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1. INTRODUCTION

The purpose of this paper is to show how the descriptive power of

different types of Petri nets can be compared, without the use of Petri
net languages. Moreover the paper proposes an extension of condition/
event—-nets and it is shown that this extension has the same descriptive

power as condition/event-nets.

During the last decade the role of concurrency has changed drastically.
Concurrency was recognized first as a way to speed up throughput, next
as a ceniral concept in operating systems, and then as a fundamental

concept for description, analysis and comprehension of systems.

Today asynchronous concurrent actions play a central conceptual and
practical r8le in hardware, operating systems, computer networks and

in many programming and system description languages. To describe,
analyse and designh such systems, Petri nets have proved to be a valuable
tool, [Misunas 73], [Petri 75], [Keller 76], [Baer & Ellis 77], [Mazurkie-
wicz 77], [Kotov 78], [Schiffers & Wedde 78], [ Thiagarajan & Shapiro
78], [Genrich & Lautenbach 79], [Jensen, Kyng & Madsen 79, b},
[Lautenbach & Thiagarajan 79], [Noe 79], and [ Zuse 79].

In many of the applications cited above the basic Petri net formalism has
been augmented in different ways., Each of these extensions corresponds
to a subclass of the very general "transition systems! defined in [Keller 76].

The descriptive power of such subclasses can be compared by use of formal
language theory, where each transition is given a name and the set of

possible firing sequences is considered, [Hack 76]. In the present paper it is,
however, proposed to compare the descriptive power in a more direct

way, which is closely connected to the idea of simulation.

In section 2 we define condition/event-nets and an extension of them called
testing Petri nets!'. Testing Petri nets were introduced in [ Jensen 78],
(there they were called "extended Petri nets''), and they have been used
to define a formal semantics for a system description language in [Jensen,
Kyng & Madsen 79a]. Similar primitives are described in [ Zuse 79]. The
new primitives allow a transition to test some of its conditions without

altering their markings.



In section 3 we give a transformation mapping each testing Petri net
into a condition/event-net. Moreover we construct a function mapping
markings for a testing Petri net into markings for the corresponding
condition/event-net. We prove that the transformation satisfies three

equations, all of them dealing with reachability.

In section 4 we define "transition systems! (from [ Keller 76]) and
'simulations" between them. The definition of simulation is directly
inspired by the three equations proved for the transformation in

section 3. We then prove a close connection between simulation and
strict reduction! (from [ Kwong 77]) and this allows us to translate
results, obtained for strict reduction by Kwong, to our situation where
testing Petri nets are simulated by condition/event-nets. These results
show that properties such as existence of a home state, Church-Rosser,
non-haltingness and determinacy are preserved by simulation (i.e. the

simulated system has the properties iff the simulating system has).

In section 5 we replace transition systems by !!/named transition systems!
(from [Keller 76]) and simulation by ''simulation induced by consistent
homomorphisms!!. The latter definition is inspired by 'sirict reduction
induced by homomorphisms!!(from [Kwong 77]) and by '"consistent!
homomorphisms (from [Roucair*ol & Valk 79]). This allows us to translate

a result obtained by Roucairol and VValk concerning liveness,

In section 6 we conclude that the method, used in sections 3, 4 and 5 to
compare testing Petri nets and condition/event-nets, can be used to com-
pare other types of Petri nets. We define "equivalence with respect to
descriptive power!'. We discuss how to find the transformations necessary
to compare two types of Petri nets, and we give references to papers

where such transformations have been sketched.



2. CONDITION/EVENT-NETS AND TESTING PETRI NETS

Definition A condition/event-net is a 5-tuple CEN = (P, T, PRE,POST, m

where

1) P is a set of places

2) T is a set of transitions

3) PNT=0,PUT#%

4)  PRE, POST € [T = IP(P)] where [...] and IP denote
total functions and powersets respectively

5) v t€ T [PRE(t) N POST(t) = @]

6) my€ [P~ {0,117 is the initial marking.

A marking is a function m€ [P + {0,1}]. A place p is marked iff m(p)=1

and unmarked iff m(p) = 0. p is a condition for a transition t iff

p € COND(t) = PRE(t) U POST(t). It is a precondition iff p € PRE(t) and

a postcondition iff p € POST(t).

Functions defined on P or T will in this and the following sections be
extended to P(P) or P(T) in the usual way. As an example PRE(X) =
L c

€ PRE(t), for all X < T.

Condition/event-nets can be represented as directed graphs with two
kinds of nodes. Circles represent places, while squares represent
transitions, Each transition has ingoing arcs from its preconditions
and outgoing arcs to its postconditions. The initial marking is repre-

sented by tokens (solid dots) on the marked places.

Two transitions are independent iff their conditions are disjoint. A
nonempty set of mutually independent transitions X has concession
(and may fire) in a marking m iff all places in PRE(X) are marked and
all places in POST(X) are unmarked. If X fires, a new marking

m! is reached where all places in PRE(X) are unmarked and all places

in POST(X) are marked. We then say that m! is directly reachable from

. . X .
m, which we write as m #» m!' or m —» m!. The transitive closure of

X1><2. . .Xn

. - . . +
direct reachability is writtenas m —» m! or m

» m!, where

N



{X. ] i€ 1..n} with 1= n< =, are the sets of transitions, which are
[

fired to reach m'! from m. The transitive and reflexive closure is

XIXZ' . .Xn

written as m +*¥ m' or m » m! with 0 < n< . A marking m is

reachable iff mo +% m,

The firing rule can be formalized as follows:

m _—>_<...m|
¢

V tysty € X [COND(t;) N COND(t,) = @]

e

p € PRE(X) = m(p) =1Am'(p) =0
VYpeEP p &€ POST(X) = mip) =0A m'(p) =1
- p § COND(X) = m(p)

= m!(p)

Definition A testing Petri net is a 7-tuple TPN = (P, T, PRE, POS T
TM,TU,mO), where

H

1) P, T,PRE,POST, and mg are defined exactly as for
condition/event-nets,
2) T™M, TUE [T » IP(P)].
3) Vte€ T [PRE(t), POST(t), TM(t), and TU(t) are mutually
disjoint].

Now the different definitions for condition/event-nets can be repeated,
except that conditions are defined as COND(t) = PRE(t) U POST(t) U TM(t)
U TU(t), where TM(t) and TU(t) are testmarked-conditions and

testunmarked-conditions respectively. The firing rule has the form:

P i
m ——= m

g
(X# @
Vit t, €X [COND(tI) N COND(t,) = @]
(b € PRE(X) =~ m(p) = 1A m'(p) =0 |
( p€ POST(X) = m(p)=0Am\p) =1
VpEP |p€ TM(X) = m(p) = 1A m'(p) =1
p € TU(X) = m(p) =0A m'p) =0
| Lp § COND(X) = m(p) = m'(p) -




Testing Petri nets can be represented graphically in the same way as
condition/event-nets, except that transitions are connected to their
testmarked-conditions by unbroken (undirected) arcs and to testunmarked-

conditions by dashed (undirected) arcs.




3. TRANSFORMATION FROM TESTING PETRI NETS TO
CONDITION/EVENT-NETS

In this section we define a transformation, which maps each testing
Petri net into a condition/event-net with a "similar behaviour''., We
first define the transformation. Then we give a formal meaning to the
term "similar behaviour!, and we show that the transformation is con-

sistent with this definition.

Let TPN = (P,T,PRE,POST,TM,TU,mO) be a testing Petri net. We

shall transform TPN into a condition/event-net CEN = (P!, T!, PRE!, POST!, mo‘).

Transformation A

A straightforward first idea is to split each transition t from TPN into
two transitions denoted by f(t) and I(t) and connected by a place c(t). Each

subnet in TPN of the form

(ED)

G -G

{ POST(t) }

[3.1]

is replaced by a condition/event-subnet of the following form, where

{...} indicate subsets of conditions.

[3.2]




Moreover we define a function h, which maps each marking m of TPN

into a marking m' = h(m) of CEN defined by

m(p) if pE P

0 if p€ c(T)

The initial marking of CEN is mo' = h(m
Unfortunately this simple transformation does not yield a condition/event-net
with.a "'similar behaviour!! as the ceriginal testing Peiri net. The problem

is that other transitions may change the marking of COND(t) between the
firings of f(t) and I(t).

Transformation B

The problem with transformation A can be solved by splitting each place p
into two places denoted by p and s(p). s(p) acts as a binary semaphore

controlling the use of p. Then [3. 1] is replaced by

{ PRE() } { S(PRE(I))}
H;/

33l GG}

‘{\’/i {(POST{ 19;} {( POST( L;)}

and m' = h(m) is defined by

m(p) if pE€EP
m'(p) =
0 if p€ s(P)uU c(T)

This transformation yields a condition/event-net with a ""similar

behaviour!" as the original testing Petri net,




Transformation C

However, it is possible to make a more elegant transformation, where
the constructed condition/event-net contains the same number of places
and transitions, but fewer relations (arcs) between them. Then [3. 1]

is replaced by

{a(PRE(t)) } {( b(PRE(l))})

sa () () )} {Gram)

{a(POST(t)) } {b(POST(l) }

and m' = h(m) is defined by
m(p!) if p =alp') or p = b(p')
0 if p€ c(T)

The initial marking is m.! = h(m

0 0)

Similar behaviour

What do we mean, when we say that two Peiri nets have a "similar
behaviour? To be very informal we mean that they have the same
"basic properties'. But then we must ask what the "basic properties!
are, and the answer to this question depends heavily on the use of the

model.

The answer could be, that the two nets should have a similar concurrency-
relation. For transformation C this could be formalised by proving, that
two transitions in CEN are concurrent iff the corresponding two tran-

sitions Iin TPN are concurrent.



In this paper we shall, however, focus on properties concerning
reachability, liveness, home-states, determinacy etc.

Let TPN, CEN and h be defined as in transformation C. By M d

TPN @7
MCEN we denote the sets of markings for TPN and CEN, respectively.

A marking m € MCEN is representative iff m € h(MTPN)'

Lemma 1 A marking m&€ M is representative iff

CEN

a) vp€P [malp)) = m(b(p))] and
b) VteT [m(c(t)) = 0]

Proof: Trivial from definition of h. ]

Lemma 2 For all markings m! € MCEN’ reachable from a representative

marking, we have

Vpe€P [mi(alp)) = mi(blp)) + & m(c(t)) ]

t€A(p)
where A(p) = {t€ T | p € COND(t)} .
Proof: From [3.4] by the invariant-method described in [Lautenbach 75]
or by observing that the property is satisfied by any representative
marking and kept invariant by the firing of any set of transitions in
CEN. O

Lemma 3 For all markings m't € MCEN’ reachable from a representative

marking, we have
Vt,t' € T [COND(t) N COND(t") # @ =m'{c(t)) + m'(c(t')) < 1]

Proof: Assume that p € COND(t) N COND(t!), then t,t' € A(p) and we

conclude from Lemma 2 that m'"(c(t)) + m'"(c(t')) < 1. O
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In the proof of the following Theorem 1 we shall exclude infinite concurrency

in the sense that we demand each set X of transitions, involved in a single

X . . . .
step m —>m', to be finite. This assumption will allow us to replace m X, m!
RKyXpe oo X
by a finite sequence of individual transitions m —————-== m! where
X = {xi ‘ 1<iL n} and 1< n<w ., For a proof of the general situation

(altowing infinite concurrency) see [ Jensen 78].

Theorem 1 The function h: MTPN - MCEN is an injection and has the

following properties:

(1) h(m )
(2) v m,m' € MTF’N {m ':I_'-‘-D-[‘\]""‘-i_m' e hi{m) E"E‘T\J'*"—I— h(m‘)]

- ) [ l
(3) ¥vmé€ Mron ¥ M€ Moy [h(m) CEN ml =

I mleEMm * h{m") 1]

Ten M EER

Proof: Injectivity and equation 1 follows directly from the definition of

h, TPN and CEN.

, . : + . e
Equation. 2: Assume that m =N for two markings m, m! € MTPN'

From our exclusion of infinite concurrency this implies the existence of

a sequence of transitions bytye s tr" with 1< r <, such that

t1t2'°'tr‘

1
M TBN m

Then

f(t1) l(t1) f(tz) l(tz) el F(t ) l(tr)

h(m) TEN = h(m!)

—_ :
Next assume that h(m) CER h{m') and

t

t.ltz cee g
h(m) CEN = h(m!')

where 1< s < e,
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We have to prove that

m--————'+ m!.
TPN

The proof is by induction on s:

s = 1: Impossible since firing of only one transition f(t1) would lead to a
marking with c(t1) marked and by Lemma 1 such a marking cannot be

representative.

s = 2: By an argument similar to case s = 1, we conclude that there

exists a transition t € T such that t; = f(t) and t,, = 1(t), but then

TPN

s> 2: By Lemma 1 all places in c(T) are unmarked in h(m). Thus no
transition in 1(T) has concession and we conclude that t, = f(t) for some

t € T. Since c(t) is marked by t, and unmarked in h(m!), there exists

at least one occurrence of I{t) in the sequence tz. . ts. et tu with -

u € 2..s be the first such occurrence. Let t! € T be any transition with
COND(t) N COND(t')# ?. From Lemma 3 it follows that c(t') is unmarked
in all markings between the firings of t1 and tu and hence neither f(t')
nor 1(t') can be contained in FS = t2t3. .. tu-—l'

Thus we conclude that no transition in FS has conditions from a(COND(t))
or b(COND(t)), but this means that t can be moved just behind t; without

altering the total effect of the firing sequence:

t,t [P | t cesl
h(m) C‘l u m” 2 U--1 U+1 S,: h(m')

EN CEN
It is easy to check that m't = h(m''t), where m!!! is defined by
t
m s——— m“|

TPN
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By the inductive hypothesis we then get

4

1t 1
A VS NI

and we conclude

+ 1
me=——gs""* m

TPN
by transitivity of —t
TPN
*
J— H ] -
Equation 3 Assume that h(m) -—(-:—-E—{\r m! for two markings m € MTPN
|
and m! € MCEN'

Let X={t € T | m(c(t)) = 1}. From Lemma 2, Lemma 3 and figure [ 3. 4]
it follows that X has concession in mt.
Let mY € MCEN be the marking reached from m! by firing X in CEN. From

figure {3. 4], Lemma 1 and Lemma 2 it follows that m" is representative.

In Theorem 1 we showed that h is an injection satisfying three equations.
For the moment we will take these equations as our formal definition of

similar behaviour. Then Theorem 1 states that transformation C maps

each testing Petri net into a condition/event-net with a similar behaviour.

In section 4 we shall see that the three equations imply that TPN has a
home-state, is Church-Rosser, non-halting or determinate iff CEN has the

corresponding property.
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4, TRANSITION SYSTEMS, SIMULATION, AND STRICT REDUCTION

In this section we define "transition systems! (from [Keller 76]) and !'strict
reduction! (from [ Kwong 77]). Moreover we shall see that there is a close
connection between simulation (defined in the previous section) and strict
reduction. This connection allows us to translate Kwong!s results to our

situation, where testing Petri nets are simulated by condition/event-nets.

Definition (Keller) A transition system is a triple TS = (Q, «»,QO) where

1) Q is a set of states
2) +c@x Qis the transition-relation

3) QO is the set of initial states

We shall write q + g' for (g, q') € . The transitive closure is denoted by

+ . . .
=+, the transitive and reflexive closure by =%, A state q' is reachable from

a state q iff g #+* g'. The set of all reachable states is
Q"= faca|zaq,€aqy* ql}.

Let TS, = (Ql’ T a?) and TS,=(Q,, 5, Qg) be transition systems and

1
h: @, = Q, an injection. L.et h(TSI) denote the transition system defined

by h(TS1 )= (h(Q1 ), il h(Q?)) where ——= is defined by

(*) va,q €@ [a— a'e hiq) > hiq')]

r
Q1,

respectively.

Qg and Q; are the set of reachable states for TS,, TS, and h(TS1 ),

2

The following definition of "'simulation' is motivated by the three equations

shown for transformation C in Theorem 1 (section 3).
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Definition TS1 is simulated by TSZ with respect to h iff

0 0
(s1) h(Q1) = Qz

+ +
(82) Vvaqg,9'€ Q: [a—= a' & hla) —= h(q')]

(S3) Vg€ Q:Vq'EQZ [h(a) —=" q' =

Jghe Q1 [ql __.E,,* h(q”)]]

Definition (Kwong) TS, strictly reduces to TS, Iff

0__0
(1) Q,cQ,, Q;=Q,
.)(_

Y f e 1
(2)  vag€iva €Q,[ay—3 a =
* ¥ .
Elq”€ Q1 [q'—?' qu/\qo_.r, qn}]
r +
(3) Vaa€Q, [q— a = a—5= d']

+ -
(4) ‘v’q,q'EQr{ la—" q' = Q”T*”‘—* q']

Theorem 2 TS1 is simulated by TS2 with respect to h iff T52
strictly reduces to h(TSI).

Proof: TS, is simulated by TS, iff (S1)-(S3) are satisfied.

TSZ strictly reduces to h(TS 1) iff

c 0 N
(R1) h@) s, hl@)=0a,

(R2) ¥ hiay) € h(Q?)Vq‘ € Q, [hlagy) "*2"”* ql =

Th(q") € hi@,) [a' —5=" hia") A hlag) =" h(a")]]

(R3) ¥ h(a),hla') €n(@?) [hla) === h(a') = h(a) == hla')]

(R4) V¥ hia),h(q") €n@]) [hla) == hla') = hia) == hla')]
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Assume (S 1)-(S3)

(R1) follows from the functionality of h and from (S1).
(R3) and (R4) follow from (S2) and (*) in the definition of h(TS1).

In (R2) the first part, qg' —2-'-* h(g"), follows from (S3). The second part,
h(qo) —hv*h(q”), follows from transitivity of T* (used on h(qo) -—2-'-* q!
and q! ——5—* h(g")) and from (R4).

Assume (R1)-(R4)

(1) follows from (R 1).
(S2) follows from (R3) and (R4).

(s3) follows from (R2), transitivity of 7’-* and (S2). 0

From the above proof observe that the second part of (R2) is implied by
the first part, transitivity of —Z'P* and (R4). By a similar argument it
can be proved that omission of ' A 99 ——1>‘* g" " from (2) would yield an

equivalent definition of strict reduction.

Let TS =(Q, -, QO) be a transition system. A state q€ Q is

dead iff there does not exist a state gq! such that q =+ q'

home iff q! »* q for all q' € Q"
The transition system TS is

non-halting iff all reachable states are non-dead

determinate iff for any dg € QO and any q,q! € Q reachable from g
(dead (q) A dead(q')) = (g =q')

Church-Rosser iff for any q,q',q" € Q"
(qﬂ%qlAqa*qn)i Eq”WEQ[q'a*q”'Aq”%*q”q

Corollary 1 If TS1 is simulated by TSZ then TS1 has a home-state,

is Church-Rosser, non-halting or determinate iff TSZ has the corresponding
property.

Proof: Theorem 2 and Theorems 4.4, 4.5, 4,6 and 4.7 in [Kwong 77].

O
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The basic idea of this (and the following sections) is to consider Petri
nets (of different types) as special instances of transition systems. Then
Q is the set of all markings, - is direct reachability and QO has only one

element, the initial marking.

Now let TPN be a testing Petri net and CEN the condition/event-net
constructed from TPN (by transformation C in section 3). Let TPN!
and CEN! be the corresponding transition systems. From Theorem 1 it
then immediately follows that TPN! is simulated by CEN! and from

Corollary 1 we get:

Corollary 2 A testing Petri net has a home state, is Church-Rosser,

non-halting or determinate iff the condition/event-net constructed from

it has the corresponding property.

In this section we have compared our own definition of simulation (inspired
by Theorem 1) with Kwong's definition of strict reduction. It turned out
that the two definitions are mathematically equivalent. However, the pur-
pose of the two formalisms is quite different. Kwong uses strict reduction
to analyse complicated system descriptions. He starts with a '"large!
transition system. Then he gradually decreases the number of system
states, without altering the basic properties. We use simulation to compare
the descriptive power of different types of Petri nets. We start with a
"'small" transition system corresponding to a description containing some
Petri net primitives. Then we translate this description into another set
of primitives, and to do this we normally have to enlarge the number of
system states. In our situation there is often a nontrivial correspondence
between the states in the two transition systems. For this reason we have
modified Kwong's definition to make the correspondence between states
explicit via the injection h. This is similar to the injection 1 used in

[Roucairol & Valk 79].




17

5. NAMED TRANSITION SYSTEMS AND SIMULATION INDUCED BY
HOMOMORPHISMS

In transformation C (defined in section 3) there is a very close connection
between the firing of a transition t in TPN and the firings of f(t) and I(t)

in CEN. In the formalisation of simulation (and strict reduction) this con-
nection Is not captured, because transition systems do not allow us to
attach names to the elements of the transition-relation. To remedy this

we define in this section "named transition systems' (from [Keller 76]).
Moreover we augment the definition of simulation by adding homomorphisms,

which connect the transitions of the two systems.

In Theorem 2 (section 4) we proved a close connection between simulation
and strict reduction. A similar connection exists between ""'simulation
induced by homomorphisms!" and "stirict reduction induced by homomor -
phisms!" (from [Kwong 77], generalised in [Roucairol &Valk 79]). This

connection allows us to translate results obtained by Roucairol and Valk.

Definition (Keller) A named transition system is a quadruple

(Q, Z,7, Qo) where

1) Q is a set of states
2) Y. is a set of transitions

3) 4 S Qx L x Qis the transition-relation

4) QO C Q is the set of Initial states.

We shall write q ., q! for (qg,t,q') € #. This represents a single step
t transforming q to g'. It is generalised to finite sequences of steps by
the following definition, where ¥ is the set of finite strings over X,

and A the empty string:
For any q,q' € Q

(i) q-é-q' & q=q'
(i) VyEE*VtEE[q—X}—F q' e

Iq" € Q [q o g A gt L. qu]
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The set of reachable states is defined by Q" = {q€ @ | 39,¢ Q
I xET* [qo’“}i’ al}l.

0 _ 0
Let TS, = (QPZP ™ Q1) and TS, = (QZ,EZ,"—"“Z ,Qz) be named .\

transition systems. stepx (A}, Let Ay Dy Pz u {{Al} and Ay lP(Ez)
be arbitrary functions and h: Q] -+ Qz an injection.'Qr{ and Q; are the set

of reachable states for TS, and TS, respectively.

1 2
Definition T51 is simulated by TS, with respect to<h,A1,A2> iff
0 0
(1 h(Q1) =Q,

and extending A1 and Az to homomorphisms in the usual!l way

[a 5= a'=3y € Ay(x) [hla) == hia")]]

~+
1
vx €Ty [hla) 5= h(a) =3y € A (x) [a =+ a Ay#A]]

(2a) V g,q'€Q, Vx€IL

—_ 3 e

(2b) Vv a,q9'€Q
. X
(3) va €@ vae€aq,Vvxenslhla 5~ a'=
3 que @, 3y €r}[a 5= hiaM)]]
With respect to <A1,A2> define '212 = {xé 22 \ A1(><)7é %/\} } .

Definition (Valk and Roucairol) The homomorphisms </5\1,A2> are

consistent iff

cn U Ax=2z,
xGZZ

(C2) wqgk¢€ Q: v % € Z, ERA: A1(><) [y fireable in q] =
vV y € A1(x) |y fireable in q]]

(C3) v xE 2'2 vy € E; ly € »AZ(A1(><)):> y contains x|

The definitions above define the range of A1 and Az as powersets. Often
we do not need this generality and we have simulations satisfying one or
more of the following equations, where the cardinality of a set B is

denoted by |B]:
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(C4a) VxEZ)ZHA1(><)! = 1)
(C5) v ox€ D, [JA ] = 1]
(C6) v <€D, [1x = AAL))]

The simulation defined immediately below (transformation C) satisfies
all three equations (C4)-(C6). Two of the transformations sketched

in [Jensen 78, 79] Satsi%y (C4) and (C6), but not (C5). It should be
noted that (C4) implies (C2), while (C6) implies (C1).

Simulation induced by consistent homomorphisms is transitive (by func-
tional composition of the involved homomorphisms and injections). This
would not be the case if consistent homomorphisms are replaced by

strictly consistent homomorphisms as they are defined in [Roucairol &

Valk 797.

We again exclude infinite concurrency (see section 4). We can then

consider each Peiri net (of some type) as a special instance of named
transition systems. Then Q is the set of all markings, 2 is the set of
transitions, = is direct reachability by firing of only one transition, and

QO has only one element, the initial marking.

Now let TPN be a testing Petri net and CEN the condition/event-net
constructed from TPN (by transformation C in section 3). Let TPN!

and CEN'" be the corresponding named transition systems, with tran-
sitions T and T!' = f(T) U I(T), respectively. Define AT P(T) U {{A}]
and Ay: T P((T1)") by

i

ford if t=f(t")

>
i

I

[Aif t=1(tY)

{10 1(0) ]

t

>
NA
il

"1
3

From these definitions it immediately foilows that <A],A2> is consistent.
Repeating the proof for Theorem 1, while keeping track of the names

attached to fired transitions, we get:
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Theorem 3  TPN" is simulated by CEN! with respect to <“h,A1,Az>.

<A1,Az> is consistent.

Let TS = (Q,Z,#,QO) be a named transition system with reachable states

Q. Ts is live iff

VqGQPVxGEEq'EQEyGZ}* [q—L’q'/\xfir‘eable inq'l

Now we cah proceed as in section 4, We can define !'sirict reduction induced
by consistent homomorphisms!" (from [Kwong 77] and [Roucairol & Valk 79])
and we can relate it to "simulation induced by consistent homomorphisms!

(by a Theorem analogous to Theorem 2).

Corollary 3 A testing Petri net is live iff the condition/event-net con-

structed from it is live.

Proof: Theorem 3, Theorem 1.2 (a) in [Roucairol & Valk 79] and the
fact that each transition I(t) € I(T) can be fired immediately after the
corresponding transition f(t) € f(T) (cf. the proof for equation 3 in Theorem 1).

]

In section 4 we have considered the inverse of transformation C as a
'strict reduction !'. In this section we have considered it as a ''strict
reduction induced by consistent homomorphisms!'., It could also be con-
sidered as an '"algebraic simulation" (from [Milner 71] and [Brand 78]) or

as a !''contraction'! (from [Gourlay, Rounds & Statman 797).
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6. CONCL.USION

In section 2 we defined condition/event-nets and testing Petri nets. In
section 3 we gave a transformation mapping testing Petri nets into con-
dition/event—nets, and we proved that this transformation satisfies

three equations (Theorem 1). In section 4 we then defined transition
systems and simulation between them. The definition of simulation was
directly inspired by the three equations proved in Theorem 1. We proved
a close connection between simulation and strict reduction (Theorem 2) and
this allowed us to translate results obtained for strict reduction to our
situation, where testing Petri nets are simulated by condition/event-nets

(Corollary 2).

In section 5 we replaced transition systems by named transition systems
and we replaced simulation by simulation induced by consistent -
homomorphisms. This allowed us to translate results obtained for strict

reduction induced by consistent homoemorphisms-(Corollary 3).

This approach, described above for testing Petri nets and condition/event=~
nets, are general enough to be used to compare the descriptive power of

other types of Petri nets.

We say that a Petri net F’N1 is simulated by another Petri net PNZ iftf
the transition system corresponding to PN1 is simulated by the transition
system corresponding to F’Nz. The two Petri nets need not be of the same

type. An analogous definition is made for simulation induced by

consistent homomorphisms.

Let A and B be two types of Petri nets.

Definition A is (strongly) not weaker than B iff each net in B can be

simulated (induced by consistent homomorphisms) by a net in A. A and B

are (strongly) equivalent with respect to descriptive power iff A is

(strongly) not weaker than B and vice versa.

As mentioned earlier simulation (induced by consistent homomorphisms) is

transitive and thus (strong) equivalence with respect to descriptive power is

an equivalence-relation,
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Theorem 4 Condition/event-nets and testing Petri nets are strongly

equivalent with respect to descriptive power,

Proof: It is trivial that testing Petri nets are strongly not weaker

than condition/event-nets. The other direction follows from Theorem 3.

O

Having made these formal definitions, an important question arises.
Given two types of Petri nets. How do we construct the transformation(s)

necessary to compare their descriptive power ?

The construction-method from section 3 can often be used: Take a single
transition together with its conditions and replace this subnet by a

simulating subnet of the other type. Do this for each transition.

The method described in this paper has been used to compare the
descriptive power of Mtesting Petri nets! and "hyper Petri nets!! and the
descriptive power of !'place/transition-nets! and !"coloured Petri nets''.
For sketches of the involved transformations see | Jensen 78, 79]. The
transformations used there, are simple in the sense that firing of a single
transition is simulated by firing only a single transition in the other net,
It is the absence of this property, which makes transformation C and

the proof of Theorem 1 non-trivial.
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