ISSN 0105-8517

EXTENDED ATTRIBUTE GRAMMARS

by

David Anthony Watt *
and
Ole Lehrmann Madsen

DAIMI PB-105
November 1979

* Computing Science Department, University of Glasgow,
Glasgow G 12 8QQ, Scotland.

Computer Science Department
AARHUS UNIVERSITY ﬂﬁr

Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55

|
1]

EXTENDED ATTRIBUTE GRAMMARS

Abstract

Two new formalisms are introduced: extended attribute grammars,
which are capable of defining completely the syntax of programming
languages, and extended attributed translation grammars, which

are additionally capable of defining their semantics by translation.
These grammars are concise and readable, and their suitability for
language definition is demonstrated by a realistic example. The
suitability of a large class of these grammars for compiler construc-
tion is also established, by borrowing the techniques already developed

for attribute grammars and affix grammars.
Key Words and Phrases: attribute grammar, affix grammar, extended
attribute grammar, extended attributed translation grammar, compiler

writing system.

CR Categories: 4.12, 5.23

Revised version of: D.A. Watt, O.L. Madsen, Extended Attribute

Grammars, University of Glasgow, Report no. 10, July 1977.

1. Introduction

This paper is concerned with the formalization of the syntax and semantics
of programming languages. The primary aims of formalization are
completeness and unambiguity of language definition. Given these basic
properties, the value of a formalism depends critically on its clarity,
without which its use will be restricted to a tight circle of theologians.
Another dmportant property of a formalism is its suitability for automatic
compiler construction, since this greatly facilitates the correct

implementation of the defined Llanguage.

Experience with context-free grammars (CFGs) dillustrates our points
well, Although not capable of defining completely the syntax of
programming languages (which are context-sensitive), CFGs have all the
other desirable properties, and their undoubted success has been due both
To their comprehensibility to ordinary programmers and to their value as a
tool for compiler writers. Indeed, it is Llikely that any more powerful
formalism, if it is to match the success of CFGs, will have to be a clean

extension of CFGs which retains all their advantages.

We firmly believe in the advantages of formalization of a programming
language at its design stage. Even such a clear and well-designed language
as Pascal (28] contained hidden semantic irregularities which were revealed
only by formalization of its semantics [8]. Similarly, certain ill-defined
features of the context-sensitive syntax of Pascal (such as the exact scope
of each identifier) are thrown into sharp relief by an attempt at
formalization £26]1. It is well known that 1issues not resolved at the
design stage of a programming language tend to become resolved de facto by
its first dimplementations, not necessarily 1in accordance with the

intentions of its designers.

‘A recent survey article [191 has assessed four well-known formalisms,

van Wijngaarden grammars, production systems, Vienna definition Llanguage

and attribute grammars, comparing them primarily for completeness and

clarity. None of these formalisms is fully satisfactory, even from this
Limited viewpoint. The first three formalisms tend to produce language
definitions which are, 1in our opinion, difficult to read. Attribute
grammars are easier to understand because of their explicit attribute
structure and distinction between "inherited" and '"synthesized" attributes.
These same properties make attribute grammars the only one of these
formalisms which is suitable for automatic compiler construction, an

important application which was not considered in the survey article.

In this paper we introduce a new formalism, the extended attribute

grammars (EAGs), which we believe will compare favourably with these well-

known formalisms from every point of view. EAGs are based on attribute
grammars and affix grammars, and retain the more desirable properties of
these formalisms, but are designed to be more elegant. readable and
generative 1in nature. They represent a refinement of earlier work by the

authors [16, 23].

Section 2 of this paper 1is an informal {introduction to EAGs via
attribute grammars and affix grammars, and Section 3 is a more formal
definition of EAGs. In Section 4 we discuss the possibilities of using
EAGs to specify the semantics as well as the syntax of programming

languages, and we introduce an enhanced formalism, the extended attributed

translation grammars (EATGS), which are designed to do so by translation

into some target language. Section 5 demonstrates the suitability of a
large class of EAGs for automatic compiler construction. Section 6 is a
brief description a compiler writing system based on EATGs which has been

implemented at Aarhus.

In the Appendices we give a complete definition by an EAG of the syntax

of a small but realistic programming Llanguage. and by an EATG of its

translation into an intermediate language. These examples should allow the
reader to judge for himself the suitability of the formalisms for language

definition.

2. Attribute grammars and extended attribute grammars

In this section we briefly describe attribute grammars and affix grammars,
and introduce extended attribute grammars. We use a notation which is
based on BNF. The empty sequence is denoted by <empty>. Terminal symbols

without attributes are enclosed in quotes.

Throughout this section we wuse the following running example:
assignments 1in an ALGOL68-like Llanguage, 1in which the LHS of each
assignment must be an identifier of mode ref(MODE), where MODE is the mode
of the RHS; each identifier must be declared (elsewhere), and its mode is
determined by its declaration. We shall use the term "environment' for the
set of declared identifiers together with their modes, and we shall view
this environment as a partial map from names to modes. We shall assume the

following context-free syntax:
oD <assignment> ::= <identifier> '":=" <expression>

(2) <identifier> ::= <name>

2.7. Attribute grammars and affix grammars

Attribute grammars were devised by Knuth £10J, and affix grammars
independently by Koster [11]. The two formalisms are essentially
equivalent, and we shall attempt to abstract their common properties by a
unified notation. We use the abbreviation AG to refer to either attribute

grammars or affix grammars.,

The basic idea of AGs is to associate, with each symbol of a CFG, a
fixed number of attributes, with fixed domains. Different instances of the

same symbol in a syntax tree may have different attribute values, and the

attributes can be used to convey information obtained from other parts of
the tree. A distinction 1is made between synthesized and inherited
attributes. Consider a symbol S and a phrase p derived from S. Each
inherited attribute of § is supposed to convey information about the
context of p, and will be prefixed by a downward arrow . Each
synthesized attribute of § 1is supposed to convey information about the

phrase p itself in the given context, and will be prefixed by an upward

arrow ().

In our example, each of the nonterminals <assignment>, <identifier> and
<expression> will have an inherited attribute representing its
"environment" (these attributes are 1inherited since they represent
information about the context). Each of <identifier> and <expression> will
also have a synthesized attribute representing its mode. The symbol <name>

will have a single synthesized attribute, its spelling.

The attributes can be used to specify context-sensitive constraints on a
language with a context-free phrase structure. FEach AG rule is basically a
context-free production rule augmented by

(a) evaluation rules, specifying the evaluation of certain attributes 1in

terms of others, and

(b) constraints, or predicates which must be satisfied by the attributes in

each application of this rule.
In our example, assignments could be specified by the following rule:

<assignment Yy ENV> ::=
&P <identifier §y ENV1 T MODE1> *:="
<expression Yy ENV2 | MODEZ2>
evaluate ENV] <= ENV
evaluate ENVZ <- ENV

wherg MODE1 = ref(MODEZ2)

where “where” introduces a constraint, and 'evaluate” introduces an

evaluation rule. Here we have used some attribute variables, ENV, ENV1,

ENVZ, MODET and MODEZ2, to stand for the various attribute occurrences in
this rule. The evaluation rules specify that the environment attributes of
both <identifier> and <expression> are to be made equal to the environment
attribute of <assignment>. The constraint specifies the relation which

must hold between the mode attributes of <identifier> and <expressijon>.

An ‘'identifier" 1is a name for which a mode 1is defined 4in the

environment. We could specify this by the following rule:

<identifier ¥ ENV | MODE> ::=
(2> <name | NAME>

evaluate MODE <~ ENVINAME]

Here we compute the mode attribute of <identifier> by applying the map ENV
to NAME, the attribute of <name>, where ENV is the environment attribute of
<identifier>, There is an implicit constraint here, that the map ENV is in

fact defined at the point NAME.

Inherited attribute-positions on the left-side and synthesized
attribute-positions on the right-side of a rule are called defining

positions. Synthesized attribute-positions on the left-side and inherited

attribute-positions on the right-side of a rule are called applied

positions. This classification is illustrated below:

W¥enalua> 257 <V Veuelendd tivnvnnns <gm+...r...>

def app app def app def

In general, there must be exactly one attribute variable for each
defining position in a rule. The evaluation rules specify how to compute

all attributes in applied positions from those in defining positions. The

constraints relate some of the attributes in defining positions. (This

definition is actually more restrictive than that of [101, 1in which the
evaluation rules may use attributes from any positions. As [2] points out,
however, the restriction effectively excludes only grammars containing

circularities. See also Section 5.1.)

In practice, many evaluation rules turn out to be simple copies;
following [27]1, we shall eliminate these by allowing any variable which
occupies a defining position also to occupy any number of applied
positions, and for each such position a simple copy is implied. This

allows rule (1) to be simplified as follows:

<assignment ¥ ENV> ::=
&P <identifier ¥y ENV | MODE1> ":="
<expression ¥ ENV | MODE2>

ﬂﬂiﬂi MODET = ref (MODEZ2)

The choice of § and | to distinguish inherited and synthesized
attributes 1is motivated by the tendency of inherited attributes to move
downwards, and synthesized attributes to move upwards, in a syntax tree.
To illustrate this, Figure 1 shows a fragment of a syntax tree, based on

our example.

An attribute grammar has been used to define the programming Llanguage
Simula [27]. Relative to van Wijngaarden grammars (221, for example,
language definitions by AGs are easy to understand, because of the explicit
attribute structure and the distinction between inherited and synthesized
attributes. It is guite easy to detect the underlying context-free syntax,
although this does tend to be obscured by a profusion of evaluation rules
and constraints. Another disadvantage of a language definition by an AG is

that it is unmistakeably algorithmic.

AGs are well suited to compiler construction, and have been exploited in

compiler writing systems L6, 12, 13, 15]. We shall return to this topic in

Section 5.

2.2. Extended attribute grammars

EAGs are intended to preserve all the desirable properties of AGs, but at
the same time to be more concise and readable, and like van Wijngaarden

grammars [22] to be generative rather than algorithmic in nature.

A straightforward notational improvement on AGs is to allow attribute
expressions, vrather than just attribute variables, in applied positions;
for each such attribute expression an evaluation rule 1is dmplied. For

example, rule (2) in our example could be expressed as follows:

<identifier ¥ ENV | ENVLNAMEI> ::=

(2) <name | NAME>

This relaxation makes explicit evaluation rules unnecessary.

In EAGs we go much further, however, and allow any attribute position,
applied or defining, to be occupied by an attribute expression. Moreover,
we withdraw the restriction that each attribute variable must occur in only
one defining position in a rule. These relaxations allow all relationships
among the attributes in each rule to be expressed implicitly, so that
explicit evaluation rules and constraints both become unnecessary. The
attribute variables become somewhat akin to the '"metanotions” of a van

Wijngaarden grammar.

Our example could be be expressed in an EAG as follows:

<assignment { ENV> ::=
1 <identifier ¥ ENV [ref(MODE)> *:="

<expression ¥ ENV | MODE>

<identifier ¥y ENV | ENVLNAMEI> ::=

(2) <name | NAME>

In rule (1) we have specified the relation which must hold between the
second attribute, WMODE, of <expression> and the second attribute of
<identifier> simply by writing ‘'ref(MODE)' in the Llatter position.
Similarly, 1in vrule (2) we have specified that the second attribute of
<identifier> is obtained by applying ENV to NAME simply by writing

"ENVECNAME]* in the appropriate position.

It may be seen that the EAG rules are rather more concise than the
corresponding AG rules, and the wunderlying context-free syntax s

consequently more visible.

Context=-sensitive errors are treated by EAGs in the same implicit manner
as context-free syntax errors are by C(CFGs. A CFG can generate only
(context-free) error-free strings. Similarly, an EAG can generate only

(context—sensitive) error-free strings,

Each EAG rule acts as a generator for a (possibly infinite) set of
context-free production rules, using a systematic substitution mechanism
similar to that of van Wijngaarden grammars and affix grammars. 1In detail,
this works as follows. To generate a production rule, we must

systematically substitute some suitable attribute for each attribute

variable occurring 1in the rule, and then evaluate all the attribute

expressions.

For example, after systematically substituting {x->ref(int),y->booll}
for ENV and x for NAME in rule (2), and evaluating ENVLNAME], we get the

production rule

<identifier { {x-»ref(int),y=->bool} | ref(int)> ::=

<name | x>

10

This production rule may be applied at some node of a syntax tree (just as

in Figure 1).

If, instead, we try to substitute 2z for NAME, we find that the value

of ENVLNAME] is not defined; therefore no production rule can be generated.

The rest of Figure 1 can be filled in by substituting
{x=>ref(int) ,y—>boo L} for ENV and dint for MODE in rule (1), giving the

production rule

<assignment ¥ {x-»ref(int),y->bool}> ::=
<identifier ¥ {x->ref(int),y-»bool} | ref(int)> “:="

<expression ¥ {x=>ref(int),y=>bool} [int>
The systematic substitution rule makes it impossible to generate from
rule (1) a production rule in which the mode attributes of <identifier> and

<expression> are, for instance, ref(int) and bool respectively.

<assignment Yenv>

<identifier yenv {ref(int)> "o <expression yenv lint>

<name x>
Figure 1. Fragment of a syntax tree in an AG (or EAG) .

env stands for the attribute {x=»ref(int),y->bool}.

——arnrp—

Broken lines leading to each attribute indicate which

other attributes it depends upon.

11

3. Formal definition of extended attribute grammars

An extended attribute grammar is a S5-tuple

§ = <DV, 2, B k>
whose elements are defined in the following paragraphs.

b= (1,bd,...,f1,f2,...) is an algebraic structure with domains b1, b2,
ees, and (partial) functions f1, f2, ... operating on Cartesian products of

these domains. Each object in one of these domains is called an attripute.

V is the vocabulary of G, a finite set of symbols which 1is partitioned

into the nonterminal vocabulary !N and the terminal vocabulary !q'

Associated with each symbol in !_is a fixed number of attribute-positions.

Each attribute-position has a fixed domain chosen from D, and is classified

as either inherited or synthesized.

L, a member of XN’ is the distinguished nonterminal of G.

s

cnvan

We shall assume, without Loss of generality, that Z has no attribute-
positions, and that no terminal symbol has any dinherited attribute-

positions.

B is a finite collection of attribute variables (or simply variables),

Each variable has & fixed domain chosen from D.

An attribute expression is one of the following:

(a) a constant attribute, or
(b) an attribute variable, or

(¢) a function application iﬂfﬁ""’sm)’ where e,, ..., e, are attribute

expressions and f is an appropriate (partial) function chosen from D.

In the examples, we shall use not only functional notation for attribute

expressions but also infix operators, etc., where convenient.

12

Let v be any symbol 1in V. and let v have p attribute-positions whose

domains are 24, ses, 22, respectively. If 34' anws Ep are attributes in

the domains 24, e, 2@’ respectively, then

v ¥ ay ...\?_a_p>

is an attributed symbol. In particular, it is an attributed nonterminal

(terminal) if v is a nonterminal (terminal). Each § stands for either ¥ or
f, prefixing an inherited or synthesized attribute-position as the case may

be.

If s nens gp are attribute expressions whose ranges are included 1in

D

Dyr vees Ep, respectively, then

<¥.¢.§1 e ¥ §p>

is an attributed symbol form.

R is a finite set of production rule forms (or simply rules), each of

o v v mom

the form

F o= EJ casaun fm

where m20, and f, f4, ane, fm are attributed symbol forms, F being

nonterminal.
The language generated by G is defined as follows.

Let F ::=«£1""£m be a rule. Take a variabLe_i which occurs in this

rule, select any attribute a 1in the domain of x. and systematically

substitute a for.i throughout the rule. Repeat such substitutions until no

variables remain, then evaluate all the attribute expressions. Provided

all the attribute expressions have defined values, this yields a production

rule, which will be of the form

13

where m20, andtﬁ,lﬁq, e s Am are attributed symbols, A being an attributed

nonterminal.

A direct production of an attributed nonterminal A is a sequence

£h""Aﬂ of attributed symbols such that A = ﬁ&""ﬁm

v

is a production

rule.

A production of A is either
(a) a direct production of A, or
(b) the sequence of attributed symbols obtained by replacing. in some
production of A, some attributed nonterminal A' by a direct production of

A,

A terminal production of é_is a production of ﬂ'which consists entirely

of (attributed) terminals.

A sentence of G is a terminal production of the distinguished

nonterminal Z. (Recall that Z has no attributes.)
The language generated by G is the set of all sentences of G.

Observe that the distinction between inherited and synthesized
attributes makes no difference to the Llanguage generated by the EAG.
Nevertheless, we believe that this distinction makes a language definition
easier to wunderstand. It 1is also essential to make EAGs suitable for

automatic compiler construction.

Complete examples of EAGs may be found in Appendix A and in [261].

14

4, Extended attributed translation grammars

We have seen that a CFG can be enhanced with attributes to define context-

sensitive syntax. In a similar manner, a syntax-directed translation

schema (SDTS) [13 can be enhanced with attributes and thus express

context-sensitivities of both an input grammar and an output grammar. The

attributed transltation grammars of [14] are in fact an enhancement of

simng SDTSs with attributes, in the style of ordinary AGs.

By analogy with the previous sections, it is straightforward to

generalize SDTSs 1in the style of EAGs. The resulting extended attributed

translation grammars (EATGS) are a powerful tool for specifying the

analysis phase of compilers. (The analysis phase includes Llexical
analysis, context-free syntax analysis, context-sensitive syntax analysis,
and translation into some intermediate language.) A major example of this

can be found in (17].

Consider the while statement of Appendix A. Suppose that we wish to
specify 1its translation 1into some intermediate form which preserves its

structure. In an SDTS this could be specified by the following rule:

<while statement> ::=
“while" <expression> ‘“do” <statement> =>

while <expression> do <statement> od

P o

The notation follows that given in Section 2, with the addition that =>
is used to separate the output part from the input part of each rule.

Underlined symbols are terminals in the output alphabet.

Suppose now that we wish to Llink whigg, gg and gg by the nesting depth
of the <while statement>. This can be done by giving each of the
nonterminals <statement> and <while statement>, and each of the output

symbols, an inherited attribute which 1is 1its Llevel of nesting.

15
Generalizing the above SDTS rule with attributes, we obtain:

<while statement ¥y ENV ¥ LEVEL> ::=
“while’ <expression §y ENV | boolean>
“do" <statement Yy ENV ¥ LEVEL+1> ==3»
<while ¥ LEVEL> <expression>

<do ¥ LEVEL> <statement> <od ¥ LEVEL>

In the interests of modularity, however, we prefer to split each EATG
rule into an input rule (an ordinary EAG rule) and an output rule, in order
to separate the attributes defining context-sensitivities of the dinput
grammar from those defining context-sensitivities of the output grammar.

Our EATG rule will therefore be expressed as follows:

Input rule: <while statement y ENV> ::=

"while" <expression §y ENV | boolean>

“do’ <statement § ENV>
Qutput rule: <while statement y LEVEL> ::=
<while ¥ LEVEL> <expression>
<do y LEVEL> <statement ¥ LEVEL+1>

<od ¥ LEVEL>

In general, we allow each output rule to make wuse of any attribute
variables from the corresponding dnput rule., but not vice versa.
Notwithstanding their separation, the input rule and corresponding output

rule are taken together when applying the systematic substitution rule.

It is straightforward to generalize the formal definition of EAGs in

section 3 to EATGs and we shall not do so here.

In generatized SDTSs (11, it 1is possible to associate with each

nonterminal a number of transtation elements, strings which may be

16

constructed from translation elements of descendants in the derivation
tree. Aho and Ullman also consider generalized SDTSs where the translation
elements are not string—valued. In this case there 1is no difference
between a translation element and a synthesized attribute. Furthermore,
they consider inherited translations. We think, however, that one should
use translation elements only when it is to be stressed that a translation
is actually performed, and use attributes for moving other information

around.

The generalization of SDTSs to EATGs 1in the style of EAGs 1is as
mentioned straightforward., Our reason for treating EATGs in this paper is
to demonstrate their practical use when defining semantics. (In this paper
we take the Lliberty of using "semantics'™ in the narrow sense of defining a
translation.) The use of EATGs allows a high degree of modularity in
defining semantics. The dnput EAG may be used to define the (context-
sensitive) syntax of a language, and the output EAG 1its semantics. This
makes it possible to separate the two parts and to have a clean interface
consisting of corresponding rules interconnected with attributes.
Furthermore, it is possible to have more than one output EAG corresponding
to the same input EAG, and in this way to define different semantics.

Examples of different semantics are:

(a) Defining a translation into an intermediate language suitable for code
generation, In Appendix B, the EAG of Appendix A is enhanced to an EATG

defining such a translation.

(b) Defining a translation into code for a hypothetical machine (perhaps a

real machine if it has a simple structure) intended for interpretation.

(c) befining a translation into some Llambda=notation that may be

"executed” by a Llambda reducer [18]. An example of this is the language
LAMB of SIS L[201, which is a compiler generator based upon denotational

semantics [21]1; SIS also provides a reducer for LAMB.

17

(d) Defining a verification generator by means of an output EAG which has
predicates as attributes and generates a series of verification conditions

£181.

To demonstrate the advantages of EATGs we conclude this section by
showing how example 9.19 of [1] may be written using an EATG. The example
is code generation for arithmetic expressions to a machine with two fast
registers, A and B. The terminals of the output EAG correspond to
instructions of this machine. Most of these symbols have an inherited
register-valued attribute (a|b) and an inherited attribute representing a
storage address of the machine. The multiply instruction, MPY, takes one
operand from B and the other operand from store, and delivers its result in
A. The other instructions should be obvious. The corresponding output
terminals are:

<LOAD YRegister yInteger>

<ADD VRegister yInteger>

<STORE {Register yInteger>

<MPY YInteger>

ATOB ("move contents of A to B")

The nonterminals of the output EAG have two attributes each: an 1inherited
register-valued attribute which specifies where the corresponding sub-
expression should be evaluated, and a synthesized integer attribute
representing the height of the corresponding syntax subtree, The Llatter
attribute is used to keep track of safe temporary locations. More details
about the example and the code-generation strategy adopted may be found in

£11.

We have extended the input EAG with a map-valued attribute which for
each identitier gives 1its address in store. We omit rules for defining

this attribute since this is fully demonstrated in Appendix A.

We have taken the liberty of adding a nonterminal to the output EAG

18

which is not present in the input EAG. This should cause no conceptual

difficulty.

Rules of input EAG

(1) <prog> ::= <expr V{}>

It

(2) <expr VERNV> <expr VENV> "+" <term VENV>

(3) | <term VENV>

(4) <term VENV> <term YENV> "% <factor YENV>
(5) | <factor VENV>
(6) <factor VYENV> ::= "(" <expr yENV> ‘)"

(7) | <name [NAME>

Rules of output EAG

(1) <prog> ::= <expr Va fH>

(2) <expr VYREG Tmax (H1.H2)+1> ::=
<term VYa TH1> ";" <STORE Va YyH2> “;*
<expr YREG TH2> ";" <ADD YREG yH2>

(3) <expr YREG TH> ::= <term YREG TH>

(4) <term YREG Tmax (H1,H2)+1> ::=
<factor ya TH1> ";" <STORE Va yH2> “;~
<term yb TH2> ";" <MPY yH2> <move YREG>

(5) <term YREG TH> ::= <factor YREG [H>

(6) <factor YREG fH> ::= <expr YREG TH>

(7) <factor YREG 1> ::= <LOAD YREG YENVLNAMEI>

<move ya> <empty>

<move yb> ";'" ATOB

19

5. Parsing and attribute evaluation

5.1. Parsing and attribute evaluation with AGs

Since AGs are a straightforward extension of C(FGs, a corresponding
extension of context-free parsing techniques to handle AGs 1is quite
feasible. The only new problem concerns the order of evaluation of the

attributes.

Some AGs contain circularities, 1i.e. situations 1in which a set of

attributes (not necessarily all occurring 1in one rule) depend upon one
another circularly. Circularity implies that there is no order in which
all the attributes can be evaluated. Fortunately, circularities can be
detected automatically from the grammar LC[107. We must restrict our

attention to grammars containing no circularities.

Consider an AG rule of the following form, stripped of its constraints

and evaluation rules:
N A P {11V...T...> ceeenaan. <me...¥...>

An AG is L-attributed if and only if, in every such rule, and for every

jf1,...,ﬂ, no inherited attribute of v, depends on a synthesized attribute

of any of{li, cess

v
—m

In an L-attributed AG, all the attributes can be evaluated in a single
left-to-right pass over the syntax tree of a sentence [2, 14]. For each

Vie first its inherited attributes are evaluated (using the dinherited

attributes of‘l and the synthesized attributes of Var anes Xﬁ_1), then the

subtree under Vi is traversed, resulting in the evaluation of the

synthesized attributes of v.. Finally any constraints are checked, and the

20

synthesized attributes of v are evaluated (using the inherited attributes

of v and the synthesized attributes of v,, ""-!m)’ thus completing the

traverse of the subtree under_l.

If the CFG underlying the L-attributed AG is deterministic, the
attributes can 1in fact be evaluated while the sentence is being parsed,
whether or not a syntax tree is constructed. A variety of one-pass parsing
methods for L-attributed AGs have been proposed or implemented; these
methods include top-down [3, 11, 121, bounded-context [4], precedence [13],

and LR L24].

Unfortunately, many programming languages cannot be defined naturally by
L-attributed AGs. (For example, 1in most programming languages it is
permissible for a reference to an identifier or Label textually to precede
its declaration or definition.) Fortunately, Bochmann has shown that for a
large class of AGs, all the attributes can be evaluated in a fixed number
of Lleft-to-right passes over a syntax tree, the number of passes being
easily computed from the grammar [2]. The first of these passes may
coincide with the parsing pass. Typical programming languages require 1, 2

or 3 passes,

A still more general solution is described in [15]. Lorho's system
DELTA delays determining the order of evaluation of attributes until after
parsing each individual program (whereas in Bochmann's system the order of
evaluation 1is determined by the constructor). DELTA accepts any AG which

contains no circularities.

5.2. Extension to extended attribute grammars

The suitability of AGs for parser construction having been established, the

simplest way to establish the same property for EAGs is to show how, and in

21

what circumstances, an EAG may be converted automatically into an

equivalent AG.

The following examples, all taken from Appendix A, illustrate the

necessary transformations.,
Example 1.

<identifier ¥ ENV | ENVLNAME].mode> ::=

19 <name | NAME>

Here we have an attribute expression, 'ENVINAME].mode', in an applied
position. This causes no problem: we just replace the expression by
a new variable, say MODE, and insert an evaluation rule which makes

MODE equal to ENVILNAMEI.mode:

<identifier ¥ ENV | MODE> ::=
<name | NAME>

evaluate MODE <€~ ENVLNAME].mode

Example 2.

<assignment ¥ ENV> ::=
3 <variable y ENV | TYPE> “:="

<expression ¥y ENV | TYPE>

Here the variable TYPE occurs in two defining positions. To ensure
that the wvariable receives an unique value, in accordance with the
systematic substitution rule, we replace one occurrence of TYPE by a

new variable, say TYPE1, and insert the constraint ‘TYPE=TYPE1':

<assignment ¢ ENV> ::=
<variable y ENV [TYPE> ‘="

<expression ¥ ENV | TYPE1>

where TYPE = TYPET

22
Example 3.

<variable Yy ENV | TYPE> ::=
(18d) <variable ¥ ENV | array(LB,UB,TYPE)>

"[" <expression ¥y ENV | integer> "1"

Here we have two defining positions occupied by attribute expressions

which are not simple variables.

The constant attribute 'integer' can be replaced by a new variable,

say TYPE1, and the constraint 'TYPEl=integer' inserted.

The synthesized attribute of <variable> (on the right-side of the
rule) 1is more difficult. We know that this attribute must be in the

domain

Type = (boolean | integer |

array(Integer,Integer,Type))

but it will be necessary at compile-time to check that the attribute
is indeed of the form array(LB,UB,TYPE), and thereby deduce the

values of LB, UB and TYPE. Now the composition function
array : Integer X Integer X Type -> Type

has a partial inverse function
array'—1 : Type =>» Integer X Integer X Type

array—1(1) = if (exist L,U,T")(T=array(L,U,T"))

then (L,U,T"

else undefined

Thus we can replace the attribute expression ‘array(LB,UB,TYPE)' by a
new variable, say TYPEZ2, and insert an evaluation rule invoking the

inverse function array-1,

23

<variable ¥ ENV T TYPE> ::=
<variable ¥ ENV | TYPE2> ,
"[" <expression ¥y ENV [TYPET> “J“
where TYPE1 = integer

evaluate (LB,UB,TYPE) <- array” | (TYPE2)

Clearly the Llast transformation will work only if the attribute
expression in the defining position 1is composed only of invertible
functions. Among the useful functions which do have (partial) inverses are

the composition functions for Cartesian products and discriminated unions.

An EAG is well=formed if and only if

(a) every variable occurs in at least one defining position in each rule in

which it is used; and

(b) every function used in the composition of an attribute expression in a

defining position has a (partial) inverse function.

These conditions do not seem to be too restrictive 1in practice. For

example, the EAG in Appendix A is well-formed.

Any well-formed EAG can be converted into an equivalent AG by repeatedly

applying the following transformations to each rule of the EAG.

(T1) uWherever an applied position contains an attribute expressionlg which
is not a simple variable, choose some new variable x (i.e. one which
is not already used in the rule) whose domain is the same as that of
the applied position, replace e by x, and insert the evaluation rule

'evaluate x <€~ e',

e a——

(T2) Wherever a variable x occurs in n+1 defining positions (n>0), choose

some new variables Xqo =enr X, whose domains are the same as that of

x, use them to replace all but one defining occurrence of x, and

24

insert the constraint 'where x=x1=...é§n'.

(T3) Wherever a constant attribute ¢ occurs in a defining position, choose
a new variable x, replace ¢ by x, and insert the constraint ‘'where

=c'.

(T4) Wherever a function application jﬁqu"'&in) occurs 1in a defining

position, where Xqs ==+, X, are all wvariables, choose some new

variable x, whose domain is the same as the range of f, replace
f(X,pean,X) by x, and 1insert the evaluation rule ‘evaluate
—_——]f ’n Ak Pidbiuhabaebit

(54,...{50) <€~ f—1

x'. (Such a function jf1 must exist, by

condition (b) for well-formedness of an EAG.)

Now any parsing technique for AGs can be adapted to well-formed EAGs as
well. For example, we can define an EAG to be L-attributed if and only if
it is well-formed and the above transformations convert it into an AG which
is L=attributed. The EAG 1in Appendix A is not L-attributed, but if we
apply Bochmann's analysis we may deduce that all 1its attributes can be

evaluated in two passes.

5.3. Rule splitting

2] and [24] mention the possibility of making the attributes actually
influence the behaviour of the parser, rather than just being evaluated
during or after context-free parsing or signalling a context-sensitive
error if a constraint 1is not satisfied. A typical example of this

possibility is rule-group (10) from Appendix A:

<actual parameter ¥y ENV ¥ value(TYPE)> ::=
(10a) <expression y ENV | TYPE>

<actual parameter ¥y ENV ¥ var(TYPE)> ::=

(10b) <variable ¥ ENV | TYPE>

Here the underlying CFG is actually ambiguous, but the EAG is not, since no
production rule generated from (10a) can ever have the same left-side as
one generated from (10b). An inspection of the second inherited attribute
of <actual parameter>, if known at parse-time, would allow one of the

alternative right-sides to be rejected immediately.

In general, it is undecideable whether an ambiguity (or an LL or LR
conflict) dis resolved by rule-splitting. In particular cases involving
attributes whose domains are discriminated unions, however, it is feasible

automatically to detect and exploit rule-splitting.

To illustrate how rule splitting might work, here is a fragment of a
recursive-descent parser, constructed from rule-group ((10), in which
inherited attributes are transcribed as value-parameters and 1inherited

attributes are transcribed as result-parameters:

procedure actualparameter (ENV : Environment;

PTYPE : Type)

N8

var TYPE : Type;
begin

if PTYPE is of the form value(T) then

begin
expression (ENV, TYPE);

if TYPE # value_1(PTYPE) then context-sensitive error

end
else
begin
variable (ENV, TYPE);

1

if TYPE # var '(PTYPE) then context=sensitive error

end

end;

26

procedure expression (ENV @ Environment;

var TYPE : Type);

procedure variable (ENV : Environment;
var TYPE : Type);

The implementation of rule splitting in an LR parser is discussed in [24].

In the context of the complete grammar of Appendix A, unfortunately,
this rule splitting cannot be exploited since Bochmann's analysis shows
that the second attribute of <actual parameter> will be one of those
evaluated during the second pass, i.e. it will not be available during the
parsing pass. This is a genuine implementation problem, however, not a
weakness of the formalism itself. Indeed, the possibility of detecting the

problem automatically may be regarded as a triumph for the formalism,

The technique of rule splitting is rather wuseful in ad-hoc compilers
where the source language is most naturally described by an ambiguous CFG
(as in our example). As we have seen, EAGs allow an effective
formalization of rule splitting. Proper technigues for exploiting this
will usefully enhance the power of automated compiling techniques; however,

further research is needed to develop such technigues.

27

6. The Aarhus compiler writing system

An experimental compiler writing system, NEATS, has been implemented at
Aarhus by Poul Jespersen, Michael Madsen and Hanne Riis [9]1. NEATS accepts
an EATG consisting of one input EAG and one output EAG, and constructs a

translator according to this EATG.

The attribute domains available in NEATS are essentjally those defined

in Appendix A.

The constructed translator translates an input string 1into an output
string, and if this is sufficient for the application then the user need

supply no more than the EATG.

For most practical purposes, however, the user may wish to do more,
Instead of generating an output string, the translator may be made to call
a procedure each time an output symbol is to be generated. The output
symbol and its associated attributes will then be passed as parameters to
the procedure. This will be the situation when, for example, the EATG
defines the analysis phase of a compiler, and the user himself programs the

synthesis (code generation).

NEATS 1is programmed in Pascal and is an extension of the BOBS-system,
which is an LALR(1) parser generator [5]. Consequently, the CFG underlying

the EATG must be LALR(1).

NEATS will accept any non-circular EATG. During parsing, the translator
builds a directed acyclic graph defining the order of evaluation of the
attributes. After parsing, a recursive scan of this graph will evaluate
all the attributes. The parse tree itself is not stored. The reader is
referred to [91 and [18]1 for details of NEATS and the AG constructor

algorithm adopted.

The practical value of this algorithm has to be investigated further; it

28

is reasonably fast but uses a lot of store. The algorithm adopted is not
essential for the use of EATGs; any more practical AG constructor algorithm
could equally well have been adopted. However, the system is intended for
experiments, so it was decided to have an implementation accepting all
non-circular AGs rather than some more Llimited subclass such as L-

attributed AGs.

The experiments to be done include the following:

(a) to test the system with some large grammars to measure its usefulness

in generating parts of a production compiler;

(b) to use the system in teaching:

(c) to modify the CF parser constructor (the BOBS-system) to accept all
LRC1) grammars, and certain ambiguous ones in order to experiment with

rute-splitting;

(d) to make it possible to define a sequence of translations;

(e) to investigate the possibilities and requirements for adding new

domains and thus extend the fixed set of domains available in NEATS.

The present experiments are very promising, and we acknowledge the work of

Jespersen, Madsen and Riis in producing this system.

29

7. Conclusions

We have introduced two new formalisms, the EAGs and the EATGs, which we
believe come close to reconciling two conflicting ideals. On the one hand,
these grammars are concise and readable, and therefore may be capable of
making formal Language definitions more widely acceptable than hitherto.

On the other hand, they are well suited to automatic compiler construction.

The advantages of EAGs and EATGs stem from their combination of the best
features of other formalisms with some new ideas:

~ the explicit attribute structure and the distinction between inherited
and synthesized attributes;

- the visibility of the underlying context-free syntax;

- generative definition of Llanguages (like context-free and van
Wijngaarden grammars), rather than algorithmic definition (like AGs);

- the implicit and concise specification of context-sensitivities by
means of attribute expressions in applied and defining positions;

- the free choice of domain types.

We have found in practice that EAGs and EATGs are straightforward to
write. Complete definitions of real programming languages can be found in

£171 and [261.

The abstract data types (partial maps, discriminated unions, etc.) used
in the example are very well suited to describing attributes, in particular
the "environment"” attributes in a programming Llanguage. Certainly, the
same attributes can be represented by strings, as in van Wijngaarden
grammars (221 or extended affix grammars [23], but this Lleads to some
artificiality; compare, for example, rule (19) in Appendix A with the
corresponding syntax in [22]. Likewise, the tree structure of "objects" in

Vienna definition language is not always the most natural structure.

Evidently, the definitive power of EAGs and EATGs rests largely on the

30

power of the functions wused to compose attribute expressions. These
functions may be arbitrarily powerful, and their definition is not part of
the formalism itself. One could abuse this power by making the functions
do most of the work of language definition - in the extreme case, using a
single function which accepts or rejects a complete program - but obviously
this would help no-one. We have avoided any such cheating, in our
examples, by using only well-known abstract domain types and functions;
grammatically defined predicates (e.g. rule-group (17) in Appendix A) can

be used to avoid inventing special-purpose functions.

We have briefly described an experimental compiler writing system which
has been implemented at Aarhus. This system accepts a large subclass of
EATGs, and it demonstrates the feasibility of using an EATG to automate the
construction of the analysis phase of a compiler. It is being used to

investigate the practicality of this approach and some other open problems.

The automation of the synthesis (code-generation) phase of a compiler
has not been treated in this paper, but AGs and EAGs have an application

here too,., e.g. [6].

31

Appendix A. A complete example of an extended attribute grammar

To support our claim that EAGs are well suited to Llanguage definition,
we give here a grammar completely defining the syntax of a small but
realistic programming language. The language chosen is a subset of Pascal
£28] containing the following features:=-

- boolean, integer, and array data types;

- variable declarations;

- procedure declarations, with value- and variable-parameters;

- assignments, procedure calls, compound-, if- and while-statements;

- expressions involving integer and relational operators;

- the usual Pascal block structure, but no requirement of declaration-

before~-use for procedures.

A.1. Domain types

Apart from certain base types, we shall use domains of the following types,

which may be recursive. They are based on the abstract data types of [7].

Cartesian products

If 14, ceey In are domains and 9qr ==vs g, are distinct names, then

P = (Qq:lﬁ; cvese; g2)

T
-

is a Cartesian product with field selectors g7 wenr Gy

For every 2 in 1&, senss, and every 2, in Iﬂ, Qi1""4in) is in P.

o o e

This is the composition function for the Cartesian product P.

For every p in P, and for every i=1,e000n, pug. is in Ij' and denotes

the‘ith field of.g.

32
Discriminated unions

If I4, cns, Iﬂ are domains (or Cartesian products of domains) and .g1,

cre, g, are distinct names, then

is a discriminated union with selectors 94' avee 9o- If any Ij is void,

then we abbreviate _gi§11) to gﬁ.

For every i=1,...,n, and for every a; in Ij, gd(ii) is in U. These g.

are the composition functions for the discriminated union U.

Maps
If D and R are domains, then
mo= DR
is the domain of (partial) maps from D to R.

For every d in D and m in M, mLd]l either is in R or 1is undefined.

This is the application function for the map M.
{} denotes the map defined at no point in D.

If g4, cevs gﬂ are distinct elements of D and Ty» sens T, are in R, then

£91_>Iﬂ""'9n_?£n} is in M, and denotes a map defined at points 94' wees

d _ and nowhere else.
N

For each m, and msy in M, EJUEZ is the disjoint union of Eﬁ and ﬂe:
mquZ is wundefined if, for any d in D, both m,[d] and.gztgﬂ are defined;

otherwise

(manz)QgJ = if mqtgﬂ is defined
then maLdl

else gztg;

33
For each m, and msy in M, m4\52 is the map m overridden by ms; i.e.

1

(EJ\EZ)EEJ = if Eeﬁgﬂ is undefined

then m,Ldl

Iqts

else EZEEJ

Sequences
If D is a domain, then
s = b
is the domain of sequences of elements of D.

L1 denotes the empty segquence.

If‘i is in_§ and d is in b, then gfg_ denotes the sequence obtained by

prepending d to s.

A.2. Domain definitions

Environment = Name -» (declarationdepth:lLevel; mode:Mode)

Mode (variable(Type) |
formal (Parameter) |

procedure(Plan))

Plan = Parameter*
Parameter = (value(Type) | var(Type))
Type = (boolean | integer |

array(Integer,Integer,Type))

(equal | unequal | plus | minus)

Operator

lLevel

Integer

Name

A.3. Vocabulary

54

Integer

the domain of integers

the domain of character strings denoting names

Here is a list of those terminal symbols which have attributes, showing the

types and domains of their attribute-positions.

have base domains.)

(ALL are synthesized and

name

integer number

!
!

Name

Integer

ALL other terminals are written enclosed in quotes ("...'").

Here is a complete Llist of nonterminal symbols, showing

actual parameter
actual parameter Llist
adding operator
assignment

block

compound statement
constant

expression

formal parameter

formal parameter Llist
identifier

if statement

domain of each attribute-position, and also the

defining each nonterminal.

- e € € S e - € ey - -

Environment § Parameter
Environment ¥ Plan

Operator

Environment

Level ¥ Environment ¥ Environment
Environment

Type

Environment T Type

Level | Parameter | Environment

Level T Plan | Environment
Environment [Mode

Environment

the

10

16

20

14
"
26
25

19

type

and

number of the rule-group

35

procedure call ¥ Environment 4
procedure declaration V¥ Level ¥ Environment { Environment 24

procedure declarations ¥ Level ¥ Environment { Environment 23

program 1
relational operator 1 Operator 15
serial ¥ Environment 6
simple expression V¥ Environment | Type 12
statement ¥ Environment 2
term V Environment | Type 13
type T Type 27
variable V¥ Environment | Type 18
variable declaration { Level | Environment 22
variable declarations V¢ Level [Environment 21
while statement ¥ Environment 8
where comparable vV Type Vy Type 17

The distinguished nonterminal is program.

A.4. Attribute variables

Here is a complete Llist of attribute variables used in the rules, together

with their domains.

ENV, DECL, DECLS,

NONLOCALS, FORMALS, VARS, PROCS : Environment ;

MODE : Mode ;
PLAN : Plan ;
PARM : Parameter ;
TYPE, TYPET, TYPEZ : Type ;

oP : QOperator ;

36

DEPTH : Level ;
LB, UB, VALUE : Integer ;
NAME : Name

A.5. Rules

Comments are enclosed in (*x...%). These are wused primarily to draw
attention to some of the context-sensitive constraints enforced by the

grammar.

(x Most nonterminals have an inherited attribute representing their

"environment'. %)

(x PROGRAMS *)
<program> ::=

“ <block ¥y O ¢ {3 ¥ > "."

(* STATEMENTS *)

<statement } ENV> ::=

(2a) <assignment y ENV> |

(2b) <procedure call y ENV> |
(zc) <compound statement ¥ ENV> |
2d) <if statement ¥ ENV> |

(2e) <while statement § ENV>

<assignment § ENV> ::=
(3 <variable y ENV | TYPE> ":="

<expression y ENV [TYPE>

(4)

(5

(6a)

(6b)

(7

(8)

37

<procedure call ¥ ENV> ::=
<identifier ¥ ENV | procedure(PLAN)>

“(" <actual parameter Llist ¥y ENV ¥ PLAN>

<compound statement y ENV> ::=

“begin" <serial § ENV> ‘"end”

<serial ¥ ENV> ::=
<statement ¥ ENV> |

<serial ¥ ENV> ";" <statement ¥ ENV>

<if statement § ENV> ::=
"if'" <expression ¥ ENV | boolean>
“"then" <statement y ENV>

"else'" <statement Yy ENV>

<while statement ¥ ENV> ::=
“while'" <expression §y ENV | boolean>

“do" <statement ¥ ENV>

(* ACTUAL PARAMETERS *)

(9b)

(10a)

(100)

<actual parameter list ¥ ENV y PARMTLI> ::=
<actual parameter § ENV ¥ PARM>

<actual parameter List ¢ ENV § PARM PLAN> ::=
<actual parameter ¥ ENV ¥ PARM> " ,"

<actual parameter Llist ¥ ENV { PLAN>

<actual parameter ¥y ENV ¥ value(TYPE)>

<expression § ENV | TYPE>

<actual parameter y ENV y var(TYPE)>

<variable ¥ ENV | TYPE>

Il) "

(* The actual parameters in a procedure call must correspond, left

to

38

right, with the formal parameters in the procedure declaration, as
summarized 1in the second attribute of <actual parameter List>.
Corresponding to a value-parameter, the actual parameter must be
an expression of the same type (10a). Corresponding to a

variable-parameter, the actual parameter must be a variable of the

same type (10b). *)

(* EXPRESSIONS *)

“11a)

(11b)

(12a)

(12p)

(13a)
(13b)

(13¢)

(14a)

(14b)

<expression ¥ ENV | TYPE> ::=
<simple expression ¥y ENV | TYPE>
<expression ¥ ENV T boolean> ::=
<simple expression y ENV [TYPE1>
<relational operator | OP>
<simple expression ¥ ENV | TYPEZ2>

<where comparable Yy TYPE1 ¥ TYPE2>

<simple expression { ENV | TYPE> ::=
<term Yy ENV | TYPE>
<simple expression ¥ ENV | integer> ::=
<simple expression ¥ ENV | integer>
<adding operator | OP>

<term ¥ ENV [integer>

<term Yy ENV | TYPE> ::=
<constant | TYPE> |
<variable ¥ ENV [TYPE> |

“(* <expression y ENV | TYPE>)

il

<constant | boolean>

“false" |

"true"

<constant | integer>

(14c¢)

(15a)

(15b)

(16a)

(16b)

(17a)

(170)

39

<integer number | VALUE>

(* Each of <expression>, <simple expression>, <term>, <constant>

<variable> has a synthesized attribute representing its type.

<relational operator { equal> ::=
L. 13
<relational operator } unequal> ::=

ﬂ<>ll

<adding operator | plus>
ll+ll

<adding operator | minus> ::=

<where comparable y integer ¥ integer> ::
<empty>

<where comparable ¥y boolean ¥ boolean>

<empty>

(* The nonterminal <where comparable> acts as a predicate, since

and

*)

all

its terminal productions are empty; 1t serves to enforce type

compatibility. #*)

(* VARIABLES AND IDENTIFIERS *)

(18a)
(18b)
(18¢)

(18d)

<variable ¥y ENV | TYPE> ::=
<identifier ¥ ENV T variable(TYPE)> |
<identifier ¥ ENV | formal(value(TYPE))> |
<identifier ¥ ENV | formal(var(TYPE))> |
<variable ¥ ENV | array(LB,UB,TYPE)>

“['" <expression y ENV | integer> "1"

(* (18b) and (18c) allow value- and variable-parameters to be

used

19

40

Like ordinary variables. (18d) allows a variable of array type to

be subscripted by an integer expression. *)

<identifier y ENV | ENVINAME].mode> ::=

<name | NAME>

(* <identifier> has a synthesized attribute representing 1its mode,

which 1is determined by looking up the name of the identifier in

the "environment'. *)

(* DECLARATIONS *)

@20

<block ¥ DEPTH ¥ NOMLOCALS { FORMALS> ::=

<variable declarations ¥ DEPTH | VARS>
<procedure declarations y DEPTH
V NONLOCALS\ (FORMALSUVARSUPROCS) T PROCS>
<compound statement ¥} ENV

¥ NOMLOCALS\ (FORMALSUVARSUPROCS)>

(* The first attribute of <block> is its depth of nesting. <block>

also has two 1inherited 'environment" attributes, representing
nonlocal identifiers and Llocal formal-parameter identifiers
respectively. The latter attribute (FORMALS) is disjointly united
with the Local variable identifiers (VARS) and Llocal procedure
identifiers (PROCS) to form the set of Llocal identifiers
(FORMALSUVARSUPROCS), which then overrides the nonlocal
identifiers to form the "environment"” inside the block
(NONLOCALS\ (FORMALSUVARSUPROCS)). The use of the disjoint-union
operator U ensures that no identifier may be declared more than
once in the same block., (20) makes this inner "environment" apply
to the Llocal procedure declarations as well as to the compound

statement, allowing each procedure to be called by any procedure

declared in the same block; it 1is this rule which implies a

41

minimum of two passes for attribute evaluation in this EAG, *)

<variable declarations ¥ DEPTH [DECL> ::=
(21a) "var"
<variable declaration { DEPTH | DECL> ;"
<variable declarations ¥ DEPTH | DECLSUDECL> ::=
(210 <variable declarations ¥ DEPTH | DECLS>

<variable declaration ¥ DEPTH | DECL> ;"

<variable declaration ¥ DEPTH

T {NAME=->(DEPTH,variable(TYPE))}> ::

22 <name | NAME> ‘“:* <type [TYPE>

(* PROCEDURES %)

<procedure declarations y DEPTH ¥ ENV | {3> ::=

(23a) <empty>

<procedure declarations y DEPTH ¥ ENV | DECLSUDECL>
(23b) <procedure declarations y DEPTH ¥ ENV | DECLS>

<procedure declaration ¥ DEPTH ¥y ENV | DECL> ;"

<procedure declaration ¥ DEPTH { ENV
I {NAME->(DEPTH,procedure(PLAN))}> ::=

(24) "procedure" <name [NAWME> (-
<formal parameter Llist ¥ DEPTH+1 } PLAN T FORMALS>

")" ;" <block ¥ DEPTH+1 § ENV ¥ FORMALS>

<formal parameter Llist ¥ DEPTH T PARM"CI | DECL> ::=
(25a) <formal parameter Y DEPTH | PARM | DECL>

<formal parameter Llist ¥ DEPTH | PARM"PLAN [DECLSUDECL> ::=
(25b) <formal parameter y DEPTH | PARM | DECL> ";"

<formal parameter list ¥ DEPTH [PLAN | DECLS>

(* The second attribute of <formal parameter List> is a sequence

of

the modes of the formal parameters, to be used in checking

parameter lists.

42

established by the formal parameter Llist. *)

<formal parameter § DEPTH | value(TYPE)

(26a)

<formal parameter ¥ DEPTH] var(TYPE)

(26b)

(* TYPES *)

<type
(27a)

<type
(270)

<type

(27¢)

1 {NAME=>(DEPTH,formal (value(TYPE)))}> ::

<name [NAWME> “:* <type [TYPE>

1 {NAME=>(DEPTH,formal(var(TYPE)))}> ::

1

var'" <name | NAME> ":"

[boolean>

"boo Lean"”

I integer>
"integer"

{ array(LB,UB,TYPE)> ::=

"array'" “['" <integer number | LB>

<integer number | UB>

<type [TYPE>

h‘.']u

atofdl

Wi ‘i
.w

<type | TYPE>

actual

Its third attribute is the partial “environment"

Appe

Here we enhance the EAG of Appendix A to

ndix B.

43

An example of an EATG

an

EATG which defines the

translation of the programming language into an intermediate lLanguage which

has

Much more could be done, but for the

the following features:

expressions are in post

each identifier is made uniqgue by attaching to it the depth of

fix form;

of the block where it was declared;

control structures are completely bracketed, and the Llevel

structure nesting is attached to each bracket.

ourselves to the above.

BI1.

Additional vocabulary

sake of

nesting
of control
simplicity we restrict

Here is a list of those output terminal symbols which have attributes.

declare

dyadic

index

name

number

et e e VAR

od

procedure

store

- e e e e e - e e e e -

e o

Level ¥ Name ¥ Mode
Operator ¥ Type ¥ Type
Level

Level

Level

Level

Integer Yy Integer
Level ¥ Name

Level

Level

Level ¥y Name

Type

44

then V Level

while ¥ Level

Here is a list of nonterminal symbols, showing the type and domain of
each attribute-position wused 1in the output grammar. Nonterminals which

have no such attribute-positions are omitted.

compound statement V Level
if statement ¥ Level
serial ¥ Level
statement V Level
while statement ¥ Level

B.2. Additional attribute variables

LEVEL : Level

B.3. Output rules

For each input rule in Appendix A we give here only the corresponding
output rule, For the sake of brevity, we omit output rules which contain
no output symbols, and in which there is no reordering of the nonterminals.,

and in which attributes are merely copied.

(* PROGRAMS *)

<program> ::=

(N program <block> endprogram

(* STATEMENTS *)

<assignment> ::=

(3) <variable> <expression> <store y TYPE>

<procedure call> ::=

(4) <actual parameter Llist> <identifier> call

<if statement y LEVEL> ::=
)] <if ¥ LEVEL> <expression>
<then ¥y LEVEL> <statement ¥ LEVEL+1>
<else ¥y LEVEL> <statement ¥ LEVEL+1>

<fi ¥ LEVEL>

<while statement y LEVEL> ::=
(8 <while § LEVEL> <expression>
<do ¥ LEVEL> <statement § LEVEL+1>

<od ¥ LEVEL>

(* Each of <statement>, <compound statement>,

<if statement> and

<while statement> has an inherited attribute which is its level of

control structure nesting. The level of nesting starts at 0 in

each block = rule (20). =*)

(* ACTUAL PARAMETERS *)

<actual parameter> ::=

(10a) <expression> valueparameter

<actual parameter> ::=

(10b) <variable> varparameter

(* EXPRESSIONS *)

<expression> ::=

46

11b) <simple expression> <simple expression>

<dyadic ¥ OP ¥y TYPET ¥ TYPE2>

<simple expression> ::=
(12b) <simple expression> <term>

<dyadic ¥ OP ¥ integer ¥ integer>

<constant> ::=
(14a) false |

(14b) true

<constant> ::=

(14¢) <number ¥ VALUE>

(* VARIABLES AND IDENTIFIERS %)

<variable> ::=

(18d) <variable> <expression> <index y LB ¥ UB>
<identifier> ::=

9 <name ¥ ENVLNAME].declarationdepth ¥ NAME>

(* DECLARATIONS *)

<plock> ::=

2m <variable declarations> <procedure declarations>

<compound statement y 0>

<variable declaration> ::=

(22> <declare ¥ DEPTH ¥ NAME ¥ variable(TYPE)>

<procedure declaration> ::=
(24) <procedure { DEPTH ¥y NAME>

<formal parameter list> <block>

endprocedure

47

<formal parameter> ::=
(26a) <declare § DEPTH ¥ NAME ¥ formal(value(TYPE))>
<formal parameter> ::=

(26b) <declare ¥ DEPTH y NAME y formal(var(TYPE))>

48

References

10.

Aho, A.V., Ullman, J.D. The Theory of Parsing, Translation and
Compiling. Vol. 1: Parsing, 1972. Vol. 2: Compiling, 1973. Englewood

Cliffs (N.J.): Prentice Hall

Bochmann, G.V.: Semantic evaluation from Left to right. Comm. ACM 19,

55=62 (1976)

Bochmann, G.V., Ward, P.: Compiler writing systems for attribute
grammars. Département d'Informatique, Université de Montréal,

Publication #199, July 1975

Crowe, D.: Constructing pnarsers for affix grammars. Comm. ACM 15,

r28-734 (1972)

Eriksen, S.H., Kristensen, B.B3., Madsen, 0.L.: The BOBS-system. Aarhus

University, Report DAIMI PB-71 (revised version), 1979

Ganzinger, H., Ripken, K., Wilhelm, R.: Aotomatic generation of
optimizing multipass compilers. In: Proc. 1IFIP 77 Congress, pp.

535-540. Amsterdam: North-Holland 1977

Hoare, C.A.R.: Notes on data structuring. In: Structured Programming
(0.-J. Dahl, E.W. Dijkstra, C.A.R. Hoare), pp. 83-174. London-New

York: Academic Press 1972

Hoare, C.A.R., Wirth, N.: An axiomatic definition of the programming

language Pascal. Acta Informatica 2, 335-355 (1973)

Jespersen, P., Madsen, M., Riis, H.: NEATS, New Extended Attribute

Translation System. Aarhus University, 1979

Knuth, D.E.: Semantics of context-free languages. Mathematical Systems

Theory 2, 127-145 (1968

1.

12.

13.

14.

15.

16.

19.

49

Koster, C.H.A.: Affix grammars. In: ALGOL 68 Implementation (J.E.

Peck, ed.), pp. 95-109. Amsterdam: North=Holland 1971

Koster, C.H.A. A compiler compiler. HMathematisch Centrum, Amsterdam,
Report MR127 (November 1971). Also: Using the CDL compiler compiler.
In: Compiler Construction, an Advanced Course (F.L. Bauer, J. Eickel,
eds.), pp. 366-426. Lecture Notes 1in Computer Science, Vol. 21.

Berlin-Heidelberg=~New York: Springer 1974

Lecarme, 0., Bochmann, G.V.: A (truly) wusable and portable compiler
writing system. In: Proc. IFIP 74 Congress, pp. 218-221. Amsterdam:

North-Holland 1974

Lewis, P.M., Rosenkrantz, D.J., Stearns, R.E.: Attributed translations.

J. Computer and System Sciences 9, 279-307 (1974)

l.orho, B.: Semantic attributes processing in the system DELTA. In:
Methods of algorithmic Llanguage implementation (C.H.A. Koster, ed.),
pp. 21-40. lecture Notes 1in Computer Science, Vol. 47. Berlin-

Heidelberg-New York: Springer 1977

Madsen, O.L.: On the wuse of attribute grammars 1in a practical

translator writing system. Aarhus University, Master thesis, July 1975

Madsen, 0.L., Kristensen, B.8., Staunstrup, J.: Use of design criteria
for intermediate languages. Aarhus University, Report DAIMI PB-59,

August 1976

Madsen, 0.L.: On defining semantics by means of extended attribute

grammars. Aarhus University, Report DAIMI IR-14, September 1979

Marcotty, M., ledgard, H,F., Bochmann, G.V.: A sampler of formal

definitions. Computing Surveys 8, 191-276 (1976)

Mosses, P.: SIS, Semantics Implementation System. Aarhus University.

21.

22.

23.

24-

25.

26.

2‘7 -

50

Report DAIMI MD-3G, 1979

Tennent, R.D.: The denotational semantics of programming Llanguages.

Comm. ACM 19, 437-453 (1976)

Van Wijngaarden, A., Mailloux, B., Peck., J.E.L., Koster, C.H.A.,
Sintzoff, M., Lindsey, C.H., Meertens, L.G.L.T., Fisker, R.G.: Revised
Report on the Algorithmic Language ALGOL 68. Acta Informatica 5, 1-236

(1975); Berlin-Heidelberg-New York: Springer 1976

Watt, D.A.: Analysis-oriented two-level grammars. University of

Glasgow, Ph.D. thesis, January 1974

Watt, D.A.: LR parsing of affix grammars. Computing Science

bepartment, University of Glasgow, Report 7, August 1974

Watt, D.A.: The parsing problem for affix grammars. Acta Informatica

8, 1-20 (1977)

Watt, D.A.: An extended attribute grammar for Pascal. SIGPLAN Notices

14, 2, 60-74 (1979)

Wilner, W.T.: Declarative semantic definition. Stanford University,

Report STAN-CS~-233-71, 1971

Wirth, N.: The programming language Pascal. Acta Informatica 1, 35-63

(1971

