 2 should be sufficient for this.

By wusing an EATG to define the syntax and a verification generater for a
Ltanguage it should be possible to tie the two definitions tcgether. This is e.g.
not the case with the original definition of Pascal where the context—-free syn-
tax is defined by BNF, an axiomatic definition appears in [Hoare & Wirth 731,
but the context—sensitive pert of the syntax is only informally and very im—

precisely defined in [Wirth 711].

The output grammar of the EATG defining sementics could rely upon the input
gremmar defining the syntax. Type checking would normally appear in the input
grammar. In case of Pascal the 1input grammar could check certain other assump—
tions made by the semantics. E.g. that aliasing does not appear. The input gram-
mar will ncrmally have attributes corresponding to a symbol table to collect
declared identifiers. If the semantics needs a renaming of all identifiers then

this may be done using the ‘symbol table' of the input grammar.




4. Denotational Semantics and Attribute Grammars.

In [Mayoch 78bl 1t is shown that any AG can be reformulated into an eguivalent
Denotational Semantics (DS) (LTennent 761). An algebraic formulation of AGs is
given in [Chirica 761. In this section we shall discuss the possibilities of

reformulating a Denotational Semantics within AGs.

In [Knuth 681 it was proposed that one lLet a 'meaning® of a string generated by
an AG be the synthesised attributes of the start symbol in a parse tree for the
string. Furthermore it was shown that this meaning could be any function of the
parse itree. According to Knuth an AG def{nes a function from the set of parse
trees into some domain. So AGs are in fact a meta language for defining a kind
of mathematical semantics. Reformulation is then a question of wusing a dif~

ferent meta language.

Another result in [Knuth 681 is that any AG has an equivalent one using only
synthesised attributes. The reformulation of AGs as defined by Chirica and
Maych can be used 1in order to transform any AG into an equivalent one using only
synthesised attributes. This transformation is more natural and constructive

compared to the one of Knuth.

Pefinition 4.1. Attribute grammar notation.

Let A be a symbol of an AG. Define

il
Pt
<
>

-

INHCA) I X ..a X IDR », and

1 2

SYNCA) 301 X SDZ X oe. X SD ,

n

where ID1, IDE’ evep IDk’ SDq, SDZ, ea» 3D are the domains of the innerited and
' n

synthesised attributes of A.

Let AO -2 A1 A1 .eo A be the p*th production in an AG. Define
[ m

DEF(p) = INH(AD) X SYN(A1) X SYNCA 2 K ... SYNCA D) , and
2 i
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APP(p) = SYNCA ) X IMNHCA Y X INHCA ) X ... IMHCA J.
0 1 2 i

In general the attributes of rule p are defined by a function:

F ot DEF(p) X APP(p) => APP(p)

However we assume (as wmentioned in chap. 2 that our AGs are in normal forn,
i.€a F s defined by
p

F 1 DEF(p) -=> APP(p).
Qe

There is a canonical correspondence betuween sets of functions

f : DEF(p) => SYNCA )
0 0
T ¢ DEF(p) => INHCA ), i=1,2.uu,m,
i

and F .
%

It D=(10331p---;3 ), where ID is g value of the inherited attributes of AD and
m

S is a value of the synthesised attributes of A , i=1,2,...1, then the at-
i i

tributes of an instance of rule p are defined as follows:

[#2]

1

£ ),
0

o
i

) f (D), i=1,2,0na,m, and then
i i

F D) = <f (D), (D) une,f (DI
D 0 1 i

It f  G=0,1...,m> defines k attributes then f is defined by k functions f_q,
1 ki 1

...,f_l each defining an attribute. (In practice the functions f 1,...f will
ik i 1k

not depend upon the whole of DEF(p).)
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Definition 4.2. Reformulated AG with only syhthesised attributes.

Let G be an AG. G 1is an AG with only synthesised attributes and defined by
S

the following transformations.

Each symbol A will have one synthesised attribute with domain L[INHCA) ->
SYNCAYT.

Each production has one function that defines the synthesised attribute of

the leftside 1in terms of the synthesised attributes of the right side.
For rule p we get

Ld.2x] SV o= %I.f (I,8% (I' (I)),eearSY (X' (122,
0 0 1 i m m

vhere

I' o= XI.f (I1,8% (I' (I)),...8" (1Y (D)D), i=1,2,a0.,M,
i i 1 1 mooom

and  S' ig the value of the synthesised attribute of A,
i i
1=0,1,2,0ew,m, in rule p of the reformulated AG, G .
S

//

As mentioned in def. 4.1 each f (i€Ll0..nl1) defines a number of attributes, thus

[}
each of the above equations defines a number of equations corresponding to the

attributes defined by each f . Thus if rule p has k defining positions then the
i

above m+1 eqguations define k equations.

Below we formulate in what sense G is equivalent to G . This is similar to
]

(=3
i
L]

formulations in [Chirica 763 and [Mayoh 78bl.

For each parse tree, [4.2%1 defines a set of equations. Each instance of a
production p defines a set of equations using [4.2%]. These equations have exac-

tly one sclution if the AG is non—circular.




Theorem 4.5.
Let 6 be a non-circular AG with all semantic functions being total and let G
3
be the corresponding AG defined by 4.2. lLet t be a parse tree of the under-

Lying CFG, and let AO - A1 A? ewe A be production p and Llet an instance of
2 m

p appear in t. AG is then a node in t with sons A1, Az, annps A
0

Let I , S be the unique values of the inherited and synthesised attributes
i i

of A, 1i=0,1,2,...,m. The equations associated with p have exactly one
i

solution, and 5% (I ) = 8§ and I' (I ) =1 , i=1,2,6ce,M
0 0 0 i 0 i
proof:
We use structural induction on ta
Bottom : Assume that A1, Az,...,Am are terminals, i.e. leaves in t. The only
unknown in  the eguations 1is S'D which 1is well defined as it only depends on

T and S ,.e09 , and clearly § = §' (I ).
0 1° n’ 0 0

Induction step: Assume that $' (i€l1..md) are defined and that §' (1) =
i i i

As G 1is non~circular and t is fixed there is a partial ordering of the at-
tributes in p, such that x<y means that the value of y depends on the value
of x. This wpartial ordering can be wused to solve the eguations by sub-
sitution.

Let B (i€[1..kJ) be the attributes of the defining positions of p, and let
i
B <B : (i€01..k=11) where the partial dependency ordering is extended to
11t
some total ordering). Each B has an associated equation defining a function
i

B f: [IMH(AD)~>DOM(B_)3. The equation defining B ' 1is independent of
i i i

81',..., B *; if not then G is circular. Consequently the equations may be
-1




solved by substitution in the order B8 ', B ",euu, B ',

4.1 A redefinition of Attribute Grammars.

in his original definition of AGs Knuth has excluded circular AGs in order to
assure that all attributes in all possible derivation trees can be assigned uni=—
que values. This may be too strong a requirement. Consider the following exam

ples:

~ consider def. 4.2. IT we transform a given AG into one with only two at-
tributes Tor each symbol A, an inherited with domain INH(A) and a syn-
thesised with domain SYNCA)Y, then the new AG is circular if some dinherited
attribute of A depends on some synthesised attribute of A. However if the
original AG is well defined then the new one should not give problems with

assigning values to attributes.
- using conditional expressions . Consider the rules:

L S 4 o e b e 8 I S e e e o

<Aty+z> 1= <Bycond(c,y,z)tctyfz>

where cond(c,y,z)=If ¢ then y else z
<Byxftruef? tx+2> = tat
<ByxPfalsetx+148> 1:= 'h!?

The dependency graph Tor the derivation <A> => <B> => g has c¢ycles in it

but there is no problem in assigning unigue values to the attributes.

The equations [4.2%] give a basis for discussing circularity. A given parse tree
defines a set of equations defined by the productions in the tree and the cor-

responding equations L&.2%]. These equations may have either
1. Exactly one solution,
2. more than one solution, or
3. no solution.

Case 1 captures all non—-circular AGs and some circular ones where unique values
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may be assigned. Case 2 and 3 capture circular AGs where unique values cannot be

assigneds

in the style of denotational semantics we shall now assume that an AG is exten-
ded in the following way. The domains are extended to Scott-type domains with a
least element and a partial ordering. The equations associated with a parse

tree and defined by [4.2*%] will then always have a unique least solution.,

In this connection it d4s thus natural to define the meaning of parse tree

a
based on the minimal solution to the corresponding equations. In the rest of

! <4

section 4 we shall thus use this definition of AGs.

L. L ~ Seemem = ......._m. o e 3 e o e - o

This 1in Tact gives & difference when compared to EAGs. If there is no sclution
to the equations then the EAG cannot generate the corresponding input string. If
there are more than one solution then the EAG may generate the string in ways

corresponding to each solution.

As mentioned in section 2 the definition of £AGs 1in [2.13 and the corresponding
AG definition in [2.4] give also an interpretation to circular AGs. When we ex-
tend the domains te Scott~type domains we could also base 'the least solution®

approach to AGs on the minimal solution to the equations defined in [2.4]1.

If we when using Scott-domains use the EAG approach then we must define an
ordering wupon attributed parse trees in order to get a unique attribute assign-

ment to all parse trees.

With these constructions of 'the least solution' approach we Loose the ability
to recognise certain kinds of semantic ambiguity. This may be the case if the
EAG can generate distinct attributed parse trees with the same corresponding
(context-free) parse tree. But this is perhaps reasonable since any AG-evaluator

will probably compute the least sclution.
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4.2 Relation to Denotational Semantics.

By using the reformulated AG of definition 4.2 it 1is straightforward how to make
an eguivatent Denotationel Semantics. However this reformulation is in general
very complicated and unreadable as one must express a general solution to the
equations independent of the parse trees. In [Mayoh 78bl, [4.2%] is viewed as a
set of equations defining a function from the set of parse trees 1into the at-
tribute domains of the start symbol of the AG. Such a solution using the fix-
point operator may be found in [Mayoh 78bl. He shows that if the AG is non-cir-
cular then the solution may be expressed without using fixpoints. Mext Mayoh
defines a hierarchy of AGs which in turns simplifies the sclution and improves
the readability. The hierarchy classifies AGs by the evaluation order of at-

tributes and is also dnteresting when considering implementations of AGs.

Here we shall consider the opposite direction, namely converting a denotational
semantics into an equivalent AG. This is done by passing denctations as at-
tributes. It should be clear that the two formalisms are ecually powerful so the
purpose of this is to show how AGs may be used to express a denctational seman—
tics. We note that in general mechanical transformations from one meta Llanguage
into another may not work very well in the sense that the readability of the
transformed definition will usually be bad., It 1is Like transforming PASCAL

programs mechanically into FORTRAN programs.
4.2.17 A simple reformulation.

A straightforward transformation of a denotational semantics(DS) is as follouws:

A DS is defined by means of functions from syntactic domains (parse trees) into
some semantic domains. Let Com be a syntactic domain for the nonterminal <com>
(then Com is the set of parse trees derivable from <com> ). Consider the seman-

tic function
ce: [Com => Al, where A is some semantic domain, and the production

<eom> =W <A > w <A> ..., <A>w , and the semantic eguation
0 1 1 P n n

celw <A >w <A >...<A >w 1 = f(ga [A J,aa [A Jyeea,aa [A D
o 1 1 2 non 101 2 2 non
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where f is some function and aa_ (i=1,2,...,n) are semantic functions.

i
In the corresponding AG, <com> will have a synthesised attribute with domain &
and we will have the following rule:

<COmMPFCC ,C ,aee,C > 125w <A4C>uw <APC> ... SAPC > W,
1 2 n g 1 1 1 2 2 n n n

if there are more functions defined on the domain Com, then <com> has a syn-

thesised attribute for each of these.
4.2.2. A reformulation using a circular AG.

If we turn to more specific DSs, then the meaning of a construct Like <com> s
often defined relatively to an environment (Env) and a (command) continuation

(CCY), i.ea
A=LEnv => CC -> B]

In the AG terminology Env end CC intuitively correspond to inherited attributes
and B to a synthesised attribute. This will in fact correspond more to the

domain L[Env X CC => B1 which however is isomorphic to [Env -> (C => Bl.
&

This is illustrated by the following example:

Example 4.4. Denotational Semantics.

PROG=Programs
COM=Commands
EXP=Expressions
VAR=Variables
CONST=Constants

Semantic Domains.
V=Values=Integers
S=States=[VAR -> V]
{C=Command Continuations = [§ =-> §J

EC=Expression Continuations = [V -> EM]
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EM=Expression Meaning = [{C + ECI

Note that for technicael reasons we use an expression continuation which s
(slightly) different from what is normal been used. We return to that later. An
EC will reguire a sequence of values in order to produce a (C. Consider the

following auxillary domains: ECO=CC, and for each n>0 EC =[V -> EC 1]. For a
n -

given k € EC there exists an n>»0 such that k € EC .
n

We do not use an environment in this example as this will not change the prin-
ciple of the reformulation. In fect environments are straightferward to pass as

inherited attributes whereas continuations cause more problems.

COND = [CC X CC =-> LV -> CCTl
CONDCc ,¢ Y(v)= if v>0 then ¢ else ¢
1 2 1 2

CONTENT : [VAR X EC —> ECI

If k € EC , n>0 then CONTENT(A,k) € EC 1 and
n n-’

CONTENTCALKIV wwav s = k(s(A))V ..V
2 n 2 N

UPDATE: LVAR X CC -> [V -> ¢CI]
UPDATEC(n,c)(v)s = c¢(slv/nl)

<program> ::= <COm>

<com> :1:= <com> ; <com> | <var> := Lexp>
| if <exp> then <com> else <com>

| while <exp> do <com>

<exp> 1:= <exp> + <exp> | <var> | <const>

Semantic Functions.

s o s s s . e P e ek 952 e e €3 #ws s

op: CPROG -> CC]
cc: LCoM -> [CC -> ¢Ccld




ee: [EXP ~> [EC -> EMI]
vv: LCONST ~> VI
For each exp in a program there will exist an n>0 such that eelexpl € LEC
n
-> EC 13. This is easily seen by checking the semantic equations below.
-

Consider the command a:=e +e +e +e , and assume a Lleft associative parse
1 2 3 4

tree. Then for each i € [1..41, eele 1 € [EC =>EC, 1].
i i -

pplcomd = cclcomdc where ¢ dis the initial continuation
0

cclcom ;com Je = cclcom J{cclcom Jek
1 2 1 2

cclvar:=explc = eelexpl{UPDATE(var,c)}

cclif exp then com1 else comzjc = eelexpl{CCiDlcclcom ]c,cc[comzlc)}
1

cclwhile exp do comlc = fix Yc'.eelexpld{COND(cclcomlc?, )}

eelexp texp lk = eelexp Ieelexp I{Iv .¥Iv k(v +v )}3
1 2 1 2 2 1 1 2

eelvarlk = CONTENT(var,k)
eelconstlk = k{vviconstl)
//
Example 4.5. An equivalent attribute grammar.

In the AG the idea is to let each symbol have two attributes, an inherited
defining 1its continuation and a synthesised defining its meaning in that con-

tiuation. Ye will e.g. have the following rule:

<comOWC¢C2> s <com1WC1TC2> ; <com2$C?C1>

The meaning of <com > in a given continuation C, is €2 which is the meaning of
0
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<com > 1in the contiuation C1 which again is the meaning of <com > in the
1 2

tiuation C.

We use the same semantic domains as in the DS.

e Sm M mes s e gy vy e Mk WD m TS P et i G5 e e G2 M ek s

<progfpCC>
<comylCPCC>
LexpVYECTEM>
<varf{VvAiR>
<constfv>
AG rules
<progfC> ::= <comyCO4C>

<comyCHC2> 1= <comyCl14C2> ; <comyC4Cl>

<comyChC1> 1= <verfN> = <expyUPDATE(N,C)1CT>

[}

<comyCPC3E> 2= if <expyCOMD(CT,C2)4C3> then <comyCtC1> else <comyCP(C2>
<comyChC2> ::= while <expYCOMD(CT,C)PC2> do <comyC21C1>

<exp¥KPK2> 1= <expyKIPK2> + <expyIV2.IV1.KVI+V2IPKi>
<expVKPCONTENTIN,K)> ::= <varfn>

<expyKPMKCI> ::= <constfC>

/

con-

If the above AG 1is trensformed into an eguivalent one using the method of sec-

tion 4.2, then we obtain synthesised function attributes which are similar
the functions defined by the semantic equations. AS the while~imperative is

most difficult one Cinvolves circularity) we shall make the transformation.
The corresponding rule is:
<comPC'> ::= while <expfE'> do <comfPC'1>

where C'= YC. (2,

to

the
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2 = E'(K),

K = COND(C1,C), and

C1 = ¢ .
This implies that

C2 = EY(COND(CY1(C2),0))
and thus

C' = XC. fix XC2 LETCCOND(C'(C2),0))

Mow comparing this with the while-equation and Letting C'=cclwhile exp do coml,
E'=eefexpl, and C¥=cclcoml we see that our reformulated AG defines the same

function.

About expression continuations.

As  mentioned we use another definition of the meaning of expressions than the
usual one. A more standard onhe is

EC = [V -> ¢C]

ee: [EXP -> [EC -> (C1]

Consider the rule:

eelexp +exp 1k = eelexp MYV .eelexp I{IV .k(V +V 337
1 2 1 1 2 2 1 2

In our corresponding AG <exp> should have the domains <expVECPCC>, and the AG
rule should be
<expyKAKz> iz <expVIVI.K1PK2> + <expyIve KV1+V2)4K1>

Now this does not work as YV2.K(V1+V2) 1is passed as an EC attribute with V1 as 3
free variable. This works in the DS-rule as V1 is bound past the meaning of

EXP .

The meaning of a construct (command or expression) is interpreted relative to a
function (its continuation) which specifies what i1s to be done after executing
the construct. When applying the meaning of a construct to its continuation one
gets the meaning of the whole program if executing it beginning with the corn-

structe.

If we consider expressions then the meaning of an expression (relative to a con-

tinuation) depends on the context of the expression. Consider the expression
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exp in the following constructs:
(1) If exp then com1 else com
(2) exp? + exp

Iin the above DS the meaning of an expression (relative to an EC) is a CC. In
case (1) the EC of exp can be determined by the program text alone (a gtatic
continuation Y. In case (2) the EC of exp depends upon the execution of the

In an AG one can only express as attiributes values which are a static property
of the program text unless one turns to include rules for executing the program.
One may then discuss whether or not it is reasonable to reguire a continuation

to be static or not. Perhaps it iS.

Towards a general rule for using inherited attributes.

There is of course no general rules for trensforming a DS into and AG with both
inherited and synthesised attributes. It seems Likely that a semantic function
in a DS can be made more readable by decomposing it into a number of attributes
when each attribute 1is & static property of the program text. One may often
benefit by converting a semantic function f with domain [A->B] into an inherited

attribute with domain A and a synthesised attribute with domain B.

This may be reasonable if A is naturally expressed as a (static) property deter-
mined by the context of the constructs defined by f. The following is a rule for
this to be naturzl and possible:
[4.61 Consider a semantic rule
chand = @
where e involves one or moare applications of f and possibly c=f.
(1) all occurences of f in e must be applied to an expression of type A,
(2) If f s applied to the expression a, then all free variables in a

must be convertable to attributes.

The semantic functions cc and ee of example 4.4 satisfy this whereas ee with the

‘standard' definition of EC in the previocus section does not.

An extension of the AG model which makes it possible to express dynamic proper-



ties as attributes is discussed in [Gantzinger 79al. In section 5 we shall
{among others) demonstrate a technique for doing this within the existing model

of AGs.
4.2.3 Other reformulations.
Instead of passing functions around as attributes one might pass Lambda~expres-

sijons. This will Look Like the reformulation of section 4.2.1 but be quite dif~

ferent. The meaning of a program will then be a lambda~expression instead of a

3]

function. This would then correspond to an AG defining @ code generation. In a
practical TWS based on AGs this might be a reasoneble way of implementing a

denotational semanticsa

Yet another approach would be to define a denotational semantics by means of
syntax directed translation schemes as used in [Aho & Ullman 721. In their
generalised translation schemes they allow nonterminals to have translation
elements other than just strings, e.g. integers, booleans. If one allous trans-
Lation elements to be functions C(or lambda-expressions) then a denotational
semantics may be defined in a notation which 1is quite close tc the wusual
notation of denotational semantics. Such @ definition will however just pe

another notation for the one of section 4.2.1 (or the above mentioned).
4.3 Conclusion.

It has been shown that AGs are a suitable tool for defining a THS 1in which com—
pilters may be generated based wupon a denotational semantics, like e.g. SIS
(LMosses 791). UHe also think that the AG notation in many situations gives a
more natural and readable definition than the corresponding DS. This is due to
the fact that one in the AG may have simpler domains and thus simpler expres-

510NS.

A further modularization (and simplification) can be obtained by using a model
based on EATGs. Here it is possible to separate the context—-sensitive syntax

from the semantics.

If one does not Like the AG notation then with the right TWS it should be no
g

problem to define ones own notation and just use AGs as an implementation.
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In addition to a higher degree of modularity in the semantic definitions one may
also benefit when the semantic definition has to be converted into a more im-
plementation oriented semantics. In the AG it is possible to isolate the static
propertiets of the definition; the context—sensitive syntax may (as mentioned)
be isolated and the semantic functions may (as mentioned) be split up into at-
tributes describing static properties, Like environments and contiuations. The
possibilities of transforming a DS into an implementation oriented AG have been

studied by [Bjorner 781 and [Gentzinger 79b1.




S.Defining operational semantics by Attribute Grammars.

in this section a techniqgue to specify operational semantics by means of EAGs
will be presented. The apprcach is to specify a set of EAG rules which defines
the possible transformations upon an abstract representaion of the program. Con~
sequently it 1s not a traditional operational semantics where the program s
transformed 1into code for a hypothetical machine which then executes the code.
The examples presented in this section are inspired by recent work in the ares
of specifying abstract data types and make use of techniques which have been
used with vW-grammars (LMarcotty et al.761). Section 5.1 1is related to the
specification of abstract data types, section 5.2 is about specifying semantics
of programming Languages, and finally section 5.3 shows how AGs may be viewed as

a model for defining nondeterministic and concurrent computations.

5.1 Specifying Abstract Data Types.

An  abstract data type is considered to consist of an (abstract) set of values
and an (abstract) set of operations. The operations may be combined into expres—

sjons denoting abstract values.

An abstract data type is specified by an EAG in the following way: The EAG
generates the set of all expressions yielding values of the data type. The syn~-
thesised attributes of the start symbol is then the value of the generated ex~
pression. The values of the data type are defined by the domains of the EAG and

the set of expressions and their values are defined by the production rules of

the EAG.

He illustrate the approach by specifying the famous stack:

o e s s wor e

S: SEQ=C(empty | cat(SEQ , ELM))
E: ELM

The values of a stack is a sequence of elements (not specified here).




S e o

<stackfempty> ::= newstack

<stackfcat(S,E)> ::= push ( <stacks> , <elementfE> )
<stackls> ::= pop ( <stack?cat($,8)> )

<elementtE> ::= top ( <stackfcat(S,E)> )
<bootean?trué> z:= empty ( <stackfempty> )

<booleantfalse> ::= empty ( <stackfcat(§,E)> )
// The above EAG generates all
valid stack expressions and the synthesised attribute of <stack> is the value of

the stack expression. An exemple of a stack expression is

with the value
cat{cat{empty,el) , e3).

Note that this EAG also contains rules for generating expressions of type

element and boolean.

One nice property of the EAG is that errors ere treated implicitly in the sense
that only valid stack expressions can be generated. E.g. it is impossible to

generate an expression like: pop(newstack).

The type ELM could be integers in which case we could define the domain
E: ELM=INTEGER=(zero | suc(INTEGER) | pred(INTEGER))

The stack example makes only use of synthesised attributes. Below we define the
data type partial mapping from a set D into a set R ({D->R}). Let d:D, r:R,
f,g:{D~>R}, then {3 is the empty map, {d->r} is the mep defined 1in one point,
fug is the union of f and g (only defined if the domains of T and g are dis~
joint), f\g is the overriding of f by g (the values of g are used 'before' those
of )
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Example 5.2. Specification of partial mapping.

Domain

v o s s o

<mapfempty> 1:= {3
<maptadd(empty,d,r)> ::= { <domtd> -> <rangefr> }

<mapth> 1:=
<maptt> U <maptg> <disjointyfég> <unionyfygth>
] <maptt>

-

<pmapta> <unionyfygth>

<razngetr> ::= apply ( <maptf> , <dowmtd>) <applyV¥fydfr>

<disjointyemptyyf> = EMPTY

<disjointyadd(f,d,r)¥g> ::= <undef¥dyg> <disjointyfvg>

<undefydyempty> ::= EMPTY

<unidefydyadd(f,d,r)> := <not—equalydydi> <undefyayi>

<unionyfyemptyPf> 1= EMPTY

<union¥fyadd(g,d,r)taddCh,d, r)> 1:= <unionyfygth>

<applybadd(f,d,r)ydtr> 2= EMPTY

<apply¥yadd(f,d1,r1)yd?r> ::= <not~equalydydl> <applyyfvdfr>
The nonterminals <disjoint> ,<undef>, <union> and <apply> are used in a special
way. They can only generate the empty string and they do if some relations hold
between their actual attributes. This technique is also used in connection with

vi-grammars where such nonterminals are called primitive predicate symbols, Non—

terminals may be classified according to their attribute structure:

- nonterminals with only synthesised attributes correspond to domaipns C(or

W S

sets),
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- nonterminals with only inherited attributes correspond to predicates » and

- nonterminals with both synthesised and inherited attributes correspond to

Comparison with other methods.

In e.g. LGougen et al. 751 abstract data types are specified in form of an al-
gebraic specification (and 30 is also semantics of programming languages). In
these approaches a data type is (the isomorphism class of) a many-sorted algebra

D= (D ,D ,0uu,D T o pavest )
1,9 21 ’ nf 1; 2/ z 0 ’

where D ,D ,aau,b are an indexed family of sets (carriers) and T , T ,eaust
1 2 n 1 2 m
are an indexed family of operations between the carriers. Some of the operations
denote constants as they have an empty domain. In this way the set of well for-
med expressions built by means of the functions defines (or denotes) the values
of the data type. A set of equations (or sometimes axioms) is used to ddentify
expressions which should denote the same value. The values in the domains are

then determined by the eqguivalence classes defined by these eguations.
The stack may be defined in the following way:
Stack=(Istack,Integer,Boolean,push,pop,top,neustack,empty)

newstack: => Istack

push: Istack X Integer => Istack
pop: Istack -» Istack

top: Istack -> Integer

empty: Istack —~> Boolean .

pop{push(S,1))=§
top{push(S,1))=1
empty(newstack)=true

empty{push(S,1))=false

These equations correspond to ones intuition about & stack. They do not state

that e.g. pop and top are illegal on an empty stack. In order to handle such er-
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rors, a special error value is introduced, and any expression containing an er-
ror vatue is the error value. Additional error equations are introduced. For the

stack they would be

pop(newstack) = error

i

top(newstack) error

See e.g. LGoguen 771.

For a given algebraic definition there exists a canonical term algebra and 2

homomorphism from the free algebra into the canonical term algebra.

The canonical term algebra has the property that all different expressions
belong to different equivalence classes, i.e. denote different values. This
canonical term algebra is in our opinion essential in order to understand the

data type being defined.

An approach which is more similar to the EAG approach s exploited in [Mayoh
78al1., Mayoh defines a data type to be a (total) function, f, from a set of ex~-
pressions ,E, to a (partially ordered) set of values V (uwith a least element 1in
the wpartial order). This approach is similar to the EAG approach in the sense
that the abstract values (V) are specified explicitly. In the EAG approach the
abstract values are specified as the domains of the EAG. In Mayoh's approach it
is (lLike 1in EAGs) explicitly specified (by ¥) how to reduce an expression to a

value.

These approaches differ from the algebraic methods in several ways: The al~
gebraic methods do not specify the abstract values explicitly but use equations
to identify expressions that denote the same value. The equivalence classes or
the canonical term algebra may then be viewed as the abstract set of values. The

function T of HMayoh's method may then be compared to the homomorphism between

the free algebra and its cahonical term algebra.

One problem with the Hayoh/EAG methods is that the abstract values elso have to
be specified by using some meta language. It may be difficult and awkward to
define those abstract values such that different abstract value expressions in
fact are different values of the data type being specified. Often it 1is more
natural to reduce expressions of the data type into a unigue value {(-expres—

siond .
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5.2 Specifying Semantics of Programs.

The technicues used for defining abstract data types may easily be used to
define an operational semantics of a programming language. This is done by
using an EAG to define all possible executions of a given program. In [Marcotty
et al. 761 a small programming language is defined this way but using vW-gram

mars.
We define the semantics of the language presented in the example of 4.2.2.

Example 5.3

T: TREE=(seq(TREE,TREE) | assign(NAME,EXP)

| cond(EXP, TREE, TREE) | rep(EXP, TREE));
E: EXP=(plus(EXP,EXP) | v(NAME) | c(INTEGER));
N: NAME;
I: INTEGER;
S: STATE={NAME->INTEGERY

Rules
<program}sS> 1:= <stmtfT> <executey{IyT1S>
<stmttseg(Tl,T2)> = <stmthT1> ; <stmtfTe>
<stmttassign(N,E)> ::= <vartN> = <exptE>
<stmtfeond(E,T1,T2)> ::= if <exptE> then <stmtfT1> else <stmtfT2>
<stmtfrep(E,T)> ::= while <exptE> do <stmtfT>
<varfh> ::= <namefN>
<exptplus(El ,E2)> 1:= <exptEl> + <expfEz>
<expPv(NI> ::= <varfn>
<exptc(I)> ::= <constfi>

<executeySy¥seq(T1,T2)4S2> 1:= <executeySYTIPST> <executeyS1yT2452>

<executeySyassign(N,EXPS\{N~->13> :1:= <eval{ySYEFI>



<executeySycond(E, T1,T2)4S1> :=
<evalyS¥ELpos(I)> <executeySYT14S1>
| <evalVSyEtzero> <executeySyT21S81>

<executeySyrep(E,T)18> ::= <evalySyEtzero>

<executeySyrep(E,T)$52> ::=
<evalySVEtpos(I)> <executeySyT4S1> <executeySlyrep(E,T)4S82>

<eval¥Syplus(ET1,E2)411+12> @@=
<eval¥ySYET11I1> <evalySyEZ2Piz>

<evalySyv(NIPSINI> 1= EMPTY

<evalySyc(I)$i> ::= EMPTY

The definition of the language consists of some rules that define the syntax and
collect the given program in a tree structure. The remaining rules define an ex-
ecution of the given program starting with an empty state and returning a Tinal
state. the result of the program is this final state which is the meaning of the

program (a synthesised attribute of the start symbol).
The 1integers are defined in the following way:

Integer=(neg(N) | zero | pos(i))

N=(one | suc(M))

5.3 Mondeterminism and Concurrency.

Wwe shall now investigate the possibilities for wusing EAGs as a model for

defining nondeterministic and concurrent computations.

Let us for a moment consider CFGs as a model Tor defining computations con-
sisting of derivations, and Llet a meaning of a (terminal-) string be a
derivation of it. CFGs are by nature nondeterministic because of the alter-

netive operator |.

For a given derivation one may define a partial order between applications of
productions in the derivation: Let r end s be applications of productions, then

oY

r<s 1if s cannot be done before r is done. Juxta position in a CFG may then be




viewed as a concurrency operator as all nonterminals of a sentential form may be

rewritten independently of each other.

If one turns to context-sensitive grammars then juxta position is no longer
necessarily a concurrency operator as some dependence may exist between symbols

in a sentential form.

We shall not go further with this view upon Chomsky-grammars but instead turn to

EAGs. We shall only consider non=circular EAGs 1in this connection.

Hondeterminism of an EAG is still described by the alternative operator in the
sense that a given string may have several parse trees and thus several
neanings. Consider a parse tree t. The dependency graph defines a partial
ordering between attributes in t in the sense that a<b if the value of b depends
upon the value of a. This partial ordering may be interpreted to define the
amount of concurrency that can be applied during the computation of the at-

me e iy 2o o pes e

tribute values by some machine.

A dependency and independency relation may be defined between symbols on  the

right side of a production:

Let A and B8 be symbols on the rightside of some production. A depends on B i an
attribute in a defining position of B is used in an applied position of A. A and

B is independent iff neither A is dependent on B nor vice versaa

Consider example 5.3 and the rules defining <executeySyseql(T!,T2)452> and
<evalVySyplus(E],E2)411+I2>. In the rule defining seq(Ti,T2) the two instances of
<execute> on the right side are dependent whereas the two instances of <eval> on
the right side of the rule defining plus(El,E2) are independent. In the first
case sequentiallity is imposed. In the second case no evaluation order ds im~

posed and it may 1in fact go on concurrently.

Below we give four examples of how EAGs may be used to define nondeterminism and
concurrency 1in programming lLanguages.
Example 5.4 Nondeterminism.

Assume that we add the following statement to the grammar of example 53.3:

<stmt> ::= one of <stmt> or <stmt> end
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We may then extend the definition of TREE by oneof(TREE,TREE), and add the rules

<stmtfoneof(T1,T2)>::= oneof <stmtfT1> or <stmt{T2> end

<executeySyoneof(T],T2)481> ::=
<executeySyTi481>
] <executeySyT2451>

Mow either of the two alternatives may be selected in a given execution.

Example 5.5. Interleaving.

Consider the following statement:
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end

The two secuences of statements may be executed in *parallel’. The statements
enclosed by <= , => are considered to be indivisible actions. Parallel execution
will 9n this case then mean interleaving of the two seqguences of indivisible ac—
tions. This kind of ‘parallel' construct is in fact more nondeterministic than

parallel.
We extend the definition of TREE by allof(ITREE,ITREE), and add the domain
IT: ITREE={TREE}*
and add the rules
<stmtfallof(IT ,1T2)> ::=
allof <indiv-stmtfIT1> and <indiv-stmtfIT2> end
<indiv-stmtfll> 1:= EMPTY
<indive-stmtfTIT> 1= <= <stmtfT> => ; <indiv-stwmtfIT>

<executeySyallof(T.IT,IT1)4S82> ::=
<executeySyTPS1> <execute¥S1yallof(IT,IT1) 82>

<executeyStallof(ITl,T.ITI4S82> 1:=
<ewecuteySyT4S1> <executeyStiyallof(iT,IT){1S2>




<executeySyal Lof(L1,L31348> ::= EMPTY

Example 5.6. Concurrency.

We now turn to specify the semantics of concurrent computations. By concurrent
we mean that two computations can be cerried out independently of each other.

Consider the following construct:
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We shall require that S1 and $2 do not refer to the same variables in order to

ensure that $1 and S2 can in fact be executed concurrently.

In order to specify the semantics of cobegin we make the following extensions of

example 5.3:

- <stmt> is extended with an extra synthesised attribute that is used to col-

Lect the set of names used in the statement,
-  TREE is extended with co{TREE,TREE),

~ the following rules are added

<executeySycol(Tl ,T2)481\S2>::= <execute¥SYTI1S1> <executeVySYT2152>

Now why does this define a concurrent execution of Tl and T2. Consider the last
rule: The two instances of execute on the right side are independent according
te our previuos definition, d.e. this defines two independent computations.
Note that the expression $1\S2 is not symmetric. One might instead pass only the
restriction of § corresponding to the names being used by T1 to the first
<execute> and similarly for the second. The result will then be S\(S1 U §2) in-
stead of S1\S2.

Example 5.7. Guarded commands.

We conclude the examples of this section by giving a sementics of the well knouwn

guarded if-statement. For simplicity we only allow two alternatives.

He extend example 5.3 1in the following way:
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-~ TREE is added if(EXP,TREE,EXP,TREE),

-  we add the rules

<stmtPif(E1,T1,E2,T2)> i:=
if <expfE1> -> <stwtfT1> [1 <expfE2> -> <statfT2> fi

<executeySVif(El, T1,E2,T2)4S1> =
<evalySYETMVI> <evalySYE2QV2> <selectySyViyTiyv2yT2482>

<select¥Sypos(IIYTIYVYT24S81> =

<execute¥ySYyT14581>

<select¥ySYVyTTypos(IIVYT2481> :1:= <executeySyT14s1>

The evaluation of the guards may go on concurrently; the selection has to wait
for all guards to be evaluated. If both guards are true (positive values) then
there 1is a nondeterministic selection between the two alternatives. If both
guards are false then <select> cannot generate the empty string and the com—

putation is thus undefined.

Mote that if both guards are true and one of the alternatives fails because of

an error then the whole command is still well defined as the other alternative

may be selected. We may repair this defect by always enforcing all alternatives

to be 'executed' and then only use one of the results. This seems to be neces-
,

sary when using an operational definition. The problem 1is to handle non-ter-

minating programs.

It ds straightforward to include a definition of the guarded do-statement. The
main extensions are that <stmt> must have an alternative corresponding to all
guards being false, and <execute> must b recursive in the same way as it

defines the while~statement in ex., 5.3.
5.4 Conclusion.

It has been shown how to use EAGs to define operational semantics for various
programming language constructs. In our opinion these definitions are straight-
forward to make and easy to read. Again this is a matter of personal opinion.
The wuseability of such definitions have to be tested on real programming

Languages.
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Another dinteresting guestion 1is the possibility for generating a compiler
automatically from such & description. We shall not discuss methods for doing
this but just indicate some of the problems and give some ad hoc rules that wmay

1

be a basis for further investigations.

lLet nonterminals that only generate the empty string be called primitive

predicates. (like <execute> and <eval> in example 5.3)

Mone of the standard AG—evaluators (inctuding the one of section 7) are directly
useable for this puspose. The reason is that there are an infinite number of

parse trees (due to the heavy use of primitive predicates) to be considered.

It s possible to strip the underlying CF6 for primitive predicates and then
construct a parse tree in the usual way (this may still cause difficulties if
the underlying CFG is ambiguous, but the EAG is structurally unambiguous).
Afterwards one may then Till in the primitive predicates by simulating all pos—
sikble derivations. In order to make this process efficient one must probably
restrict the degree of nondeterminism in order to recognise deterministic parts
of the EAG.

The generation process may be simplified 1f all rules defining primitive
predicates are required to be Left—attributed. This is in fact the case in all

our examples.

In some cases it is possible to factorise the EAG. Consider the rules in ex. 5.3
defining the execution of cond(E,Ti,T2). These rules may be factorised into one
rule with the following right~side: <evalySVE4V> <selectionySyTiyT2yV4Si>

where <selection> selects between Tl or T2 depending upon the value of V, This

definition makes 1t easier t¢ avoid two evaluations of <eval>.
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6. Pure and Multi-level Extended Attribute Grammars.

Here we shall give certain proposals for future work with the AG/EAG formalisms.

When using an EAG to define a language one needs tc specify the domains and
operations upon these domains. A disadvantage of EAGs (AGs in general) is that
the formalism itself does not contain a method for specifying these domains.
This disadvantage is not present in vW-grammars, (pure) affix-grammars and ex-
tended affix grammars as the domains here are specified as context free (string)

Languages.

In section 5.1 we have seen that EAGs may be used to define abstract data types.
We shall thus propose to use EAGs to define the domains of a particular EAG.
This has the effect that EAGs now become a complete formalism. In order to ac-
complish this we must define a bottom in the hierarchy of EAGs, i.e. a domain
constructor which is part of the formalism. Because of the similarities between
extended affix grammars and EAGs it seems natural to let extended affix grammars
be the bottom. However as argued in [Watt & Madsen 777 the discriminated union
seems much more adeqguate as the basic domain constructor. A discriminated union
may be viewed as an abstract context free greammar and is useful to define ab-
stract properties of a language instead of its concrete syntax. A sentential
form of a CFG does not contain information about the structure of the form (how
it is derived) whereas this is explicitly available in a discriminated wunion.
Altogether we find the latter to be more useful as it leads to more compact and

readable descriptions.

A set of discriminated unions can be viewed as a regular tree grammar
(CEngelfriet 741). The theory of tree languages is well founded and gives a good
notation. In our formal model we shall thus use tree languages as the basic

domain.

In the following we shall need some concepts from the theory of tree automata
and tree grammars. We use the terminclogy of [Engelfriet 741, especially the

following concepts: (1) ranked alphabet W, (2) T , the set of trees over W, (3)
1A

¥

regular tree grammar, and (4) tree rewriting system.
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G = (D,V,Z,B,R).

The elements of G are similar to the ones of an EAG except that D = (N,W,P,S) is
a regular tree grammar and the domains of attribute positions and variables are

defined as nonterminals of D.

//

Below we shall make relations between PEAGs and the theory of tree automata and
tree languages. We show that the rules of a PEAG can be formulated as a tree

rewriting system.

We shall construct two kinds of tree rewriting systems correpsonding to the

rules of a given PEAG.

First we construct a top down tree rewriting system TDd=(W U {L,3} ,TR) where W

is @ ranked alphabet and TR is a set of tree reuriting rules (T-rules).

W is constructed as follows:
(1) W =V (the terminals of G);
07T

(2) A € U if A€ VH (the nonterminals of 6) end there 1is & rule in R of the
f

k

form: A t:= A A ... A, k>0;
1 2 kW 7

(3) A* ¢ wt if A€ V::(\!“d U VT) and A has k attribute positions.
< i

TR is constructed as follows:

Let BD S B1 82 «ea B be a rule in R, uwhere each B  (i€[0..p1) has the form
p i

<Age, fe ¢ ... be >
1011 12 in

where in>0 is the number of attribute positions for A . AG will be in W and for
1 P

each A C(i€l0..pD), A" s in W .
i i in
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TR will contain the following rule:

X => ALX X e X1,
0 0 1 2 P

where each X (i€l0..pl) has the form
K}

A' Te e we. e 1.
i1t 12 in

A subtree of the form:

Al
0

will be transformed into:

IT the start symbol 7 has k attributes (all synthesised)

trees of the form

then TD will transform
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into trees of the form

where t is parse tree of the underlying CFG of 6 , provided that

<Zfte to..te > =>% yield(D).
1 K G ;

We have the following theorem:
Theorem 6.2.

let G be a PEAG with start symbol Z and corresponding top down rewriting system
D, then

w€ L(GY if and only if
there exist a parse tree t of G with w=yield(t), and
there exists a production rule

<Zte fe %eeete > 1= 2 7 sl L
1 2 k 1 2 D

such that
2'e € ... & 1 =>% t
1 2 o D

//

Next we shall construct a bottom-up tree rewriting system that transforms parse
trees into their meanings. For & given PEAG, G we construct Bv=Q4 U {(,]1}, BR).
W is the same as for TD and BR consists of the rules from TD where the left and
right sides are exchanged. Thus if

x "’>A{:XX - nw x3
0 0 2 p

is in TR, then

ALY X s.e X1 =>¥%
0o 1 2 p 0

is in BR. We then have the following theorem which is the converse of theoren

6.2




&6

Let G be PEAG with corresponding bottom—up tree rewriting system BV, then
we€ L(G) iff
there exists a derivation tree t of G with w=yield(t) and
there exists a production rule

<pte fe taaate > = 2 7 el L
1 2 k 1 2 p

derivable from R, such that
t =>% Z'le e ... €]
BU 1 2 k

1/

The above formulation of PEAGs within the framework of tree grammars gives a
possibility for using the theory of tree grammers and tree automata on PEAGs. An
ordinary EAG may be viewed as a PEAG if the attribute expressions are treated as
trees, It still remains to be seen whether or not this is of any help for the
theory of EAGs. Some attempts in this direction have been taken in [Engelfriet
% File 791 where the translations realisable by & subclass of AGs are analysed.
In particular AGs with trees or strings as domains are analysed, and the AGs are

compared to tree transducers which are a subclass of tree rewriting systems.

Furthermore the practical use of PEAGs and multi-level EAGs has to be in-

vestigated.,

Presently we find no need to make a formal definition of multi-level EAGs as

this is straightforward to do.
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7. A General Fast Attribute Grammar Evaluator.

When dmplementing an evaluator for AGs one is among others concerned with the

following problems:

(a) becide whether or not to test the AG for circularity,

(b) deciding the order of evaluation of the attributes,

(c) the storing of the syntax tree and the attribute values during the
evaluation,

(d) the possibility of evaluating some of the attributes during the (context-
free) parsing phase,

(e) the possibility of letting the attributes influence the (context—free) par-

sing (so-called affix~(or attribute) directed parsing [Watt 74b1).

Iin order tc overcome (or ease) some of these problems a number of subclasses of
AGs have been defined. These include L-attributed grammars ([lLewis et al. 741),
multipass AGs (IBochmann 761), and many more (DWatt 771,CMaych 78b1). Affix

grammars (LKoster 701) may also be considered as such a subclass.

A class of gerneral evaluators build the syntax tree and then evaluate the at-
tributes in some order. The efficiency of these evaluators depends on the
method used to determine the order of evaluation of the attributes. These

evaluators may roughly be divided into two classes:

(1) Static eveluation order: Those where the order of evaluation can be deter~

AR g A A A g s LA T e i 2 N

mined from the AG; d.e. the attributes of a symbol X are evaluated in an

order which 1s independent of the subtree below X (LKennedy & WHWarren 761,

[Saarinen 781). These AGs are called benign in [Mayoh 78bl.

(2) Dynamic evaluation order: Those where the order of evaluation is determined

by the parse tree built during the parsing phase (LLorho 773, [Cohen & Harry

791, Kennedy & Ramanathan 791).

In case (1) the order of evaluation may be defined once and for all by some
analysis done by the TWS. In case (2) the analysis for determining the order of
evaluation must be done for each parse tree., It is obvious that evaluators in

cbass (1) accept a smaller class of AGs than those in class (2).

Less general methods avoid building the parse tree but use a Linear represen-
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a

tation in form of e.g. a right=parse or left—-parse ( [Aho & Ullman 721). At-
tributes are then assigned values during one or more scans (forward or back-
wards) of the Llinear tree. These methods include L-attributed AGs, multipass

AGs, The Alternating Semantic Evaluator ([Jazayeri & Walter 751).

It is well known that the underlying CFG plays an important role here. If the
undertying CFG is LL(k) then the construction of a left-perse may coincicde with
a Tirst Lleft-to~right scan of the Uinear syntax tree. If the underlying CFG is
known to be LR(k) then one can in general only evaluate synthesised attributes
during the parsing phase., Affix-free LR-grammars (Lu¥att 771) are a large and

useful subclass of AGs with LR(k) underlying CFGs. They include all LL(k) gram-

mars and have the same advantages as LL{k)-grammars and so have SD-grammars
({Lewis et al. 7401,

oy Bk Wt 5 s e e

dynamic evaluaticn order. The parse itree has to be represented in the form of =
right-parse. A DAG s constructed during one left-to-right scan of the right-
parse. This DAG represents the dependency—graph of the parse free and the neces-
sary information for evaluating all attributes. The value of the attributes may

be evaluated by a recursive scan of the DAG.

The advantages of the DAG-evaluator are: (1) it werks for all AGs, (2) the syn-
tax tree 1is represented as a right—-parse, (3) the DAG is constructed through a
single scan of the right-parse, (&) if the underlying CFG is LR(k) then the DAG

may be constructed during the parsing phase.

Furthermore the method will also work for circular AGs. The DAG will then con-
tain cycles. The recursive scan may detect these cycles. As mentioned in section
L 5t may be meaningful to continue the evaluation. In many cases the DAG itself
may be considered as the result of the evaluaticn. E.ge the AG in ex. 4.5
defines a translation from parse trees to functions (command continuations). In
this case the DAG itself may be a suitable representation of the function and

such a DAG may have cycles in it.

In many cases it may be desirable to let the TWS check the A6 for circularity

and not defer it to the evaluator.

The DAG=evaluator is based upon the fact that any AG has an eguivalent one using
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only synthesised attributes. It may in fact be viewed as an implementation based
upon the transformation of def. 4.2 The DAGs being constructed by the evaluator

may thus be viewed as a representation of the function valued attributes.

The DAG-evaluator is used in NEATS which is a TWS based on EATGs (LJespersen et
al. 781).

7.1 The DAG-evaluator.

Below we describe the DAG evaluator. It is assumed that a right-parse of the in-
put string has been constructed. During a left-to-right scan of the right-parse
a DAG s constructed. In the following description this Left-to-right scan is
described as & simulation of the parsing phase (as mentioned it may in fact be

performed during the parsing if the grammar is e.ge LR(k)).

The evaluator uses three stacks, the ordinary parse stack (PARSE), a stack for
storing information about synthesised attributes (SYN), and one for storing in-

formation about inherited attributes (INH).

Assume that the parser reduces by a production

p: X == X aaa X

0 1 2 n
and that
- SYN contains a value for each right side synthesised attribute of p (called
RSLpl). Each value is a pointer to an expression-DAG which when evaluated
will yield the value of the corresponding synthesised attribute. Let SA be a

synthesised attribute of X . Some of the leaves in the DAG for SA will cor-
1

respond to inherited attributes of X , and a value has not yet been Tilled
3

in for these lLeaves.

- INH contains a value for esch right side inherited attribute of p (RIlp1).

Let IA be an inherited attribute of X . The value on INH corresponding to IA
i

is & pointer to a Llist of leaves in the DAGs corresponding to the syn—

thesised attributes of X . A value for IA has to be inserted at each such
1

Leaf in order to define the synthesised attributes.
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The following picture illustrates the situation:

PARSE

I 9.

Synthesised attributes of X
n

SYN

[

£

-
ot “Tn

1

L]

£

1 \ \
INH A e

inherited attributes of X
n

When the reduction is applied the following steps are performed:
(1) For each leftside inherited attribute (LILpl) an empty list is constructed.
(2) For each rightside inherited attribute A (RILp1) a DAG-node 1is constructed:

The value of A is a function: T(a ,eensd@ D ,eeasb )
1 n 1 it

where each a € LI[pl and b € RSLpl. The DAG-node has the form:
i i

-
3

\\bT enel b X

m

N>

b -DAG b ~DAG
1 i

o,

~__
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The DAG-node has a pointer corresponding to each a and b . The pointer for
1 1

b points to the DAG for b . The pointer field for a s chained in the list
i i i

constructed for a_ in step (1).
i
The Llist stored 1in INH corresponding to A is scanned and each lLeaf in the

List is replaced by a pointer to the newly constructed DAG-node for h.

(3) For each leftside synthesised attribute A in LSLpl, a2 DAG is constructed in

the same way as in step (2).

(&) ALL elements on INH and SYN corresponding to rightside attributes of p are
popped off INH and SYN. The values corresponding to leftside attributes of p

(the ones constructed 1in steps (1) and (3)) are pushed on INH and SYN.

Remark. If in steps (2) and (3) n=0 and m=1 and f 1is the ddentity function,

then a new DAG—-node is not constructed. Pointers to the DAG-node for A will in-

stead point to the DAG for b1.

When the scan of the right parse is finished the SYN-stack will contain a poin-

ter (g root of the DAG) for each synthesised attribute of the start-symbol.

The values of these attributes may be evaluated by & recursive scan of the DAG
starting at each root. Assume that the DAG contains no cycles. By using a so-
called ‘'depth~first=search' of the DAG each node need only be visited once.
After the visit of a node a value may be assigned tc the node. The next visit to

the node may then use this value.

Cycles in the DAG may easily be detected by the depth=first-search algorithm.
It will then depend upon the actual AG whether or not a further evaluation is

meaningful.

Some domains, Llike partial maps, may contain "large' values. In such cases it
may not be practical to store a value at each node without using a shared
representation. The DAG itself is such a shered representation. By using a sub-

DAG as the representation of a value, this sub-DAG may of course be traversed




several times during the scan of the DAG.
For common used domains (partial maps) it may be possible to transform the DAG
into a more suitable representation.

7.2 Examples.

Example 7.1

Consider the following EAG.

Domain Env: [MAME ~> INTEGERI; V: INTEGER; N: NANME;

<evaluationtV> ::= <expy{Fpv>

<expYEnvIV> 1:= ( <idPN> = <expVEnvtvi> , <expVEnv\{N->VII{V> )

<expVyENVAVI +V2> = <expYEnvtVl> + <expVEnvive>

<expYEnvlV> :1:= <termyEnv{v>

<termyEnvPEnv(N) > 1= <idfN>

<termyEnvgV> o= <constfv>

The construct (a=el,e2) is an abbreviation of LET a=el IN e2. Consider a parse
of the following string:

(a=7 ,(b=a+2,ath))

1\




Consider the following shapshot of the stacks when the input i

placed at 4:

PARSE

SYN

INH

After the reduction <exp> ::

PARSE

SYH

ITHH

192
N

B

(1 <id> | = | <exp0> (] <id> ] =1 <expi> <expl>| )
| ‘ ] \
B N A7) i l,
[wé 7 7 b + +
app
—pd b
\\ 4 , b

( <id>z=<exp>,<exp>) wWe nave

<id>§ =1 <expl> <expl>
/ N A
La ] 7] +
app “1 | app
i A WV A e
= b

T

app
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The next reduction yields

PARSE <exp>

SYN \

A reduction of the DAG will yield the value 16.

Example 7.2. Circular AG.
Consider the following EAG
<phy+z> iz <BVcond(c,y,z)tctytz>
<BYxftrue?tx+2> 1= a
<Byxtfalsefx+118> 1= b

Assume that the input string b has been reduced to <B>. We then have the fol=-

Lowing snapshot:

PARSE |<B>

SYN ! | [ { i
) r,&
tfalse + ng
| = = [
INH L w21 1




55

Next when <B> is reduced to <A> we have:

PARSE | <a>

SYH \ }

INH

—

The constructed DAG s circular, but an evaluation may reduce it to the value
17.

7.3 Evatuation.

It should be obvicus that the DAG-evaluator works for any well formed AG in nor-
mal form. It is also reasconably fast as it does not need to detect an evaluation
order for the attributes in the tree of the parsed string. Furthermore the

evaluation of the DAG may be done during one scan of the DAG.

The main problem s that the DAG-evaluator may take up too much space to be
practical. e shall compare the space requirements with an evaluator that builds
the parse tree and then assigns values to attributes in some order. We assume
that at each node there will be space to store the values of the associated at-

tributes (or a pointer to values).

In the DAG-evaluator the situation is as follows:

(1) The parse tree is not stored,

(2) only a subsei of the attributes in the parse tree have a corresponding node
in the DAG.

C.fo (2): Consider a symbcl appearing in the perse tree as part of rules




X->a Aband A ->d

A synthesised attribute of A will ﬁave a DAG-node i1 the function 1in the rule
A -> d defining the attribute is nontrivial (not the the identity functionl.
Similarly for an inherited attribute of A. Thus attributes that are simple
copies of other attributes will not occupy space in the DAG. HNotice that the
Lists for collecting the use of inherited attributes take no additjonal space as

they use the pointer fields that have not yet been filled in.

M

The DAG-node corresponding tc a nontrivial function T may take up more space

than the value of the attribute.

The size of the DAG is a Linear function of the parse tree. It may be smaller or
Larger depending on the amount of copying and the format of the nontrivial func-

tions.

It should be noticed that some atiribute domains such as partial mappings are of
a form where it is unreasonable to store the values at the nodes. These domains
must be implemented as data structures with a shared representation. The

DAG~representation of such domains may then turn out to be smaller.
In some sijtuations it 1s possible to reduce the space requirements:

- If A is a synthesised attribute of X and the values of all the inherited at~-
tributes of X are known 1in the DAG for A then the value of A may be

evaluated.

- In many situations during parsing, the values of some inherited attributes
are in Tfact known. This 1is the case if the grammar is L-attributed and the
underlying CFG is LL(K). Using a bottom—up parser this information 1is not
directly available. In [Hatt 771 an algorithm is given which is able to par-
se L-attributed AGs having an underlying CFG 1in a subset of the

LR(k)=grammars. This subset includes LL(kY graemmars and most practical
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LR-grammars. Watt's algorithm makes use of the fact that for many practical
L-attributed AGs most rules simply copy the inherited attributes of the left
side. In the rules where the inherited attributes are given "new' values the
parser 1is often in an LL(k) situation (the LR-table has one item in its
closure). Extra nonterminals are inserted in the rules before nonterminals
where inherited attributes are given 'new' values. If the grammar is still
LR, then the original AG is called affix-free. It 1is possible to detect
automatically where such e-productions may be inserted without destroying

LR-properties (introducing conflicts).

The algorithm of section 7.1 may be improved by using Watt's method and com~

puting inherited attributes whereever possible.

Unfortunately this only improves the one pass case and does not help the mnul-
tipass situation. In general one may use secondary storage to store the DAGs if

not enough primary storzge is available.
Below we sketch how to introduce secondary storage.

Suppose when AO -> A1 .»s A is applied we have to move some DAGs to secondary
n

storage. Let 11, enap IL, 81, anw, S be the attributes of AD. For each S wue
i 1

have a DAG DS and for each I we have a pointer, LI to a list of nodes in the
i i i

DAGs. The DAGs 081, enss, DS may all be mixed up so we have to move them all to
M

secondary storage. We introduce for each S a new node of the form
i

Secondary Secondary storage

External Address i LI emena L1
e 1 L

I - I DS emane DS

1 L 1 m

The block on secondary storage contains the pointers qu, wes, LI and the DAGs
1

DS , aes, DS . The new node (marked secondary) contains the external address of
1 m




i
oo

the block, and a pointer field corresponding to each inherited attribute 11,
seep IL. These pointer fields will then be chained in the lists constructed 1in
step (1) of 7.1.

In general it 1is not enough to move the DAGs corresponding to AO, but one may
have to move the DAGs of more (all) symbols on PARSE.

When entering a secondary ncde during the evaluation of the DAG, the correspon
ding secondary block must be entered into memory. The number of times one has
to enter the block depends upon the number of times the corresponding subtree
needs to be traversed in order to evaluate the attributes. If a subtree needs m
traversals then 1in the worst case the block must be entered 2%m times; cor-

responding to m down and m up traversals of the subtree.

The strategy sketched above must be further developed and investigated in order
to find out if it is practical. Perhaps it is possible to analyse a given AG

in order to find an efficient strategy for storing DAGs on secondary storage.




8. Concluding remarks.

e think that it has been demonstrated that EAGs (and AGs and EATGsS) may be used
for many different purposes, and that a TWS based upon EATGs may serve many dif-

ferent purposes.

EAGs may also be used as a powerful tool for defining computations not neces—

sarily connected with semantics of programming languagesa

Various variants of attribute grammars have been discussed, EAGs, pure EAGs,
multi-level EAGs, and AGs with Scott-type domains. Furthermore pure EAGs have

been formulated within the theory of tree languages.

The three main approaches are the original AGs of Knuth, AGs with Scott-type
domains and EAGs. We tend to prefer the generative approaches or the eguational

approaches for the Knuth AGs.

It has been demonstrated elsewhere (LMadsen et al.761, [Watt & Madsen 773, and
{Watt 791) that EAGs are suitable for defining the analysis phase (context—sen-
sitive syntax and a translation into an dintermediate form) for reatistic

programming languages.

The purpose of this paper has been to demonstrate that EAGs have a much wider
range of applications. The main subject has been to show how three dominating

methods for specifying semantics can be expressed within the framework of EAGs.

This makes it possible within the same TWS to experiment with several
definitions and implementations. Consistency between different semantic
definitions can be proved within the framework of the sawe formalism. This may

turn out to be an advantage although it has not been treated here.

Given a TWS based on EAGs it should be possible to define

(1) The context-sensitive syntax of a programming language, and

(2) the following kinds of translators/compilers
- a verification generator,
~ g compiler based on denctational semantics corresponding to the ones
generated by SIS ([Mosses 791),

- a compiler based on abstract interpretation,
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- the analysis phase of a (production) compiler, and

~ a compiler generating code tc an abstract machine,

For some of the approaches to be satisfactory/efficient there cre (as mentioned)

certain problems to be considered.

First of all an efficient AG evaluator must be available. We think that the
DAG-evaluator presented in section 7 is a useful contribution to this. It avoids
most of the standard problems concerning the order of evaluation of attributes
and it construct the DAG during one left~tc-right scan of a right parse of the
input string. Furthermore it works for all AGs and does not imply a strange sub-

class. This is important for the users of a TWS.

The possibilities of lLetting the attributes influence the parse tree/translation
selected for & given string needs a satisfactory solution in orcder to make full

use of EAGs to handle ambiguities 1in the underlying CFG.
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