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ABSTRACT

In many systems a number of different processes have a similar structure
and behaviour. To shorten system description and system analysis it is
desirable to be able to treat such similar processes in a uniform and
succinctway. In this paper it is shown how Petri nets can be generalized
to allow processes to be described by a common subnet, without losing
the ability to distinguish between them. Our generalization, called
coloured Petri nets, is heavily influenced by predicate/transition-nets
introduced by H.J. Genrich and K. Lautenbach. Moreover our paper
shows how the invariant-method, introduced for Petri nets by K. Lauten-

bach can be generalized to coloured Petri nets.




1. INTRODUCTION

Petri nets, [ 4], [5], [6], have proved to be a valuable tool in the
description and analysis of systems with concurrent actions. The
purpose of this paper is to introduce a generalization of Petri nets

and to show how it can be used to describe and analyse complex systems.
In coloured Petri nets each token has attached a colour, indicating the
identity of the token. Moreover each place and each transition has
attached a set of colours. A iransition can fire with respect to each of
its colours. By a firing of a transition, tokens are removed and added
at the input and output places in the normal way, except that a functional
dependency is specified between the colour of the transition firing and
the colours of the involved tokens. The colour attached to a token may

be changed by a transition firing and it often represents a complex data-value.

Our definition of coloured Petri nets is heavily influenced by the defi-
nition of ''predicate/transition-nets" in [ 1] and thus by the definition of
"CP-nets" in [7]. The main idea is essentially the same, but our
formalisation seems to . be simpler and more suitable for mathematical

analysis of the described systems.

In [3] place/tr‘ansition—nets are analysed by means of system invariants
in the form of weighted sets of places. When the weights are taken into
account, these places together hold an invariant number of tokens. The

method builds upon linear algebra, especially matrix-multiplication.

In [1] it is proposed to generalize the invariant-method to predicate/
transition-nets., The main extension is that matrices of integers are

replaced by matrices of formal sums over colours. The invariants of

| 1] may contain free variables (over the set of colours). To interpret
the invariants it seems necessary to bind the free variables via a sub-
stitution, where at least partial knowledge about the firing sequence

leading to the marking in question must be used.

Our paper proposes to replace matrices of integers by matrices of

linear functions between sets of colours . Then invariants can be

established directly without the need of substitutions.




It should be stressed that we do not claim that our '"coloured Petri nets!
are more convenient for description of systems than the '"predicate/
transition-nets!' of [1] In this respect the itwo approaches are very
similar, and the differences are mainly a matter of personal taste or

convenience for the respective applications.

What we do claim is that we have developed an alternative method for
the analysis of these kinds of nets. The method is directly inspired
by [ 1], but it does not involve substitutions for free variables in the
invariants. In our opinion this makes the method more transparent and

we give an example where a proof in [1] is simplified considerably.

In section 2 place/transition-hets and the invariant-method are defined.
As a simplie example, we consider the well known system consisting of

readers and writers.

In section 3 coloured Petri nets are motivated and informally introduced

by means of the well known system, consisting of five dining philosophers,

in section 4 coloured Petri nets and the invariani—-method for them are

formally defined. The philosopher—-system is analysed.

In section 5 a more complex system, consisting of database managers and
message buffers, is described and analysed. This example is taken from

[1] , Where it is shown how to complete a marking from partial knowledge
of it. The proof in [ 1] uses one page of rather complicated equations and

moreover part of the predicate/transition-net is unfolded to a complicated
place/transition-net. In our formalism, the similar proof can be done

in a few lines and without unfolding the coloured Peiri net. Moreover

we show how complicated invariants can be consiructed from simpler ones.




2. PLACE/TRANSITION-NETS

In this section we introduce a kind of Petri nets called place/transition-
nets, and we show how these can be analysed by constructing system-
invariants as proposed in [3] Place/transition-nets is one of the most
used and well known kinds of Petri nets. However to ease our later
generalization to '"coloured Peiri nets!' we shall present the definition
of place/tr‘ansition—nets in a terminology, which differs slightly from

the usual one,

Let 2, IN and [A -» B] denote integers, nonnegative integers,and total

functions from A to B respectively.

A place/transition-net is a 4-tuple PTN = (P, T, W,mo) (fixed for the

rest of this section, except for examples), where

1) P is a set of places

2) T is a set of transitions

3) PNT=@, PUT#6

4) WE [PXx T~ 2z]|isthe incidence~-function

5)  mgy€ [P~ NJ is the initial marking.

A marking of PTN is a function in [P # IN]. A place p is an input place
(output place) for a transition t iff W(p,t) < 0 (W(p,t)> 0).

A place/transition—net can be represented as a directed graph. As an
example the incidence-~function and initial marking in Figure 1 define
the Petri net represented graphically in Figure 2, where by con-~
vention | W(p, t})| = 1 for all unlabelled arcs. For the moment ignore

the three invariants.
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Fig. 1. Incidence-function and initial marking for

place/transition-net.
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Fig. 2. Graphical representation of the place/tr‘ahsition—net inFig. 1.




The intuition behind place/transition-nets is that transitions may fire
thereby removing tokens from their input places and adding tokens

to their output places. The numbers of tokens removed or added are

specified by W. Transitions may fire concurrently (simultaneously) iff

they involve disjoint sets of tokens.

For the rest of this section we assume that the sets of places and tran~
sitions are finite and of the form P = {p1,p2, . ,pn} and
T = {tI, toseees tm} , where n,m € IN. It is then possiblie to consider the

incidence~function as an incidence-matrix containing n rows and m

columns. Analogousliy each function from P or T can be considered as a

vector with n and m elements respectively.

To formalise the firing rule we need a few definitions: A weighted set of

transitions is a function x€ [T = Z]. It is positive iff x(t) = 0 for all t€ T
and x(t) > 0 for at least one t € T. "+ and "' x!' denote matrix-addition and
matrix-multiplication respectively. Two markings m and m' are in the
relationmz m' iff wp € P [m(p) 2 m'(p)]. W™ is a matrix, constructed

from W by
-W(p,t) if W(p,t)<0 }

vip,t) EPX T [W—(p,t) =
0 it Wip,t) = 0

Each vector can be considered as a matrix with a single row or as a
matrix with a single column. Markings and weighted sets of transitions

will always be considered as matrices with a single column, while weighted
sets of places (to be defined shortly) will always be considered as matrices

with a single row (aithough they may be shown in tables as columns).

A positive . weighted set of transitions x has concession in a marking
m iff m>= W™ % x. When x has concession it may fire. if x fires, a new

marking m' = m + W % x is reached. m' is said to be directly reachable

from m. Reachability is the reflexive, symmetric and transitive closure of direct

reachability. From the firing rule it immediately follows, that if a marking
m! is reachable from another marking m, there exists a weighted set of

transitions x, such that m! =m + W % x,



A weighted set of places is a function in [P =+ Z].

Theorem 1 (Lautenbach)

L.et v be a weighted set of places, If v ¥ W=0 then v ¥ m! =v ¥ m
for all markings m! and m, where m! is reachable from m. v is

then said to be an invariant.

Proof: v % m!
= v ¥ {m+ W % x) (m! reachable from m)
= v ¥m + v*(W*¥* x) (distributivity)
= v *m + (v¥W) *x (associativity)
= v ¥m (assumption)

0

Each linear combination of invariants is itself an invariant. Thus there

is normaliy infinitely many invarijants.

An example
To illustrate the use of the Iinvariant-method we finish this section by

analysing the place/transition-net in Figure 2. It can be interpreted

as a model of the well known system, consisting of n processes, n> 0,
which may read and write in a shared memory, Several processes may

be reading concurrently, but when a process is writing, no other process
can be reading or writing. No priority is assumed between the read and
write operations. Each process can be in five different states: LP (local
processing, where the shared memory is not used), WR (waiting to read),
WW (waiting to write), R (reading), and W (writing). The place S (synchro-
nization) enforces the mutual exclusion of writers. [nutitively tokens

on LP, WR, WW, R and W represent processes, while tokens on S re-

present the state of the shared memory.

From the incidence-matrix in Figure 1 we find three invariants shown

as the columns (i1), (i2), and (i3).



From each of the invariants (i1), (i2) and (i3) we shall construct, by means
of Theorem 1, an equation satisfied for all markings reachable from the
initial marking. From now on we shall not distinguish between an invariant

and its corresponding equation.

From
(i1) m(LP) + m(WR) + m(WW) + m(R) + m(wW)} =n

we conclude that the number of processes is invariant,

From

(i2) m(R)+nm(w)+m(S)=n
we conclude that when a process is "writing", no other process can be
"reading!' or "'writing!'. The number of '"reading!' processes is between
zero and n. Moreover, if no processes are '"reading'' or "writing",
m(S) = n. Thus t3 has concession if at least one process is '"waiting to

read!" and t4 has concession if at least one process is "waiting to write!l.

From

(i3) m(P) + m(WR) + m(WW) = (n-1)m(W) + m(S)
(which is a linear combination of (i1) and (i2)) we conclude that when no
process is "writing", m(WR) €<m(S). Thus i has concession if at least

one process is '"waiting to read!,

Analysis 1

The place/tr‘ansition—net in Figure 2 cannot deadlock (reach a

marking where no transition has concession).

Proof: If m(LP) + m(R) + m{W) > 0 it follows from the net that
tyy ty tgor tg has concession.

If m(LP) + m(R) + m(w) = 0 it follows from (i1) and (i2) that
m(WR) + m(WW) = n
m(S) = n

and thus t3 or t4 have concession.




3. INFORMAL INTRODUCTION TO COLOURED PETRI NETS

In the readers/writers system, treated in the previous section, it
was not neccessary to distinguish between different tokens at the
same place, Often the situation is:more complex. As an example
consider the standard synchronization problem consisting of five
philosophers who alternately think and eat. To eat, a philosopher
needs two forks, but unfortunately there are only five forks on the
circular table and each philosopher is only allowed to use the two
forks nearest to him. Obviously two neighbours cannot eat at the

same time.

Fig. 3. Five dining phitosophers.

The philosopher system can be described by a place/transition-net.
Its graphical representation is shown in Figure 4 ({th!'', "e!'! and "ff"
are short for M"think!, "eat'" and "free forks!, respectively). The
incidence-matrix, initial marking and 10 invariants are shown in

Figure 5. For the moment ignore the dashed lines.




thy (e thy thy % thy (e thy
a, Ay 8g =7 as
Ty i f f, FE Tfy
N
(=3 €, l 3 s €5 !
b, % bs (A bs

Fig. 4. Place/transition-net describing the philosopher system.
For convenience the place ff; has been drawn twice. It

has only one token.

Invariants

il i2 i3 i4 i5

Fig. 5. Incidence-matrix, initial marking and 10 invariants for the

place/transition-net in Figure 4.



10

From invariants (i1)-(i5) we conclude that each philosopher is either
thinking - or eating -, but not both. From invariants (i6)-(i10) we
conclude that no philosopher can be -eating at the same time as one of

his neighbours,

Analysis 2

The place/transition-net in Figure 4 cannot deadlock.

Proof: Assume that m is reachable from the initial marking. Then

m satisfies (i1)=(i10).

ki m(ei) = 1 for some i € 1..5 transition bi has concession.
If m(ei) =0 for all 1 € 1,.5 it follows from (i1)-(i10) that
m(thi)= 1 for all i€ 1..5
m(ffi) =1 for all i€ 1..5
but then a; has concession for all i € 1..5.

O

During the previous analysis of the philosopher system we constructed
a large net, and found many invariants. In practical system work this
is not just annoying, but it also puts rather narrow limits on the com-

plexity of the systems which can be handled.

In the readers/writers system the size of the net was kept small by
allowing tokens, representing different processes, to share the same
subnet. It is tempting to use the same trick for the philosopher system.
By a folding (see [ 5]) of the place/transition-net in Figure 4 we obtain
the net shown in Figure 6, but unfortunately this is not a correct de~
scription of the philosopher system. In Figure 6 each philosopher uses
two forks, but he is allowed to select them among all free forks, not
Jjust the two nearest to him. Thus two neighbours can eat at the same

time.
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Fig. 6. The philosopher net after a folding where
some places and some transitions are unified.
Unfortunately, this simple net is not a

correct description of the philosopher system.

Our aim is to obtain a net of the same size as Figure 6, but a net which
correctly describes the philosopher system in the sense that each
philosopher only can use the two forks nearest to him. This can be done
by being able to distinguish between the tokens representing the indi-
vidual philosophers and also between the tokens representing the indi-

vidual forks.

Our first step will be to replace the five places th1, thz, ceny th5 by a
single place '"think'", which can carry up to five tokens. To distinguish
between these tokens, which represent different philosophers, we attach
to "think!" a set of colours PH = {ph1,ph2, ce ,phs} , and we demand

that all tokens on "think!" must be labeled by an element of PH. Markings
of "think' are functions in [PH - IN]. They are represented as formal
sums over PH., As an example m(think) = ph1+ph3+ph4 represents that

philosophers 1, 3 and 4 are thinking while philosophers 2 and 5 are not.
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Analogously the places ©15€95 - , € are replaced by a single place
eat!" with PH as the set of possible colours, and the places ff1,ff2, .o ,ff5
are replaced by a single place '"firee forks!" with F = {f1,f2, . ,fs} as

the set of possible colours.

At this stage of development each transition ai from Figure 4 has the

form shown in Figure 7, where the formal sums phi and fi + fi@l at the
arcs indicate that by a firing of ay the token. removed from "'think!" and
the token added to "eat" must have colour phi’ while the two tokens re-

moved from ''free forks!" must have colours fi and fi@1 respectively.

PH ( think )

ph;
\ f.47. -
ph.
PH eat

Fig. 7. Part of the philosopher net after a folding

where some places are unified.

The next step will be to replace the five transitions 8y85500+58g by a
single transition '"take forks!, which may fire in five different ways
corresponding to the five philosophers. To distinguish between these
different ways of firings we attach io the transition "take forks! the
set of colours, PH, representing the individual philosophers. We then
get the subnet Iin Figure 8, where ID, LEFT and RIGHT are functions
from the set of colours PH attached to "take forks!' into the sets of
colours attached to its input/output places: "think!!, "eat" and "free forks'.
The functions indicate that a firing of '"take forks', with colour v € PH,
removes a token with colour ID(v) € PH from !think!', adds a token with
colour ID(v) € PH to "eat!", and removes two tokens from !"free forks"
with colours LEFT(v) € F and RIGHT(Vv) € F respectively. ID is the
identity function on PH. LEF T and RIGHT map each philosopher-colour

into the colour of its left and right fork respectively.
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e

1D
PH take «ECTHRICGHT free forks F
forks
1D
Y
PH eat

Fig. 8. Part of the philosopher het after a folding

where some places and some transitions are unified.

Analogously we replace the transitions bl’ bz, ey b5 by a single tran-
sition "put down forks' with PH as the set of possible firing colours.
We then get the coloured Petri net in Figure 9, where by convention all
unlabeled arcs represent the identity function of the set of colours

attached to its transition.

PH think
|
PH take
forks LEF T+
RIGHT
D) r—-
Y LEFTH
put down RIGHT
PH forks

Fig. 9. Coloured Petri net describing the philosopher system.
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Initially mo(think) =Y PH, mo(eat) = 0 and mo(free forks) = ZF, where for

for an arbitrary set of colours A we define ZA =Xa.
ac A

Generalization of the invariant-method

In the previous part of this section we have seen how to obtain a coloured
Petri net from a place/transition-net by a folding. Each place (transition)
in the coloured Petri net replaces a group of places (transitions) in the
place/tr*ansition—net. In the incidence-matrix (Figure 5) these groups

of places and transitions are indicated by dashed lines. The dashed lines
divide the incidence matrix into six submatrices, each describing the
tokens removed or added at a singlé place p (in the coloured Petri net)

by firing a single transition t (in the coloured Petri net). Let C{p) and
C(t) be the sets of colours attached to p and t respectively. The submairix
corresponding to p and t contains a row for each element in C(p) and a
column for each element in C(t). Thus it uniquely defines a linear function
in[[C(t) » Z] = [C(p) = 2Z]]. Substituting each submatrix in Figure 5
by the corresponding function we obtain the matrix shown in Figure 10,
We observe that it is the incidence-matrix for the coloured Petri net in

Figure 9. For the moment ighore the two invariants.

take put down Invariants
for‘ks(tI) forks (tz) my i i2!
PH PH u 1=1:>|_; uz_—. =
think (p1) PH -1D D 2 PH 1D
LEFT
eat  (p,) PH 1D -ID 1D +RIGHT
free -LEFT LEFT
forks (p3) F -RIGHT +RIGHT | ZF iD

Fig. 10. Incidence-matrix for the coloured Petri net in Figure 9.
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Next consider the invariants (i6)~(i10) in Figure 5. Each invariant
(weighted set of places) is in our method considered as a matrix with
a single row. Thus it would be more correct to draw (i6)-(i10) as shown

in Figure 11.

i10

Fig. 11. Invariants (i6)-(i10) from Figure 5 shown as rows (instead of

columns).

Each of the invariants (i6)~(i10) is a special instance of a common scheme,
and we want to combine them into a single invariant containing colours.
To distinguish between the original five invariants we need a set U con-

taining five different colours and we choose U = FF,

The dashed lines divide Figure 11 into three submatrices. The submatrix
corresponding to a place p uniquely defines a linear function in

[[Clp) » Z] » [U » Z]]. Substituting each submatrix by the corres—
ponding function we obtain a matrix containing a single row, with the
three elements shown as (i2') in Figure 10. In a similar way we can
obtain (i1') with U = PH from the invariants (i1)-(i5).

Rename the places and transitions in the coloured Petri net as shown in
the parenthesis in Figure 1 Let (WIJ)1S|S3, <j<2 be thq six submatrices

from Figure 5 and (Vi)1<i<3 the three submatrices from Figure 11.
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From the definitions in section 2 it follows that (i6)~(i10) are invariants
iff

3
Vji€1..2 [ v, xW,.=0]

i=1 ! H
Matrixmultiplication is equivalent to composition of the corresponding
linear functions. Thus we can replace v, * Wij by vil o Wij‘ where a
primed combol denotes the linear function determined by the sub-

mairix denoted by the corresponding unprimed symbol.

It then follows that (i6)-(i10) are invariants iff the corresponding

(i2t) = (VT', vz', v3',) satisfies

3
(*) viet.2[Z vie W' =0;]
1

where Oj is the zero function in [[C(tj) +2Z) a[u » Z]].

In the next section we shall define - an invariant for the coloured
Petri net to be a set of functions satisfying (*). Thus (i2') is an in-
variant and we shall prove (as a generalization of Theorem 1) that

this implies that the function in [U = 2Z] defined by

M w

i=1

is the same for all markings m reachable from the initial marking.
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4, FORMAL DEFINITION OF COLOURED PETRI NETS

In this section we define coloured Petri nets and show how the invariant-

method of L.autenbach can be generalized to coloured Petri nets.

Let A be a nonempty set and let D be N or Z. By [A - [D]f we denote the
set of functions g€ [A = D], where the support {a € A |g(a) # 0} is finite.
For finite A we have [A - ID]f =[A - D].

A coloured Petri net is a 5-tuple CPN = (P, T,C, W,mo),(fixed for the

rest of this section, except for examples), where

1) P is a set of places

2) T is a set of transitions

3) PNT=¢@, PUT#@

4) C is the colour-function defined from P U T into nonempty sets

5) W is the incidence~function defined on P X T such that
W(p,t) € [C(t) » [C(p) - z]f} for all (p,t) € PX T

6) mo, the initial marking, is a function defined on P,

such that mo(o) € [Clp) - lN]f for all p € P.

A marking of CPN is a function m defined on P, such that m(p) € [C(p) = IN]f

for all p € P. LLet p be a place and t a transition. Elements of C(p) and C(t)

are called colours. p is an input place (output place) for t iff W(p, t}(c')(c!) < 0

(W(p, t)(c')(c") > 0) for at least one pair of colours c' € C(t) and c'" € C(p).
Note that in contrast to place/transition-nets a place may be both input

place and output place for the same transition.

For the rest of this section we assume that the sets of places and tran-
sitions are finite and of the form P = §p1,p2, . e ,pn} and T = {t'.1, tz, e tm}
where n,m € IN. As for place/transition-nets the incidence—function W

can be considered as an incidence-matrix and the net can be represented

as a directed graph.

Let A and B be nohempty sets. Each functionf€ [A - [B+ 2].] has a
unique linear extension in [[A = Z]f » [B» Z].]. The extended function
will also be denoted by f and it is defined to satisfy f(g){b) = T gla) f(a)(b)
for all g€ [A = 2];and b € B. aeA
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Using functions with only finite supports, excludes markings with an
infinite number of tokens on a single place, and it guarantees conver-

gence of the summation used to define linear extension.

To formalize the firing rule we need a few definitions: A weighted set of

transitions is a function x defined on T, such that x(t) € [C(t) = Z]f for

all t€ T. It is positive iff x(t)(c) = 0 for all pairs t € T and c € C(t) and
x(t){c) > O for at least one pair t € T and c € C(t). We next generalize
matrix-multiplication substituting each product by a function composition or

or a function application. Let a = (aij I<icr, 1<j<s and b = (bjk) I=j<s, T<kst

be two matrices and definea ® b = (c:ik I<i<r, 1£létby

s
c., = 2 a. bj foralli€ l..rand all K& 1..t

where the juxtaposition aijbjk means function composition or function
application. We shall only use this generalized operation on matrices
where the elements fit together in the sense that the function compositions/

applications and sums are possible,

Two markings m and m' are in the relation mz m! iff v p € P

WV c € C(p) [m(p)c) =z mi(p)(c)]. W™ is 'a . matrix constructed from W by

-W(p, t)c')c") if W(p,tHc')Hc!) <0

W™ (p, tic)c") =
0 if W(p, t)d(c')(c") = 0

for all (p,t) € Px T, all c'€ C(t) and all c' € C(p).

Having made these definitions,concession, firing and (direct) reachability

are defined exactly as for place/transition-nets. As for place/transition—
nets it follows from the firing rule that if a marking m'! is reachable
from another marking m, there exists a weighted set of transitions X,

such that m' = m + W @ x.
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Let U be a nonempty set. A weighted set of places (with respect to U)

is a function v defined on P, such that v(p) € [C(p) = [U Z:]f] for all

p &€ P. For a motivation of this definition see the last part of section 3.

Theorem 2
Let v be a weighted set of places (with respect to U) and

O =0 )1gj<m
Oj € [[C(tj)a Z» [U=+ 2] HvOW=0Othenv@m' =v®m

for all markings m' and m, where m'! is reachable from m. v is then

a matrix of zero-functions

said to be an Invariant.
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Proof: Replace "% by '@ jn the proof of Theorem 1. Distributivity

follows from linearity of the functions in v. Associativity follows from

associativity of functional composition.

As for place/transition-nets each linear combination of invariants is

itself an invariant. Moreover if v is an invariant (with respect to LJ])

and w is a function in [U1 - [Uz » Z].]thenwo v is an invariant

(with respect to uz).

To sum up, Figure 12 gives the functionality for the functions defined

in this section,

transitions (firing)

Domain Range
incidence-matrix Px T W(p,t) € [C(t) = [C(p)~ z]f]
Marking P m(p) € [C(p) = IN T
Weighted set of T

x(t) € [c(t) - z]f

Weighted set of
places (invariant)

vip) € [Cp) » [u » Z]]

Fig. 12. Functionality for the functions defined in connection

with coloured Petri nets.

An example

Next we analyze the coloured Petri net, Figure 9, describing the

philosopher system. Markings are represented as formal sums.

From the incidence-~matrix in Figure 10 we find the two invariants

(i17) and (i2').
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From
(i1') m(think) + m(eat) = TPH
we conclude that each philosopher is either thinking or eating, but

not both.

From
(i2') LEFT(m(eat)) + RIGHT(m(eat)) + m(free forks) = TF
we conclude that no philosopher can be eating at the same time as one

of his neighbours.

Analysis 3

The coloured Petri net of Figure 9 cannot deadlock.

Proof: Assume that m is reachable from the initial marking. Then

m satisfies (i1') and (i2').

If m(eat) # 0 "put down forks' has concession.

If m(eat) = 0 it follows from (i1!) and (i2') that
m{think) = 2 PH
m(free forks) =T F

and then '"'take forks!' has concession (for all colours in PH).

Coloured Petri nets versus place/transition-nets

A coloured Petri net can be transformed to a place/transition-net. This

is done by replacing each place p with a set of places C(p) (one for each
kind of tokens p may hold) and replacing each transition t with a set of
transitions C(t) (one for each way in which t may fire). The relationship
between the new places and transitions are determined by the corresponding

elements in the matrix determined by the function W(p, t).

In section 3 we showed a transformation in the opposite direction. There
we constructed a coloured Petri net from a place/transition-net.
However, the constructed net is not unique. In fact given a place/

transition-net, each partition of the places together with each partition
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of the transitions determine a coloured Petri net. As the two extremes
we obtain either a coloured Petri net with the same number of places
and transitions as the place/transition-net or a coloured Petri net
with only one place and one transition. In the first case each place

and each transition has attached a set of colours with only one element.
In the second case the single place (transition) has a colour for each

place (transition) in the place/transition-net.

Moreover, as shown in section 3 each ordered list of invariants for the

place/transition net determines an invariant for the constructed coloured

Petri net.

It is thus important to choose the right abstraction~level for places,
transitions and invariants in coloured Petri nets. In terms of mathe-
matics this is equivalent to the use of functions, which are determined
by simple matrices where the different colours are treated in a system~

atic way.

From the discussion above it follows that place/transition-nets and
coloured Petri nets are equivalent with respect to descriptive power
(in the sense formally defined in [2] ). Equivalence with respect to
descriptive power, means that the two formalisms in principle can be
used to describe the same class of systems. It tells nothing about the

usefulness or succinctness of the respective descriptions.

It should be mentioned that our invariant-method at present is non-
constructive in the sense that it gives no algorithm to construct invariants
(without transforming the coloured Petri net to the corresponding place/
transition-net and then constructing invariants from the expanded in-
cidence-matrix). It will be a subject for future research to investigate to
which degree the methods for solution of linear equations apply when

multiplication of integers is replaced by composition of functions.

Fortunately it seems often to be the case, that a number of potential
invariants can be found from the properties we expect the net to fulfil,
It is then easy, using our method, to check whether they really are
invariants. If this is the case new invariants can be consiructed from
them by means of addition, scalar multiplication and functional com-~

position. An example of this will be given in section 5.



23

5. NETWORK OF DATABASES

As a more complicated example of the use of coloured Petri nets we

consider the following system from [ 1].

A set of database managers, DBM = {dI,dz, oo ,dn}, n> 0, communicate with
each other. Each manager can make an update to his own database.

At the same time he must send a message to each of the other managers
thereby Informing . them about the update. Having sent this set of

messages, the sending manager waits until all other managers have

received his message, performed an update and sent an acknowledgment,
When all acknowledgments are present the sending manager returns to

be inactive. At that time (but not before) another manager may perform

an update and send messages.

Each manager can be inthree states: !"inactive!, '"waiting' (for acknowl-
edgments) and !"performing! (an update on request of another manager).
The managers communicate via a fixed set of message buffers,

MB = {<s, r~>‘ s,r € DBMA s 75 r‘} , where s represents the sender and

r represents the receiver. Each message buffer may be in four different
states: "unused', ''sent!, "received" and "acknowledged!!. The system

can be described by the coloured Peiri net in Figure 13,

E is a set containing only a single elementé¢ . In formal sums we shall
often write n instead of ne, where n € IN. Intuitively € represents tokens
without a colour. For any set of colours C we define ABS € [C = [E Z]f]
and ID € [C =+ [C = Z]f:[ by

Vv c€ C [ABS(c) = ¢ A ID(c) = c].

To be rigorous ABS and ID should be equipped by an index stating

their domain. Intuitively (the linear extension of) ABS counts the number
of tokens in its argument ignoring their colour. Thus it plays a similar
role as the value-concept in [ 1], but in our formalism it is fully inte-
grated in the method and has no special status. ABS(x) will often be

written as |x|. As an example ABS(3u-v+2W) = |3u~v+2W | =4¢e =4

for u,v,w € C,
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Fig. 13. Coloured Petri net describing a network of databases with a

simple communication discipline.




The functions REC and MINE are defined by

¥ <s,r>€ MB [REC (<s,r>) =

r]

V s € DBM [MINE (s) = T <s,r>]

r#s
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In the initial marking mo(inactive) =7 DBM, mo(unused) =Y MB and

mo(exclusion) = 1. All other places are unmarked.

The incidence-matrix is shown in Figure 14, For the moment ignore

invariants (i6) and (i7).

a -
c [=
I} @
§, (En Invariants
T, 3 3
@ @
e o %3 25 F
S 28 29 8 it [z iz | s | s i6 i7
o) o C o v c
R O X 9 ° < %/) m
58 € ¢ CE 8 & 0 REC(i5)-i4  |(n-1)i3-ABS(i6)
DBM OBM M8 MB oBME MB 1= osM MB oBM E
inactive DBM ~1D D -REC REC |ZDBM| ID
waiting DBM D -ID D ABS MINE| RECe MINE
performing DBM REC -REC D [in] —iD ABS
exclusion = -ABS ABS 1 1D (n-1)ID
unused MB ~MINE  MINE LMB 1D
sent MB MINE -1D i -1 -REC ABS
received MB |{] -iD 1D -REC| -ID
acknowledged MB ~MINE (=] D -1D ~REC ABS

Fig. 14. Incidence~-matrix for the coloured Petri net in Figure 13,

From

(i1)

m(inactive) + m(waiting) + m(performing) = TDBM

we conclude that each data base manager is in exactly one of its three

states.

From

(i2)

m(unused) + m(sent) + m(received) + m(acknowledged) = TMB

we conclude that each message buffer is in exactly one of its four states.

From-

(13)

| m(waiting)| + m(exclusion) = 1

we conclude that at most one manager can be '"waiting'.
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From
(i4) m(performing) = REC(m(received))
we conclude that a manager is '"|performing' iff there is a message buffer

addressed to him on '"recejved!.

From

(i5) MINE(m(waiting)) = m(sent) + m(received) + m{acknowledged)
we conclude that when a manager is !'waiting!' all his message buffers
are either 'sent!", "received!" or "acknowledged!" (and thus none of
them are "unused!). Moreover when he is not "waiting' none of his
message buffers are !'sent!", !''received'" or "acknowledged! (and thus

they are all "unused").

Completing a marking

Analysis 4

et m be a marking reachable from the initial marking with

m(performing) = u,+u (where Ugy Uy and u, are different

3
>+ <q,u

1tugtu;

elements of DBM). Then m(received) = <q, u >+ <qg,u,>

1 3

for some q € DBM and q75 u, for all 1€ 1..3.

2

Proof: From (i4) we conclude that m(received) = <A ug> +<q,,u> +
<q3,u3> for some q; € DBM and qi# U, for all i € 1..3.
From (i5) we conclude that qa; < m{waiting) for all i € 1..3 and then
it follows from (i3) that d; =4, = d5.
[

The corresponding proof in [1] uses one page of rather complicated
equations and moreover part of the predicate/transition-net is unfolded

to a complicated place/transition-net.

Constructing a complicated invariant from simpler ones

In [1] an invariant is constructed through the places ""performing'!,
""exclusion", "sent! and '""acknowledged!. By our invariants (i3) and
(14) there is a simple relationship between '"waiting' and "exclusion"

and between '"performing!' and "received!. Thus the above invariant




27

in [ 1] is similar to our (i5). If, however, for some reason we want to
construct an invariant through exactly the same four places as [1] , this
can be done in two steps as shown by invariants (i6) and (i7) in Figure 14,
As indicated, (i6) is constructed from (i5) and (i4) by

means of the function REC and subtraction. Then (i7) is constructed from
(13) and (i6) by means of scalar multiplication, the function ABS and

subtraction (n is the number of managers).
It should be added, that in our opinion, (i5) is more interesting than (i7)
since it allows us to deduce more information about the colours of the

involved tokens.

Analysis 5

The coloured Petri net in Figure 13 cannot deadlock.
Proof: Assume that a marking m Is reachable from the initial marking.

If at least one manager d € DBM is "waiting! in m it follows from (i5)

that his message buffers are either ''sent!, "received! or "acknowledged!'.

If at least one buffer <d,r> € MB is !'received! it follows from (i4) that
r is ""performing'' and then ''send acknowledgment! has concession (with

colour r).

If at least one buffer <d,r> € MB is !"'sent!! it follows from (i3) and d74 r
that r cannot be "waiting''. If r is ""performing' we conclude from (i4)
that there is a buffer <e,r> € MB, which is "received" and from (i5)

e is ""waiting" but then e = d from (i3). We then have that<d,r> is

both "sent! and !Y'received!! in contradiction with (i2). Thus it follows
from (i1) that r must be "inactive!!, and then !receive message! has

concession (with colour r).

If all d's buffers are "acknowledged! '"'receive acknowledgments!! has con-

cession {with colour d).




28

If at least one manager d € DBM is "performing' in m it follows from

(i4) that there is a buffer <s,d>, which is !'received" and thus "'send

acknowledgment!! has concession (with colour d).

If no manager is '"waiting" or "performing! in m it follows from (i1)

that all managers are "inactive!!, from (i3) that '"exclusion is marked and from
(i2) and (i5) that all message buffers are "unused'. Thus "update and

send messages! has concession (with any colour in DBM),
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