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In [JOR?S] it was shown that the high time complexity of Knuth's
algorithm for testing attribute grammars for circularity ([Knu71])
is no accident. It was proved that there is a constant ¢ > 0 such
that any deterministic Turing Machine which correctly tests for

circularity must run for more than ch/IOQ n

steps on infinitely
many attribute grammars (AGs) (the size of an AG is the number
of symbols required to write it down). The proof was rather

complex; the purpose of this note is to provide a simpler one.

Construction Let Z be an arbitrary one tape deterministic

Turing machine such that
i) Z halts in at most 2" steps on any Iinput of length n.
Greek ii) Z has start state ¢, accepting state w, and accepts by
alpha, omega
entering a one-state loop at .

iii) In the first move Z writes # (blank) at position 1 of

its tape, and thereafter never changes this symbol.




Given any input x = aqeeea of length n, an accepting compu-~
tation by Z on x can be described by a matrix M as in Figure 1.

Row | of M is Z's tape contents at time f.

[Figure 1]

Now one of three cases applies to each matrix entry Mit:

w
a)i 1,t>1andMit=#or~#

il

b) t = 1 and M., is the i-th symbol of %1a2...an#. o

c)i>1,t>1andMiL=f(M M
i

i e 1 Mist, 1)

where f is a function depending only on Z (since Z is

i1, t=17

deterministic).

We first construct an AG G>< such that
i) L_(Gx)% @ iff Z accepts x
i) G  has only inherited attributes:
it € {1,...,2"
s € {y]yasuffixofoala a}
172°"""n
iii) the number of productions of Gx is independent of x

iv) certain constraints on the attribute values must be satis-

fied in order to apply some productions,

The notation is borrowed from [Wat77]; for example

Al xtyxy = Al xtz Blz+1ty indicates that A has one
inherited attribute X and one synthesized attribute z, that B

has one inherited attribute w and one synthesized attribute vy,
and that corresponding to production A1 - AZB we have attribute
equations:

Z(A1) = y(B) * y(B), z(Az) = z(A ;) and w(B) = z(A,) + 1.




Greek
epsilon

G>< has nonterminals S and MA,NA where A is a tape symbol of Z.

Its productions are, for each A, B, C, D:

* n

o
1 S -+ N V112 1 a

1800002,
i1 N#liltls—#e ifi=1and t> 1
N N ittis » M iiites ift=1
MAiiLtls»—*e ifi=1and s = Au for some u
MAliitls - MAH-lltlu ifi> 1and s = au for some a
M#iiltls—*e ifi>1land s =¢
v NFBCD) g s KBuictiimt s NCuivieT s NP+ T1t-11s
ifi>1,t>1
The effect of group Il is that NAi illls =%¢ iff A is the i-th
o _Qé
symbol of aja,.. .an#. .. # (note that s = a1a2...an).
L_emma 1 L(Gx);é @ iff Z accepts x.
Proof If 2 accepts x, let M be the matrix corresponding to

its computation on x. A derivation of the empty string is easily

constructed.

If L(Gx)# @, let T be any attributed derivation tree which satisfies
the constraints. Associate with node labeled NAH itls the

assertion ”Mi (= AU, Note that a subtree of T has root
?
N 111145 Iff A is the i'th symbol of 8 a ...a_#...#. Thus the
assertion holds for the lowest NA nodes. Clearly if it holds for
C

the NB, N~ and ND nodes of production 1V, then it also holds for
w

its left side. Thus it holds for N# in production I. Thus Z enters

state w and so accepts x.

O l.emma




Lemma 2 There is an AG G'x such that
i) !_(G'x);'é @ iff Z accepts x
i) G'>< has only one inherited attribute y ranging over
Greek Zh‘ x| for some h > 0 and some alphabet &
sigma
iii) the number of productions of G'x is independent of x
iv) each production of G'x has one of these forms:
I Aly e
I Aly+B lyCly
11 A lza-+Blbz where a,b € 2. Note that this is
a constraint on the A atiribute.
v S -+ A lyo where Yo € Eh[ x| is a constant string
Proof First, represent atiributed nonterminal A i ltls
of G, by the string <T,t,s> where T,t are the binary representations
of fand t, and letZ = {<, >, ",11, 0, 1} U {A | A is a tape symbol of 2.
By padding with zeroes we can ensure that |<T,t,s>| =h|x| for
some h and all x. Note that the right side attribute representation
G-r‘eek of each production T of Gx’ may be computed from <7,t,s> by a
P! finite state sequential machine M,ﬁ., which reads <7,t,s> from

right to left. By adding a few nonterminals it is thus eady to con-

struct an AG equivalent to Gx which has only productions of the

forms:
= + AL <T 2—n <
1 <1,2, aq8,...8 >
Aly » Bly Cly
Aly = €
Aly =+ Bl M(y) where M is a finite state sequential

machine which acceptis y, and M(y) is

its output,




Let M be such a sequential machine with state set Q, start and
accepting states O‘m’ wm € Q and transition function
0: Qx = Qx I. Without loss of generality M enters its accepting

state only after reading "<,

Now G', will have a nonterminal A9 for each q € Q. The pro-
duction Aly # B | M(y) may now be replaced by:

Aly =+ A%n, y

APy za» A9 bz if y = za and 0(p,a) = (q,b)

A% Ly s By

O Lemma

Lemma 3 There is an AG G”x such that
i) G”x is circular iff Z accepts x

i) size(G"x) = 0(] x| log | x|)
Proof will be given after the following:

Theorem There is a constant ¢ > 0 such that any deterministic
Turing Machine which decides whether an AG is circular must

cn/log n steps on infinitely many AGs.

run for .more than 2
Proof of Theorem
Let Z be a Turing Machine as in the first construction. Suppose
the theorem is false, so circularity can be decided in time
zcn/!og N

for all ¢ > 0. Then the test !"is x accepted by Z" could

be done indirectly as follows:




1. Construct G”x
2. Answer yes!! iff G”x is circular.
Step 1 can clearly be done in polynomial time“p(l x|). By Lemma 3

size(G”x) <d|x|log| x| for some d > 0 independent of x. Letting

n=|x|, we see that steps 1 and 2 can be done in time p(n) + Zh(n),
where
h(n) = cdnlogn - cdnlogn <cdn

log(dn log n) log n+ logd + log log n

Since ¢ > 0 is arbitrary, L(Z) can be accepted in time p(n) + zn/Z.
This is impossible for all Z, since by Theorem 12.9 of [Hop 79]

there is a language accepted in time 2" but not in time p(n) + Zn/z.

Proof of Lemma 3

Assume for simplicity of notation that 20 = {0, 1} (extension to

general T is straightforward). G“x will have the same nonterminals

as G‘x. Letm= hlx] . Attribute vy of nonterminal A in G'>< will be

replaced by the 4 m attributes d(i,a) and u(i,a) fora €y, 1<i<m:
ALd(1,0) d(1,1)...d(m,0) d(m, 1) *+ u(m, 1) u(m,0)...u(1, 1) u(1,0)

The only attribute~defining expressions will be variable names or the

constant 17, so attributes may only be copied or set to a constant

value, G”x has the following productions:

I It G'>< contains: Aly = ¢, then G"x contains

AL d(1,0)d(1,1)...d(m,0) d{m, 1) + d(m, 1) d(m,0)...d(1,1)d(1,0) + ¢

[Figure 2]




11 If G‘x contains: Aly » Bly Cly, then G”x contains
ALd(1,0)...d(m, 1) t+ u(m, 1)...u(1,0) -
BL{d(1,0)...d(m, 1) ¢+ e(m, 1)...e(u, 1)
Cie(1,0)...e(m, 1)t ulm, 1)...u(1,0)
[Figure 3]
11 If G'>< contains: A} za = Bl bz, then G“X contains
ALd(1,0) d(1,1)...d(m,0) d(m, 1) + ulm, 1) u(m,0)...u(1,1) u(1,0) -
Bt e(1,0) e(1,1) d(1,0)...d(m=1,0) d(m-1, 1)

t u(m=1,1) u(m=1,0)...u(1, 1) u(1,0) 1, 1) §(1,0)

where
d(m,a) 17 ifb=20
e(1,0) e(1,1) = C17d(m,a) b
ulm, 1) u(m,0) = 17 (1, b) ifa=0

[Figure 4]
1 o 1 fhe
v If G x contains: S = Al aqag.. -a then G % contains:
S+ Ale(1,0) e(1,1)...e(m,0) e(m, 1) 1 u(m, 1) u(m,0)...u(1,1) u(1,0)

where

i

{:u(m,am) 17 ifa, =0

e(1,0) e(1,1) )
17 u(m,am) ifa, =1

i

and for i =2,...,m

I
o

(i-1,a. ,) 17 ifa.
e(i,0) e(i, 1) (L“ %1 o

17 u(i-1,a|._1) ifa, =1
[Figure 5]

Note that this last diagram has a cycle containing the dotied lines
and the dependencies of the S production, and that no cycle exists
if any dotted line is removed. With this in mind we consider the

following:




Property Let T!be an attributed parse tree of G'x with root

Al CRTIRREC N and let T" be the corresponding parse tree of

G“x. Then T! satisfies the constraints imposed by its type Il produc-
tions iff for each i = 1,...,m u(i,ai) is dependent on d(i,ai).
This is easily verified by induction on the height of T!. It is trivially
true for production type 1, and follows immediately from the inductive
assumption for type Il. For type lll, consider for example a tree
node Al aqe..a corresponding to the production Al z0 =» Bl 1z.

I a_ =1, then u(m,am) =-u(m, 1) = 17 which is independent

of d(m,am). Ifa_ =0 then u(m,0) = f(1,b), f(1,b) depends on

e(1,b) = e(1, 1) by the inductive assumption, and e(1, 1) = d(m, 0).
Thus u(m, 0) is dependent on d(m, 0) iff y ends in 0. The other

attribute dependencies are trivial.

Consequently G”x is circular iff G'x has a parse tree which satisfies

all the type IV constraints,

Finally, note that the number of productions of G”>< is independent
of x. Each production contains 4m = 0(|x|) attributes, so the
production can be written down in 0(| x| log | x|) symbols (the

log | x| factor comes from the need to name each of the attributes).
Thus size (G”x) = 0(| x| log | x| ).

OLemma 3
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Figure 1. An Accepting Computation




Figure 2, Dependencies for Aly +¢€, assuming m = 3
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