METHODS FOR LR(k) TESTING

(Informative Diagnostics on LALR(k)-Conflicts)

by

Bent Bruun Kristensen*®
and
Ole Lehrmann Madsen

DAIMI PB-106
November 1979

* Aalborg University Center, Aalborg, Denmark.

ISSN 0105-8517

Computer Science Department ']

AARHUS UNIVERSITY

Ny Munkegade — DK 8000 Aarhus C — DENMARK

- M
Telephone: 06 — 12 83 55 Trl |

S

Abstract

Methods for LLR(k) testing based on the LLR(0)-machine are discussed.
Theoretical results on LR(k)-conditions are proved, and an algorithm
for LR(k) testing derived from these results is given. The application
of the method as a means of giving informative diagnostics on LALR(k)-
conflicts is presented. Finally various modifications of the method

are suggested to improve the efficiency of the LR(k) testing algorithm.

1. INTRODUCTION

A practical general method for LR(k) testing is presented. The approach
assumes the existence of the L_R(O)—machine, and the computation is
based directly on this machine. The method may be used in connection
with an SLR(k) or LALR(k) parser generator system, in order to

supply the user with informative diagnostics when a grammar fails to

obey one of the above conditions.

We think that the LALR(k)-grammars are a sufficient class for most
applications. However the LALR(k) concept seems to be more difficult
to comprehend than the LLR(k)~concept. The information which may be

a product of our ILR(k) test is an understandable and operational founda-

tion for modifications of non-LALR(k) - or SLR(k)-grammars. .

When an LALR(k)-conflict is detected between two items |, J in a state T
of the LR(0)-machine, the information on the conflict may, as a minimum,
be a description of T, - especially | and J -, and the two conflicting
LALR(k) lookaheadsets for | and J in T. A better diagnostic is for each
of the items | and J to describe the items and the states of the pre-
decessor tree, which contribute to the LALR(k) lookahead, and the
actual contributions as well., Alternatively we may, based on the pair (I,J)
in T, find the predecessor paths in terms of pairs of items (I',J') in
states T! leading to (I,J) in T. By computing at each step on a path the
lookahead, which (I1!,J') in T! contributes with to its successor, we
obtain a pair of lookaheadsets for (I,J) in T corresponding to each of

the possible predecessor paths of this kind. These sets are essentially
LR(k)-lookaheadsets for (I, J) in the copies of T in the LR(k)-machine.
Thus we may actually perform .LLR(k) tests for (1,J) in "'T", More im-
portant is that the information given by these predecessor paths, the
(1',J") in T', and the contributions from (1',J') in T!, forms relevant

and sufficient diagnostics on the LALR(k)-conflict between | and J in T.

A number of approaches have been given in the area of LR(k)-testing:
The original LR(k) construction method given in [Knuth65] requires an

excessive amount of time and space to produce parsers for practical

grammars. A number of more efficient variations of this method have
been presented for various subsets of the LR(k) grammars. Among
these are the SLR(k)- and LALR(k)-methods by [DeRemer69, 71],
where the idea is to employ an LLR(0) algorithm even for non-L.R(0)

grammars and then to extend the L.R(0) parser by various kinds of lookahead.

In [DeRemer69] a theoretical method is outlined to extend the L.R(0)-
machine to cover LLR(k)-grammars by state-splitting. [Pager77a] contains

a practical method based on this idea.

Another way of optimizing LR(k)-parser construction is to combine

the states of an LR(k)-parser as they are generated, reducing the
number of configurations to be evaluated as well as the space used for
the evaluation. In [Pager??b] two criteria are given to be applied in
this scheme. In addition to LR(k)-parser construction, methods have
been introduced for LR(k)~testing only. [Hunt et al. 75] gives a method
for LR(k)-testing with a low complexity. The method includes no automa-

tic LR(k)-parser construction.

The rest of the present paper is organized as follows:

Chapter 2 is a summary of terminology and important basic results.

An informal outline of the method for LR(k)}testing is given in Chapter 3,
which is concluded by formalizing the results used in the method.
Chapter 4 contains an actual algorithm for LR(k)-testing and a proof of
its correctness. In Chapter 5 the use of the method to produce informa-
tive diagnostics is discussed. Furthermore various improvements and
variants of the method are described. Appendix A shows the use of the

algorithm to test an example grammar.

Appendix B contains algorithms realizing the variants and improvements

described in Chapter 5.

Upper bounds for the complexity of the presented algorithms are given

in the respective sections.

Acknowledgment

During the preparation of this paper we have received many helpful

comments from Peter Kornerup.

2. BASIC TERMINOLOGY AND RESULTS

The reader is assumed to be familiar with the terminology and conven-
tions from [Aho & Ullman 72] concerning grammars and parsers.
Especially the following concepts are used extensively: F-‘lRSTk,
EFF,, &) i LR-item, (canonical) collection of sets of LR(k)-items,
GOTO, CORE, e (the empty string), and viable prefix. '

A context-free grammar is always assumed to have the form G =

(N, 2, P, S) where N is a finite set of nonterminal symbols, T is a finite
set of terminal symbols, P is a finite set of productions, and S is the
start symbol. All grammars are assumed to be free of '"useless!" symbols.
They are also assumed to be extended with a new siart symbol S' and

the production S' + S - k, where -| is a symbol not in (N U Z).

We use the following conventions: small Greek letters such as a, 8, ¥
are in (N U Z)*; small L.atin letters in the beginning of the alphabet
such as a, b, c are inX; small Latin letters in the end of the alphabet
such as v, x, y are in Z¥; capital Latin letters in the beginning of the
alphabet such as A, B, C are in N; capital Latin letters in the end of
the alphabet such as X, VY, Z are in (N U).

If M is a set of subsets of some set N then UM means

{xGNIXEm&mE M.

We shall repeat some definitions and theorems often in a slightly modified

form.

Definition 2. 1
Let G be a CFG, then the LLR(k)-machine for G is

G _ G G G
LRM, = (MI< , IS0, GOTO), where
MS is a set of (LR(k)-)states, one for each set of

items in the canonical collection of LR(k)-items.
We do not distinguish between a state and its

corresponding set of jtems.

is the initial state.

A

GOTO

0]

is the GOTO-~-function defined on Mf X (NUZ)~» MS

For a given grammar G we will assume the existence of its LRMS on

this form., The superscript G is omitted when this causes no confusion.
GOT!OI< is extended in the obvious way to (Mk) X (NUX)* - M, .
The following definitions and theorems summarize the notions and re-

sults necessary in the following sections:

Definitions

Let G be a CFG, with LR(k)-states M, , k= 0.

k,

(2.2) Let TE M, , then

k,
LR ([A = 0a.8],T) = ful [A=a.B, uleT}.

(2.3) Let [A 2 a.8, u] be a LR(k)~item and let S € M
CORE ([A -+ a.8, u]) = [A-+a.8], and
CORE(s) = {CORE(l) | 1 € S].

We shall not distinguish between the items [A + .5, e] and
(A a.B].

IK? then

(2.4) Let T € Mgy, then

URCORE, (T) = {S € M_| CORE(S) = T}|.

O

(2.5) LALR_([A~»a.8], T)= U{LR, ([A»+a.8],S) | S € URCORE, (T)}.

(2.6) G is said to be LLR(k), k= 0, if for all TE€ M, and for all
distinct items [A -~ @.8, u] and [B=vy., v] in T, we have

v § FIRST, (EFF (8) u),
or equivalently that

(*) EFF (8@ LR _([A+a.p], TINLR _([B-y.], T) =9.

(*) The @ —operator has higher precedence than the N-operator.

(We shall use 2.6 as a definition. It may be found in [Aho & Ullman 72]

as a theorem.)

(2.7) G is said to be LALR(k), k= 0, if for all T € Mg, and for all distinct
items [A=+@a.B] and [B2+vy.] in T we have

EFFK(B)GDK LALRK([A »a.B], T)N LALR, ([B=y.], T)=¢0.

(2.8) Let TE M, X € (NUZ) and o« € (NU Z)*, then

{T} ifo =e

U{PRED(S,a") | GOTO, (S, X) = T} ifa =a'X
O

PRED(T,q) = {:

Theorems
(2.9) Let [A+q.8]# [S'».S —-|k] then

LALR, ([A-a.8], T) =
U{FIRST, (1) ®,_LALR ([B »¢.A¥], S) |

S € PRED(T,a) A [B = 0.A¥] € S}

(2. 10) LALR, ([A 4 a.8], T) = U{L(S,A) | 5 € PRED(T,a)]
where
L(S,A)=U{FIRST,(¥) | [B»¢.A¥] € S|\{e}

U U{LALR ([B 2 ¢.AT], S) | [B2o.AT]ESATST e}
(2.11) V S € PRED(T,a) : LR ([A=a.8], T)=LR_ ([A =~ .eB], S)

(2.12)Let [A=.a]l# [S'2.5 —|k] then

LR ([A = .a], T) =

UIFIRST_ (1)@ LR _([B2¢0.A¥], T) | [B0.A¥] € T},

k

(2. BLR_([A=+a.8], T)={w| weFIRST (y) A

I % . =
StsX yAy =yaBy A GOTO S, va) T,
Proofs

2.9 and 2. 10 have been proved in [Kristensen & Madsen 79a]. 2. 11, 2.12

and 2. 13 follow directly from section 5.2.3 in [Aho & Ullman 72].
U

3. PROPERTIES OF LR~-CONDITIONS

Conflicts in the LR(0)-machine which cannot be solved by supplying
LALR(k)-lookeahead, may disappear by considering the LR(k)-machine
instead. LR(k)-lookahead cannot just be added to the LLR(0)-machine
but we may either construct the LR(k)-machine - or split certain
states of the LLR(0)-machine into a number of copies. Given a conflict

between two items [A =+ @.7] and [B = 0.] in a state T in M,, do then

O’
any conflicts exist between these items in any state of Mk with CORE

identical to T ?

Using definitions 2, 2 and 2. 4 this may be expressed as the condition:
[3.1] EFF M@ LR ([A~+a.r], S)INLR ([B»06.], S)=9

for all S € URCORE, (T).

N
[3. 1] may be reformuliated based on the predecessor states of
S € URCOREK(T), using theorems 2, 11, 2. 12, as the following equivalent
condition:
case o =p'0:

[3.2] EFF, M @, LR ([A-o'.0r], R)N FIRST (1)@ | LRk([c +90.BY¥], R) =9

for all [C +¢.BV¥] € R for all R € PRED(S, §), and
case § = §'g:
[3.3] EFF M@ FIRST (1@, LR ([C2p. A¥], R)N

LR ([B-da], R) =@

for all [C 4 0. A¥] € R for all R € PRED(S, a). Either of [3.2] and

[3. 3] may in turn be expressed by a new set of predecessor states, etc.

It may be seen that we have achieved a recursive formulation. At each
step an additional set of strings may be concatenated to the sets of
strings produced already. The recursion may be stopped as soon as
each string produced has a length greater than or equal to k, in which

case the two sets of strings may be compared directly.

The predicate L_F?CONDI<
based on the LLR(0)-machine for two sets of strings, G, B < E*k, for

two items [A ~o.7m], [B-+B.8]€ T.

will express the condition discussed above

Definition 3. 4
Let T€ Myjand [A+a.f], [B2B.0]€ Tand(,B < Z*k, then

LRCOND, (@ ,[A+a.7], B, [B+8.8], T)=
Y S € URCOREK(T):

G @kLRk([A—va.fn], S)n@ @kL_Rk([B +3.6], S) =9
0

The LR(k)-cordition for the grammar G may then be expressed, based on
its LLR(0)-machine (LRMO) using LRCOND, ,as an immediate consequence
of definition 2.6 and 3. 4.

Theorem 3.5

G is LR(k) if and only if
v TE Mo
VvV [A=a.r], [B2B.]€T:

LRCOND, (EFF (1), [A+a.7], {e}, [B»5.], T)

¢

Returning to our starting point we wanted to perform the computation

of the LLR-condition on the LLR(0)-machine rather than on the LR(k)-machine.
As outlined above L_RCONDI< for some sets of strings and some items in

a state T may be expressed by LF?COI\JDl< for some parameter sets pro-

duced by the PRED-operator on the LR(k)-machine, LLRM, . Thus we have

k.
an operation-sequence:

URCOREK, PRED, ... PRED.
We claim that this sequence is equivalent to the following, using the
PRED-operator on the LLR(0)-machine, MO:

PRED, ..., PRED, URCORE,

This is a recursive formuiation based on L_RMO, except for the last

operation, URCORE, . Below we discuss different stop-criterias which

KK
will enable us to eliminate the URCOREK—OpePatOI", thus giving a formula-
tion based entirely on L.RMO.
Let(Q < E*k be the set of strings produced before the contribution from
the item [A + g.B] in state T is concatenated. One criterion is obvious,

hamely

Another criterion is possible when g = e. In this case the state T may
itself contribute with a set of strings, C , for the item [A = .8], such
that

6@, C | k.

.=
min
These criteria may be expressed formally by the predicate BOTTOMk.

Definition 3.6
Let TE€Mjand [A+a.8] € TandQ < E‘*k, then

BOTTOM, @, [A+a.8], T)=
@#e = |G| . =K A
=e =

V [Bap.AV] € T:

BOTTOM, (G @, FIRST (¥), [B +¢.AT],T))

An effect of BOTTOMk is that we may resirict ourselves to state T and
need not consider URCOREK(T).

(*) Letqg c E*k then ’G‘min is the length of the shortest string inG,
ifG# @, —and 0 ifG = @.

Lemma 3.7
Let T € My and [A-g.8] € TandG c m*K,
If BOTTOM, (G, [A +a.8], T) then

vV SE URCOREK(T):

@, LR ([Aa.8], S)=00, LALR([A+0.8], T)
Proof: Definitions 2.5 and 3.6 and theorem 2, 11.
Theorem 3.8

Let T € M, and [A 2qg.7], [B28.0] € T andG,R c pk,
If BOTTOM, 8, [B=3.8], T) then

LRCOND @, [A =~ a.m], 8, [B=8.8], T)=

C® LALR (A= q.r], T)N8 O, LALR ([B+8.8], T) =0

Proof: LLemma 3.7 and definition 2. 5.

A problem exists when we try to transform the above recursive for-
mulation of the LR-condition into an algorithm. In general the LR(0)-
machine contains a number of cycles which may cause termination
problems. Before we solve this problem and introduce an algorithm,
we shall restate the above discussion on the recursive formulation of

LRCOND, (i.e. [3.1], [3.2], [3.3]) in formal terms.

!_R’CONDk with items, sets and a state as arguments may be charac-
terized by the set of predecessor states in LRMO.

Lemma 3.9

Let T € Myand [A »af.n], [B+8.0] € Tand G,B QE‘*k, then

LRCOND, (G, [A+aB.7n], 8, [B*B.08], T)=
VS € PRED (T, B):

LLRCOND, (a, (A= a.Br], B, [B-2.88], S)

10

Proof: Definition 3.4 and theorem 2. 11 and the fact that

CORE(GOTOK(R, X)) = GOToO(CORE(R), X).

Lemma 3. 10
Let T € My and [A-+g.m], [B».0]€TandG,B QZ)*k, then

LRCOND, (G, [A~+g.m], B, [B=.8], T)=
VI[C2¢.BY] ET:

LRCOND (G, [A-a.n], B ® K FIRST, (1), [C*o.BY], T)
Proof: Using definition 3.4 and theorem 2. 12 we have that

L_RCONDK(@, [A+a.n], B, [B».8], T)=
V S € URCORE, (T):
NS K LRk([A .7, S)n
B@, U{FIRSTK(\II)(-PK I_Rk([c +0.BY], S)| [Cp.BY]ET} =¢
V[C+p.BY] € T:
V S € URCORE, (T):
C®, LRk([A +.T], S)N

B, FIRST (W@, LR ([C~¢p.BY], S)=0

The lemma then follows using definition 3. 4,

The following theorem is an immediate consequence of combining lemma

3.9 and 3. 10.

11

Theorem 3. 11
Let T€Mjyand [A+oB.m], [B*B.0] €T andG,B < E*k, then

LRCOND, (q, [A=a8.1],B, [B=+8.0], T)=
v S € PRED(T, 8):
Vv [C=¢p.BY] € S:

LRCOND, (G, [A-+g.fr], B @ K FIRST, (¥, [C »0.BY], S)
J
The theorems 3.8 and 3. 11 directly offer a solution for an algorithm for

LR(k)-testing working only on the LR(0)-machine.

The theorems and lemmas in this section are apparently not symmetrical in

the arguments of LLRCOND We may repair the defect by observing the

K
identity:

LRCOND, (a, [A~a.r],B, [B= B.8], T)=

LRCOND, (#, [B-~8.6],G, [A~a.n], T)

LF?COI\IDk has been defined for a pair of pairs (set of strings, item) and

a state, (i.e. the domain: P(E*k) X item X P(E*k) X item x state). Obviously
I_FQCONDk may be generalized to have as arguments a pair of lisis with
elements (set of strings, item),and a state, corresponding to the domain:

list of (P(Z‘*k) X item) x list of (P(E*k) X item) x state.

[4.1]

12

4., AN ALGORITHM FOR LR(k) TESTING

In this section we will state an algorithm for LR(k)-testing based on
the LR(0)-machine by using the results of the previous section. The
theorems have been given a form such that a general scheme for an

algorithm may be applied almost directly.

We may consider the identities in theorems 3.8 and 3. 11 as a set of

equations defining a recursive function LRCONDk from P(Z*k) X item

X P(E*k) x item x state to { TRUE, FALSE]. We may solve this set
of equations in order to decide if the grammar happens to be LR(k).
The equations may have more than one solution but we are only inter-
ested in the smallest solution in the sense expressed by [4. 1] and

theorem 4. 2 below,
k . 4 . .
= ‘* * H “
et DCOND—k PZ*7) x item x P(Z*¥"7) x item x state. Consider the function

F:Deonpok ™ { TRUE, FALSE}

given as a solution to the set of recursive equations:

F@a, [A~+aB.n], B8, [B28.08], T)=
(BOTTOM, B, [B~+5.0], T)=
@, LALR ([A-og.r], T)NB® K LALR ([B » 8.6], T) = @)
A
(- BOTTOM, @, [B~B.8], T)=
vV S € PRED(T, B8):
vV [C»+¢.BY] € S:

FG, [A2a.pr], B K FIRSTk(\If), [C?p.BY], S))

Let TRUE < FALSE be the ordering on { TRUE, FALSE} .

13

Theorem 4. 2
LRCOND, is the smallest solution to [4. 1] in the sense that

if G is another solution to [4. 1] then

v (G, 18,9, T) € Do o i

G,1,8,J,T)<a(G,1,8,Jd, T).

I_RCONDI<
is a solution to [4. 1].

Proof: By the theorems 3.8 and 3. 11 I_RCONDk

We shall prove that, if G is any solution to [4. 1] then:

v @, 1,B,9,T) € Do oo

— LRCOND, (G, 1,8,J,T) == G(G,1,8,J,T)

Assuming that

LRCOND, (G, 1,8,J, T) = FALSE

the interesting case is

BOTTOM, @ ,J,T) = FALSE

and we shall prove that

G(G,1,8,d,T) = FALSE.

In this case we have that

3 s¢ URCOREK(T):

3 x GZ}k:
x€0@® LR (,S)NBO, LR
FlRSTk(yz) ANyE€EG AN zE L_Rk(l,S)

J,S)

il

such that x
FIRST (y'z') Ayt e€R A 2! € LRk(J,S).

and X

Assume that | = [A 2 gB.7] and J = [B » 8.6].

14

Consider any viable prefix 7, such that GOTOk(lSk,T) =3, i.e.

I,J€ \/S(T). We claim the existence of 7., ¢,, ¥,,w € (N U Z)* and
A1 * oy AZ\IJ1 € P such that:

S'=%T A w 2% T AT w 2% T.00,ATY, W
where 7 =T 0.0 08 N z€ FIRSTK(\IIZ\IJ1) ANz§ FIRST, (¥,).
Similarly

1 * f 1 ¥ ! 1 ! | ¥ ! 1 ! | 1 3
s = 7181w = 71@182\111w = T1<p1goZB\I/2\IJ1w

where T =710 10,8 A 2' € FIRST (W) ¥,') A 2'¢ FIRST, (L)).

L_etff=><><...Xnar\dRi=GOTOk(lS X...Xi)for‘i=1,...,n, (Rn S).

17°2 k"1
Assume that P(R.) € Mg is the projection of R, €M _ onM .e. P(Ri)

i k ol
CORE(Ri)) for i=1,...,n. Finally assume that R = GOTOk(lSk,T1go1)
and R!' = GOTok(lsk,f; ¢1'). Using [4. 1] for G, the BOTTOM,
will not have the value TRUE until either P(R) or P(R!) is met by tracing
backwards along P(Rn),P(Rn_l), e ,P(R1). BOTTOM, will at least be

k
TRUE at lSk' Assume that BOT TOM, becomes TRUE for parameters
1,8, J',s') then

-predicate

k

x€0'@ LALR (IS)NB'@, LALR (J',S)

which implies that G(G,1,B,J, T) = FALSE.

The algorithm for LR(k)-testing for k= 1 is realized by a function
LRCOND-k as shown in algorithm 4. 3. LRCOND-k has a local recursive
procedure LRCOND which is a straightforward transcription of [4. 1] .
At each level of recursion a boolean value is AND'ed to a global boolean
variable Q. A global variable DONE collectis the actual parameter values
of LRCOND in order to stop the recursion when a considered parameter

value has occurred previously (i.e. is circularly dependent on itself).

Using theorem 3. 2 the grammar G is then LR(k) if and only if

VTEM,: V[Ara.m], [B*B.]€T:

0"
the result of
LRCOND~k([A »ga.7], [B=8.], T)

is the value TRUE.

A proof of the correctness of algorithm 4.3 may be based on a general
algorithm for solving a set of recursive equations given in [Kr‘istensen &
Madsen 79a] and the theorems 3.8, 3.11and 4.2. Unfortunately this
general algorithm is expressed in terms of sets and not in terms of
booleans. A straightforward solution to this problem is to implement

boolean by a set:
Booleanset = SET OF {FALSE, TRUE}.

Let Q, QQ be of type boolean and let Q', QQ!' be the corresponding

elements of type Booleanset, then

TRUE/FALSE is implemented as { TRUE} /{FALSE},
QA QQ is implemented as Q' U Q Q!,
Q' may be interpreted as a boolean with the value FALSE q& Q'.

Notation

In the algorithm the construct

ASSUME ... ;

is used for namegiving of (components of) structured variables.

FOR a € M WHERE Pa DO S ENDFOR;

means
FOR a ¢ MDO

IE P_ THEN S ENDIF
ENDFOR;

15

16

Algorithm 4.3

k . k .
= * x .
Deonpok = SET OF T*" x item x SET OF T*" x item x state;

FUNCTION LRCOND-k (1,J: item; T: state): boolean;

VAR
Q: boolean;
DONE : SET -CEDCOND-k;
PROCEDURE LRCOND((G, 1,8, J, T): Doonp)3
BEGIN
DONE :=DONE U {(G,I,8,J, T)};
IF BOTTOM, (G,1,T)V BOTTOM, (8,J,T) THEN
Q:=QA GO | LALRL,T)NB@ LALR (J,T) = @)
ELSE
ASSUME | = [A~aB.m], J=[B+B.6];
FOR s € PRED(T,8) DO
FOR [C +¢.BV¥] € S
WHERE (G, [A 2 a.fT], B ® i FIRST, (1),
[C +0.BY], S)4¢ DONE DO
LRCOND(G, [A+a.p1], 8@ FIRST, (1), [C = ¢.BY],S)
ENDFOR;
ENDFOR;
ENDIF;
END LRCOND;
BEGIN

Q := true; DONE := @;

ASSUME | = [A-g.m], J=[B~8.];
LRCOND(EFF, (7),1,{e},J, T);
LRCOND-k := Q;

END LRCOND-k; O

[4. 4]

17

Algorithm 4.3 uses the function LALRk to compute L_AL.R(k)-lookahead.
The LALR(k)-lookahead may be computed when needed - or in advance.
Algorithms for this are given in [Kr‘istensen & Madsen 79a]. In section 5
we discuss a possibility for integrating the LALR(k) computation in the
LRCOND -~k computation.

We remark that the k used in the LAI_Rk computation may be decreased
by the length of the shortest string in the first operand of the @ K
operator (i.e. ¢ or). Furthermore BOTTOM, (G,1, T) implies that
c@® K LAL_Rk(I, T) may be computed by only considering state T (i. e.

if IGI min = i then T contains the necessary information to compute
L_AL_Rk_i(l,T)).
A trivial upper bound on the number of recursive calls of procedure
LRCOND in algorithm 4. 3 is the size of the domain for DONE, D

COND -k’
that is

of|P(2*X) [2% |item]| 2 x |state])

This may be improved to

@(‘P(E*k) }2 X % (# items in T)z)
TGMO "

as LLRCOND is only activated for pairs of items in a state T.

For practical grammars the size of T means that [4. 4] is unusable;

however for small test grammars the bound may be reached.

In section 5 we discuss another approach with an improved performance,
In any case the difference between the upper bounds and the normal case

in practical situations is still very large.

(5. 1]

(5. 2]

18

5. PRACTICAL REMARKS AND IMPROVEMENTS

This section describes how to utilize the algorithm for LR(k)-testing

in an LALR(k) parser generator system as a means of giving informa-
tive diaghostics on LALR(k)-conflicts. Furthermore we describe
alternative versions and suggest various improvements of the algorithm

for testing LR-conditions.

5. 1 Informative Diagnostics on LALR(k)-Conflicts
Letl=[A-a.7], J=[B+8.] be items in a state T € M

0 It

EFFk(ﬂ)® K L_ALRk(l, T) N LAL_RK(J, T) # @

a LALR(k)-conflict exists for 1,J in T. In this case we may as a
minimum inform about the conflict by giving the sets appearing in [5. 1],

the items |, J and state T,

A more informative diagnostic will be to give the set of viable prefixes
leading to T. If we consider the recursive formulation of LALR(k)

in theorem 2.9 then each viable prefix may be characterized by a list
of pairs (item, state) obtainable by tracing backwards in the recursive
definition of LALR, (I, T). Each viable prefix may be characterized by

k
several lists. Only a prefix—-part of a given list gives a lookahead con-

tribution to LALR, (I, T). Let TRACE(l, T) be the set of all such prefixes.

k

Each trace, L € TRACE(l, T), defines a lookahead contribution (called
LA(L)) to the set I_Al_Rk(l,T) and a path (called PATH(L)) starting

in T and leading backwards in the predecessor tree of T. We have that

LALR, (1, T) =UfLA(L) | L€ TRACE(l, T)}
The set of traces (and viable prefixes) may be infinite. The LALR(k)
algorithm in [Kristensen & Madsen 79a] traverses a finite number of
traces. These traces may easily be collected (in e.g. a stack) and

given as informative diaghostics.

[5.3]

[5. 4]

19

Furthermore, if

IRE URCOREK(T):

EFF, (M@, LR (,R) N LR _(J,R)# @

then the LALR(k)-conflict is also an LR(k)-conflict. If there is no LR(k)-
conflict, i.e. [5. 3] does not hold, it may be problematic to understand
the. LALR(k)-conflictand to repair it, using only the above described
information. This is because the conflict appears as a result of the im-
plicit merging process of the states R € M, such that R € URCOREK(T),
cf. definition 2.5. A better diagnostic is to give the LR(k)-sets for

l,J in URCORE, (T), i.e. the sets appearing in [5.3].

As above the diagnostics may be improved by giving for each R in
URCOREK(T) the set of viable prefixes leading to R. (Note that the

viable prefixes leading to R in M, are a subset of the viable prefixes

k
leading to Tin MO).

This can be done by grouping the viable prefixes leading to T and con-

sequently grouping the traces of (I, T).

A set of traces, M &€ TRACE(I, T) characterizes viable prefixes leading

to the same state in URCOREK(T) if for all 1_1,!_2 € M,PATH(LT) is a

prefix of PATH(L_Z) or vice versa {(denoted PATH(I_1)N F’ATH(L_Z)).

This gives us that if M is maximal, i.e.

VL, € TRACE(L,T): (L, € Mo

(Vv L, EM: PATH(L_1)~ F’ATH(LZ)))

then AR € URCOREK(T):

LR (1, T) =U{LA(L) | L€ M]

[5.5]

[5.6]

20

Consider now

l_l € TRACE(I, T) and
L € TRACE(J, T)

If F’ATH(Ll)NPATH(LJ) then L, and L, represent viable
prefixes leading to the same state, R € URCORE, (T) and
L_A(l_l) < I_Rk(l,R) and L_A(L_d) c LR _(J,R).

i
K

Information about traces for (I, T) and (J, T) described by [5.5] will
thus be sufficient to inform about viable prefixes leading to states in

URCOREK(T).

These traces may be obtained using L.RCONDk. The recursive defini-
tion of LF?CONDI< defines a set of traces in the same way as is done

for LALR(k). Each trace defined by L.RCONDk
l_I € TRACE(l, T) and a unique trace L_'J € TRACE(J, T) such that

PATH(l_l)N PATH(LJ).

defines a unique trace

Again only a finite set of traces need to be considered in order to have
sufficient information about all traces and the LRCOND-k algorithm

(4. 3) generates such a subset.

LRCOND~-k stops when it has a trace for either (1, T) or (J, T). This

happens when the predicate

BOTTOM, (G,1',T') v BOTTOM, @®,J',T')

becomes f{rue.

I BOTTOMk(G, [', T') becomes true then we have a trace for e.g. (I, T).
We do not necessarily have a trace for (J, T) but we have a prefix part
of one or more traces in TRACE(J,T). If I = [A -» qg.‘n’] then the initial
call is LRCOND-k (EFF (%), I, {e}, J, T). Because of EFF, () we
may have BOTTOMk before a complete trace for (I, T) is generated.

In all cases we have sufficient information for testing LR(k).

21

For informative reasons it may be desirable to generate the remaining
parts of the traces. This can be done by the succeeding call of
LALRk(J‘, T) or by continuing the recursion until we have BOTTOMk
for both arguments (change V to A in [5. 6]). In this connection one
should also consider the integration of LALR(k) computation in

LRCOND-k, cf. section 5. 2.

Besides informing about a given trace one may give more detailed infor-
mation about the trace, e.g. for each item in a trace, L, give the subset

of LA(L) coming from that item.

To summarize: LRCOND-k may be used to generate corresponding pairs
of traces L_I € TRACE(I, T), LJ € TRACE(J, T) representing viable

prefixes leading to the same state in URCORE, (T). Furthermore it is

(
k
easy to indicate where possible LR(k) or LLALR(k) conflicts appear.
This information seems to be sufficient informative diagnostics and the

only remaining problem may be to reduce the amount of information.

5. 2 Integration of LAL R(k)-L ookahead Computation in Algorithm 4.3

We have discussed how to apply the LRCOND-k algorithm in connection
with a system computing LALR(k)~lookahead.

Another possibility is to integrate the LAL R(k)-lookahead computation
directly in algorithm 4.3 based on the observation that the same
predecessor tree is traversed in the two computations. The formula

for computing LALR(k)-lookahead is given by theorem 2.9. An algorithm
testing LR~conditions which automatically collects LLAL.R~lookahead is

inciuded in Appendix B.

5.3 The k = 1 Case

In practice the case k = 1 is the most important. We shall improve theorem

3. 11 for k=1,

22

Theorem 5.7
Let T€ Myand [A+gB.7], [B~=8.6] € T then

LRCOND .({e}, [AaB.1], {e}, [B4p.6], T)=
V S € PRED(T,B):
(V[C = ¢.BY] € S where¥=¥ e:
LRCONDI({e}-, [A~+a.pr], {e, [C~p.BY], S))
A

(LALR ([A 2 0.87], S) N (U[FIRST () | [C+¢.BY] € S}\{e}) = ¢@)
0

An algorithm similar to algorithm 4.3, constructed directly from theorem 5.7

is shown in Appendix B.

The set U{F-'IRST1(\IJ) | [Cre.BY] € si\{el may be computed directly
on LRMO starting in the staie GOTOO(S,B), by analgorithm given in
[Kristensen & Madsen 79a].

An algorithm based on theorem 5.7 has been integrated in an LALR(1)
parser generator system, the BOBS-system, [Er‘iksen et al. 73] with
reference to better diagnostiics on LALR(1) conflicts, Consider two
conflicting items [,J in a state T. It is possible to obtain the following
information:

(1) The conflicting symbols in LALR (I, T) and I_ALR1(J,T).

1

(2) A marking of those symbols (if any) which cause an LALR conflict
but which do not cause an LR~conflict between | and J In any state
in URCORE ,(T).

(3) Parts of the traces obtainable by tracing backwards with I, J from
T using L_RCOND1. At each item the conflicting symbols generated
by the item are given. Only traces that generate conflicting

symbols are given.

(4) All items in T including their LALR(1)-lookahead.

23

(5) The complete set of traces generated by L_RCOND1 as described
in (3).

(6) The whole LR(0)-machine.
In many cases (1) and (2) are sufficient, but often (3) is needed. (4), (5)
and (6) are seldom necessary and especially (6) may produce an enormous

amount of output. So far these diagnostics are very satisfactory.

5. 4 Improvement of Algorithm 4.3

In this section an alternative approach with a better worst case per-

formance is given. Instead of the predicate LRCONDk, we base the

computation on FSETSm n which defines a set of pairs of sets, to be

b2
used in LR(k)-testing. Let

[5. 8] FSETS n([A#ggB.?T], [B=+B.06], T)=
uf {(le}, I'—'lRSTn(\I/))}Em L FSETS ([A=a.pr], [Ce.BY],S)

| S € PRED(T,B) A [C = ¢.BY] € S}
such that

FSETSm ne item X item x state - sets of (E*mx E*n).
?

(Note that FSETSm’n(l,J,T) ={(G,B) | B,6) € FSETSn’m(J,l,T)}).
Notation
Let T,8 be sets of (T*™ x Z*™) then

3 EH § =
m, N

?

(T,@_ sy Tz@nSZ)[(T TR ETA(S,,5,) €8]

Let LRSETS denote the minimal solution to [5.8].

H

[5.9]

24

It may be shown that for T€ M and I,J &€ T:

0

I

L_RCONDk({e}, 1, {el, g, T)

via,e) € LRSETS, | (1,J,T):Q NEB = @
H

Thus we may base an alternative algorithm on I_RSETSm N
b

LRSETSk,k

generates corresponding pairs of traces (L

may be related to L_RCZOI\IDk in the following way: L_RCOI\IDk
I’L‘J) described by [5.5].
LRSETS | generates pairs of sets (I_A(l_l), LA(LJ)) where L L

K,
are described by [5.5], i.e.

L_F%SETSk’k(I,J,T) =

{(L_A(L_l), LA(L) | L, € TRACE(I, T) A L € TRACE(J, T)

A PATH(L)~ PATHI(L)}

Unfortunately the general algorithm from [Kr‘istensen & Madsen 79a]
cannot be applied directly for [5. 8]. It is straightforward to reformulate
[5. 8] to be able to apply the scheme for the construction of the corres-
ponding algorithm. This transformation follows the same ideas as for
LALR, as presented in [Kristensen & Madsen 79a]. Using this approach

K
we find an upper bound of the number of recursive calls in the compu-

tation of the form

6 (K 5(Mg) + 2(k=1)K 5(M()?)

20)

where

KZ(MO) = % (# items in T)z
TEMO

The reformulation of I_RSETSm n and the corresponding algorithm are
?

given in Appendix B.

25

5.5 Generalizing Algorithm 4.3 to compute LRCOND, for Parametersets
of Internal Recursive Calls
Algorithm 4.3 computes L_FQCONDk

initial call of LRCOND. We may generalize the general scheme to
compute L_RCONDk

recursive calls of LRCOND. The general algorithm supporting this

for the actual parameterset of the
for any actual parameterset appearing in the internal

facility is discussed in [Kristensen & Madsen 79a]. The number of
recursive calls of LRCOND will not be changed if algorithm 4.3 is

transformed into this general scheme.

The approaches outlined previously in this section may also be generalized

to this scheme.

An improved version of the general algorithm is proved in [Kristensen
& Madsen 79b], which also includes the algorithm for testing the LR-

condition for k = 1, generalized to this scheme.

26

6. REFERENCES

Aho, A.V. & Ullman, J.D. [1972, 1973]
"The Theory of Parsing, Translation and Compiling"
Vol. 1 & I, Prentice~-Hall, Englewood Cliffs, N.J., 1973,

DeRemer, F.L. [1969]
"Practical Translators for LR(k) Languages!
Ph.D. Diss., MIT, Cambridge, Mass., 1969.

DeRemer, F.L. [1971]
"Simple LR(k) Grammars!"
Comm. ACM 14:7, 453-460, 1971.

Eriksen, S.H., Jensen, B.B., Kristensen, B.B. & Madsen,O.L. [1973]
"The BOBS-~-system!
Computer Science Department, Aarhus University, 1973.
(Revised version DAIMI PB-71, 1979).

Hunt, H.B.,Szymanski, T.G. & Ullman, J.D. [1975]
"On the Complexity of LR(k) Testing"
Comm. ACM 18:12, 707-716, 1975.

Knuth, D.E. [1965]
"On the Translation of _anguages from L.eft to Right!
Info. Contr., 8, 6 (1965), 607-639.

Kr istensen, B.B. & Madsen, O.L. [1979a]
I"Methods for Computing LALR(k) Lookahead!"
Computer Science Department, Aarhus University, 1979,
DAIMI PB-101.

Kristensen, B.B. & Madsen, O.L. [1979b]
N"Correctness Proof of a General Algorithm for Solving a Set of
Recursive Equations (Exemplified by Algorithms Based on LALR(k)
and LR(k) Theory)!

Computer Science Department, Aarhus University, 1979,

Pager, D. [1977a]
"The LLane-Tracing Algorithm for Constructing LR(k) Parsers
and Ways of Enchancing its Efficiency!
Inf. Sci. 12, 19-42 (1977).

Pager, D. [1977b]
"A Practical General Method for Constructing LLR(k) Parsers!"
ACTA Informatica 7, 249-268 (1977).

27

Appendix A: Example

Let G, = ({s',s,A,B}, {a,b,c,x,-4},P,S') be a CFG, where P con-

sists of:

St o» S 44
S—»A[Bb[cAb|cBa
AaxAc]x

B =+ xB | xc

Using G1 we may show the correspondence between the LR(2)-machine
for Gy, LRMCZ';], - and the LR{(2)-testing by LRCOND, using the LLR(0)-

machine for G 1', LRMS].

2

The Involved part of LRMé31 can be illustrated as

+ .S 4
. A

St
S

-

[A.1]
[A. 2]

[A. 3]

[A. 4]

[A. 5]

[A. 6]
[A. 7]

[A. 8]

G1 is - LALR(2) as

LALR,([A+x.], 2)= {44, b, cH, cb, cc}
and

FIRST,(c) @, LALR,([B 4+ x.c], 2) = {cb,ca}.
Consider the following computation:

LRCOND,(fc}, [B #x.c], {e}, [Aax.], 2) =

LRCOND, ({c}, [B~.xc], {e}, [S+.A]l, 0) A
LRCONDz({c}, [B+.xc], {b}, [S+c.Ab], 1) A

LRCONDZ({C}, [B~.xc], {c}, [A+x.Ac], 2)
For the cases [A. 1], [A.2], [A.3] we find that:
[A. 1] = LRCOND ({cb}, [S +.Bb], {e}, [s~+.A], 0)

where BOTTOM,({e}, [S +.A], 0) = TRUE and

{e} @, LALR,([S +.A], 0) = {- 4} implies

[A.1] = {cb} n {4 4} =& = TRUE.

[A. 2] ELRCONDZ({ca}, [S +c.Ba], {b}, [S+c.Ab], 1)

where BOTTOMZ({ca} , [S =+ c.Ba], 1) = TRUE and
{ b} @, LALR,([S # c.Ab], 1) = {b] implies

[A.2] = {cal n{b 4} =0 = TRUE.

Similarly we find that [A. 3] =

0
B
-

Vel =@
{cal n {cb} =@ A

{ca, cb} Niccl = = TRUE.

The involved part of L_RM(Z3

0
S! -
S =2
S =+,
S .
S 9.
A
A 2,
B .
B .
-
2
A+ x.Ac, -
A%, o
B~x.8, b4
B x.c, b4
A . xAc, c -
A, X, Cc~
B-. xB, b
-+, xc, b -
2
3
A x.Ac, c
A x, , c-
B+ x.B8, b+
B~ x.c, b+
A =4, xAc, cc

x.Ac, cc
X. , CC

%x.B, b -
X.C, b~
. XAc, cc
. X, CC
. xB, b+
. XC, b

1 can be illustrated as:

X.Ac, b -
Xey b~

x.B, a -
X.C, a -
. xXAc, cb

A = x.Ac, cb
A-+x, , cb
B+ x.B, a4
B2+ x.c, a-
A 2, xAc, cc
A=.x, cc
B~+. xB, a4
B~. xc, a -
.Ac, cc
. , CC
.B, a 4
.C, a -
. XAc, cc
. X, cC
. xB, a4
X . Xc, a -

To test if G, is LR(2), concerning the items [A » x.] and [B =+ x.c],

we must compare

(a) LRZ([A +x.], T) and

(b) {dc} ®, LRZ([B—»x.c], T)

for T=2, 3, 4, 5, 6, 7 :

T (a) (b) (c)

2 - 4 cb [A. 4]
3 c 4 cb [A.6]
4 cc cb [A. 8]
5 b - ca [A. 5]
6 cb ca [A.7]
7 cc ca [A. 8]

The column (c) shows the correspondence between the test based on the

LRMC T

2 and the computation using I_RCONDz.

Appendix B: Algorithms for Alternative Approaches

B.1 Algorithm on LR~conditions for the k = 1 case.
B.2 Improved algorithm for testing the LLR-condition.

B.3 Algorithm with integrated LALR~lookahead computation.

B.1 Algorithm on LR~conditions for the k=1 case

The algorithm for the k=1 case is realized by a function LRCOND-1
as shown in algorithm B. 1. The algorithm is a straightforward

transcription of theorem 5.7 and the following well-known resuli:

(‘_—'ITGMO:

I[A-ar], [B2B.]€T:

(EFF (m\{eh)n LALR ([B 8.7, T)# @)
U

G is not LR(1).

A proof of the correctness of the algorithm may be based on theorem 4.2
and the general scheme in [Kr‘istensen & Madsen 79a] . An upper bound
on the number of calls of the procedure LLRCOND is
.] 2
6(Z (# items in T)7)
TEMO

Algorithm B. 1

DCOND—1 = jtem X item X state,

FUNCTION LRCOND~1 ((1,J,T) : D boolean;

conp- 1)
VAR
Q : boolean;

DONE: SET OF Do\ p_ 1}

PROCEDURE LLRCOND((1,J,T) : D
BEGIN
DONE := DONE U{(1,J, T)};
ASSUME | = [A =4 aB.1], J=[B=8.8];
FOR S € PRED(T,8) DO
Q:=QA (LALR ([A+qg.8r], S)N
(U{FIRST1(\II) | [C20.BY]E si\{e}) = @);
FOR [C 4 ¢.BY] € S DO
ASSUME I'=[A*qg.87], J'=[C »¢p.BV];
IF e € FIRST, () A (1',J',S) ¢ DONE THEN
LRCOND(I, J!, S);
ENDIF;
ENDFOR;
ENDFOR;
END LRCOND;

conD-17

BEGIN
ASSUME | = [A»+g.1], J=[B +8.7;
Q := (EFF (r\{e}) N LALR,(J, T) = ®;

DONE := @;
LLRCOND(1,J, T);
LRCOND-1 :=Q;

END LRCOND-1;

B. 2 Improved Algorithm for Testing the _R-Condition

In order to be able to apply the general algorithm in [Kr‘istensen &
Madsen 79a] we need to reformulate FSETSm n @s given by the

?
following definition.

Definition B. 2
Let T€ Myand [A=aB.m], [B+8.6] €T then

B.3] FTESTSETS = ([A-ag.m),[B+8.6], T)=

U{Fm,n(l,B,S)U FL . ,B,S)uL_ (1,B,S)] S€ PRED(T,B)}

’n ’n(

where | = [A <+ g. 81] and

F o, n(l:B,S) = {(LALR_(1,3), {w | we FIRST _(I) A |w]| =n})

| [C».BY] € S},

Fly nl1:8,9) = { {({el ,FIRST (U\{e})}

EBm nFTESTSETSm’i(l,[C -+ 0.BY], S)

H

| [C2e.BU]lESATI=n-|FIRST (IN\{ef| . AO0<i<n},

mi

Lm’n(l,B,S) == {FTESTSETsm,n(I, [C~+¢.BY], S)

| [C=¢.BY] € SAT¥ €}

Note that FTESTSETS (1,9, T) ={(@,8) | ®,60)¢€ FTESTSETS (J,1,).

s N , M
Let L_RTESTSETSm n be the minimal solution to the recursive equations

defined by [B.3]. ’
O]

The correspondence between FSETSm n and FTESTSETSm n May be
? 2
described by introducing a minor change In [B. 3], namely:

[B.4] = ,B,S) = {({el,iw | we FIRST (I) A |w| = n})

m,n(
== HI FTESTSETSm’O(I, [C4p.BY], S)

?

| [C»0.BY] € S,

Using [B. 4] we may obtain

- FTESTSETSm " by constructing l‘—‘m n as the union of elementis

2 ?

coming from F'! ,
m, N

- FSETS as the union of the elements coming from F'!)
m, N m, n

FL , nand L, . for the same item [C =+ ¢.BY] in S.
Theorem B. 5

LetTE My and I, J € T then

LRCONDK({e} s, {el ,0,T) =

v G,8) € LRTESTSETS ,J,T):aNB =¢@

k,k(
Using definition B. 2 we may now construct the algorithm for testing
the LR-~condition. It is realized by the function LRTESTSETS~m-n
as shown in algorithm B.6. LRTESTSETS-m-n has a local recursive
procedure which computes LRTESTSETS n for fixed m and n. A

?

proof of the correctness of algorithm B. 6 may be based on theorem B.5

and the general algorithm of [Kristensen & Madsen 79a].

An upper bound for the number of recursive calls of procedure

LRTESTSETS for each invocation of L RTESTSETS~-m-n is
@-(sz\o))’

Thus the total number for all invocations of LRTESTSETS-m-n(l,J, T,m,n)
has the upper bound

)m+n-—1).

6 (K ,(M

2(0
By saving the values computed by LRTESTSETS-m-n the upper bound
reduces to

2
Mg)?)

@.(KZ(MO) + (m+n=2) Kz(

for one call of LRTESTSETS-m-n(l,J, T, m,n) and to

6 ((m+n=1) K ,(M)?)

for the calls of LRTESTSETS-m-n(l,J, T,m,n) for all 1,J, T.

Algorithm B. 6

DTEST =SET OF item x item x state,
D =SET OF (SET OF o*™ x ST oF o*");
FUNCTION LRTESTSETS-m-n((l,J, T) : Diggts MmN Integer): D;
VAR SETS : D; Done : DTEST;
PROCEDURE LRTEiTSETS((l,J,T) i Dopgr)i
VAR F : SET OF Z%*7; i: Integer;
BEGIN

Done :=Done U {(1,J, T)} ;
ASSUME | = [A»gB.TT], J=[B*8.6];
FOR S € PRED(T,B) DO
FOR [C #¢.BY¥] € S DO
ASSUME 1I' = [A 4 a.fr], J' = [C +¢p.BY];
Fi=FIRST ()
SETS :=SETS U {(LALR (I',S), {we F | [w] =n});
ii=n-|F\{e} [min;
IF 0< i< nTHEN
SETS :=SETS U {({e} ,F\le})}Eam’n
LRTESTSETS-m-n(l',J',S,m, i);
ENDIF;
IFEeeF A(I',J',S) ¢ Done THEN LRTESTSETS(I!, J!, S);
ENDIF;
ENDFOR;
ENDFOR;
END LRTESTSETS;

BEGIN ,
SETS := Done := @;
LRTESTSETS(I, J, T);
LRTESTSETS-m-n := SETS;
END LRTESTSETS-m-n;

In the important special case wherem =n =1 [8.3] reduces straight-

forward and an improved algorithm is obtainable.

B.3 Algorithm with Integrated LALR-L_ookahead Computation

The LALR~lookahead computation is integrated in the algorithm for
LR(k) testing based on L_RCOND|< for k = 1. The approach is realized
by a function LRLALR~1 as shown in algorithm B.7. LRLALR-1(1,J,T)
computes (LRCOND 1(l,\J, ™), l_AI_Rl(l, T), L_AI_R1(J, T)). A similar
algorithm may be achieved by integration based on the algorithm for
computing LRTESTSETSm’ n
Notation

In the algorithm the construct

FOR a € M WHERE P_DO S
ELSEDO S
ENDFOR;

1
2

means

B = true;
FOR a € MDO
= Pa THEN
B := false;
=1
ENDIF;
ENDFOR;,

IF. B THEN S, ENDIF;

2

Algorithm B.7

DCOND = jfem X item X state;

FUNCTION LRLALR-1(1,J, T): Deonnp

VAR Q : boolean; Done: SET OF DCOND;
LALRIT, LALRJT: SET OF %;
PROCEDURE L.RLALR((1,J, T): Deonp’
VAR LI'S, LJ'S, LJ'"S,F : SET OF 5

): boolean x SET OF T x SET OF 75

VAR LIT,LJT: SET OF %);

BEGIN
Done :=Done U {(1,J, T)}
ASSUME | =[A~gB8.7], J=[B+8.5];
ASSUME I' = [A~a.81], J' =[B =+ .86];

LIT := LJT := ¢@;
FOR s € PRED(T,B) DO
LI'S 1= LJ'S = Q;
FOR [C # ¢.BY¥] € S WHERE ¥=* e DO
ASSUME J!" = [C =+ .B¥];
IE (1',J",S) ¢ DONE THEN LRLALR((1',J",S), LI'S, LJ'S);

LJ'S 1= LJ'S U LJ"S;
ELSE LJ'S ;= LJ'S U LALRI(J",S)
ENDIF;
ELSEDO LI'S := LALR 1(l',s);

ENDFOR;
F:=U“ﬂRSTﬁ@)|[C»¢LBQ]ES%&Q;
LJ'S :=LJ'S U F;
LJT :=LJT U LJ'S;
LIT :=LIT U LI'S;
Q:=QA(LI'SNF =@);
ENDFOR;
END LRLALR;

BEGIN
Q := true; Done := @,
LRLALR(l,J, T, LALRIT, LALRJT);
ASSUME | = [A=q.m], J=[B=8.];
Q:=QA ((EFF1(1;)\{ el) N LALRJT = @);
LRLALR-1:= (Q,LALRIT,LALRJT);
END LRLALR-T;

We remark in algorithm B.7 that

- the parameter LI'S in LRLALR((1,J",S), LI'S,LJ"S) delivers
the same result, I_AL.RI(I',S), for all possible J! for fixed S.
This is a result of the so far missing generalization of the
concepts to be defined for a pair of lists of items and not just
for a pair of items,

~ in the case where
AlC»¢.BY] €S:T=%e
for a given B, and in the case where
(1',J",) € Done

the recursion is not continued. Thus we miss the automatic
collection of LALR(1)~lookahead and have to compute this

separately by a function LLALR 1

	PB-106_Page_01_Image_0001.tiff
	PB-106_Page_02_Image_0001.tiff
	PB-106_Page_03_Image_0001.tiff
	PB-106_Page_04_Image_0001.tiff
	PB-106_Page_05_Image_0001.tiff
	PB-106_Page_06_Image_0001.tiff
	PB-106_Page_07_Image_0001.tiff
	PB-106_Page_08_Image_0001.tiff
	PB-106_Page_09_Image_0001.tiff
	PB-106_Page_10_Image_0001.tiff
	PB-106_Page_11_Image_0001.tiff
	PB-106_Page_12_Image_0001.tiff
	PB-106_Page_13_Image_0001.tiff
	PB-106_Page_14_Image_0001.tiff
	PB-106_Page_15_Image_0001.tiff
	PB-106_Page_16_Image_0001.tiff
	PB-106_Page_17_Image_0001.tiff
	PB-106_Page_18_Image_0001.tiff
	PB-106_Page_19_Image_0001.tiff
	PB-106_Page_20_Image_0001.tiff
	PB-106_Page_21_Image_0001.tiff
	PB-106_Page_22_Image_0001.tiff
	PB-106_Page_23_Image_0001.tiff
	PB-106_Page_24_Image_0001.tiff
	PB-106_Page_25_Image_0001.tiff
	PB-106_Page_26_Image_0001.tiff
	PB-106_Page_27_Image_0001.tiff
	PB-106_Page_28_Image_0001.tiff
	PB-106_Page_29_Image_0001.tiff
	PB-106_Page_30_Image_0001.tiff
	PB-106_Page_31_Image_0001.tiff
	PB-106_Page_32_Image_0001.tiff
	PB-106_Page_33_Image_0001.tiff
	PB-106_Page_34_Image_0001.tiff
	PB-106_Page_35_Image_0001.tiff
	PB-106_Page_36_Image_0001.tiff
	PB-106_Page_37_Image_0001.tiff
	PB-106_Page_38_Image_0001.tiff
	PB-106_Page_39_Image_0001.tiff
	PB-106_Page_40_Image_0001.tiff
	PB-106_Page_41_Image_0001.tiff
	PB-106_Page_42_Image_0001.tiff

