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Abstract

At the Department of Computer Science a system has been developed for
plotting Pegions of absolute stability for a large class of formulae and
methods for solving systems of ordinary differential equations. This
report is a pictorial guide through the stability regions of a number of
well-known formulae thereby showing the capabilities of our programs,
and hopefully also giving some new information about the methods.

In an appendix we give coefficients for Adams, Nystm')'m, generalized
Milne-Simpson and backward differentiation formulae up to order 12
(resp. 11) and coefficients for Padé approximations to the exponential

up to degree 6.
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1. Introduction

The study of stability properties of methods for the numerical solution
of initial value problems goes back to the early 1950!'s with works of

Dahlquist [6 ] and Rutishauser [22]. In 1956 [7 | Dahlquist proved the
fundamental theorem for linear multistep methods which in modern for-

mulation can be phrased :
consistency + stability <> convergence,

and he also introduced the first Dahlquist-barrier : The order of a

stable linear k-step method cannot exceed k+ 2.

The above-mentioned convergence is with respect to the limit, h - 0,

and the significance is that when using a convergent method it is in
theory possible to get arbitrarily accurate solutions by reducing the
step~size, h., But in practice we are not interested in using extremely
small step-sizes and accuracy is also destroyed by unavoidable round-off
errors. And for calculations with finite h the above-mentioned stability
is not enough to ensure reasonable Pesults.' The use of electronic com-
puters with their capacities for very long sequences of unsupervised
calculations also pressed the need for new stability concepts and for a

disciplined use of the word stability.

In the following we shall use the terminology of L.ambert [15] who uses
the name O-stability for the concept which Dahlquist introduced.

Among the various stability concepts which saw the light of ‘day' we have
focused our attention mainly on the absolute stability (see nekt section)
but some of our investigations are useful also for the study of exponential

stability (see section 13).

With specific reference to the so—called stiff problems Dahlquist intro-
duced A-stability [8] and also erected the second Dahlquist barrier :

The order of an A-stable linear multistep method cannot exceed 2.

In attempts to avoid this barrier a new host of stability concepts was
introduced such as Aly)-stability [ 32] and stiff stability [11 ] to name

two.



At present we have very good tools - including what is presented in this
report — for studying these types of stability which can be grouped
together with the term : linear stability theory. In years to come we shall
see more work devoted to relative stability concepts and stability for

non-linear systems.



2. Absolute Stability

We shall study the stability properties of certain methods for the

solution of initial value problems

y! = f(x,y) , y(xo) =Yg

The method is applied to the linear, homogeneous test equation

yl=awy , vio)=1 , re€

with constant step size h, thus producing a linear difference equation.
The characteristic polynomial of this difference equation is also called

the stability polynomial.

A method is called absolutely stable for a particular value of hy = h if

all roots of the stability polynomial have modulus less than one., The set
of all such real h is called the stability interval, The set of all such
he &is called the region of absolute stability. Inside (and on most of
the boundary of) this region all solutions of the difference equation are
bounded and this is a desirable feature if Re(h) < 0 because then the

solution of the differential equation is bounded.'

Some authors also allow values of h that give rise to simple roots of
modulus one. This corresponds completely to the boundedness criterion,
but the difference is insignificant in practice as it only amounts to
including (part of) the boundary into the stability region. But in this case
a O-stable method always has an absolute stability region, although
possibly with an empty interior (example : a weakly stable method such

as the midpoint rule).

If one has access to a digital computer with graph plotting equipment,

a convenient way of determining the region of absolute stability is the
so-called boundar‘y locus method [ 15, p.'82],. which amounts to tracing

the curve(s) in the complex plane corresponding to the case that one

root of the stability polynomial is of the form exp(if). Thereby the com-
plex plane is divided into one or more regions characterized by the number

of roots which are greater than one. This number can, because of con~



tinuity, not vary within a connected region, but only when crossing the
boundary locus curve. An additional calculation of all roots of the
stability polynomial, carried out for one point inside each region,
suffices to determine this number. The region of absolute stability is
characterized by the number 0. It is not necessary to compute the roots
as we are only interested in their magnitudes relative to one. Therefore,
the Schur—-type method due to Miller [1'7] can be used to advantage

saving a good deal of arithmetic operations.

Actually only one test needs to be performed if one applies a counting
argument due to Dahlquist [9, p.FSO] and derived using the properties

of conformal mappings.. If we keep track of the direction of movement

of the boundary locus curve as 6 increases from 0 to 217, then the number
of roots larger than one to the left of the curve is always one smaller
than the number to the right of the curve if the curve is traversed only
once. Or (with kind thoughts to electromagnetism) if one places the right
hand on the boundary locus curve with the fingers pointing in the direc-
tion of travel then the thumb points to the side where there is one root
less of magnitude larger than one. We shall refer to this rule as :

Dahlquist!s right hand rule,

Dahlquist!s result which he mentions in connection with linear multistep
methods applies also to predictor-corrector methods and a straight-
forward generalization is possible for curves that are traversed

more than once (e.g. the midpoint rule, and Milne!s predictor).

At the Computer Science Department at Aarhus University a system has
been developed to draw regions of absolute stability as outlined above.

A further description of the system and a user manual is found in [24].

In this report we shall show examples of the performance of the system
but with emphasis on drawing stability regions for well-known formulae
for the sake of comparing the various formulae in various modes and

of various orders,



3. L.inear Multistep Formulae

A linear multistep formula is written in the form

k K
(1) E C(_,-y . h 2 B-f . ’ Cf,k':' 10
=0 Jo Nty i=0 J ntj

We define the first and the second stability polynomials by

K . K .
olz) = Z .20 5 olz) = T g 2.

The stability polynomial of formula (1) is then
(2)  mlz,h) =plz) ~holz),

and the boundary locus curve is found by setting

The boundary locus curve (and the stability region) is symmetric about
the real axis and we can find the part which lies in the first and second
quadrant by letting 0 < 6 < 1 and reflecting possible parts that lie
below the real axis.. We shall in most cases only draw this part of the

curve,

Fig. 1 shows the complete boundary locus curve (0, 2r1) for the fifth
order explicit Nystrom for‘mula.' We have indicated the direction of
motion as § increases as well as the number of roots larger than one
in magnitude such that the figure serves as an illustration of the right
hand r‘ule‘o' We note that there is no absolute stability region for this
for‘mula.A Fig.' 2 shows in a similar manner the boundary locus curve
for the 6th order Adams~Bashforth for‘mula.‘ We have cut away the large
loops, which extend to + 14, in order to show the details around the

origin,



Fig. 1. Nystrom predictor of order 5.

Fig. 2. Adams-Bashforth predictor of order 6.

Boundary locus curves. The numbers indicate number of roots larger

than 1 in each region.



In fig. 3 we have collected the boundary locus curves for the Adams-
Bashforth explicit formulae of orders 2 to 6 and in fig. 4 we show
those of the Nystrom formulae of the same orders. Fig. 5 and 6 show
the boundary locus curves for the Adams—-Moulton implicit formulae

of or‘der‘s 2 to 6 and the generalized Milne-Simpson implicit formulae
of orders 4 to 7 respectively. Only part of the curve for the second
“order Adams~Moulton formula (the trapezoidal rule) is drawnj it is
the imaginary axis. All the Adams formulae have an absolute stability
region (immediately to the left of the origin) which decreases with the
order. None of the Nystrom and Milne-Simpson formulae have a stabil ity
region according to our definition, which excludes roots of modulus

equal to one.



Fig. 3. Adams-Bashforth predictors, orders 2-6,

Fig. 4. Nystrom predictors, orders 2-6.

Boundary locus curves. The numbers indicate the order of the method.



Fig. 5. Adams-Moulton correctors, orders 2-6,

Fig. 6. Generalized Milne-Simpson correctors, orders 4-7,

Boundary locus curves. The numbers indicate the order of the method.
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4, Predictor-Corrector Methods

When an explicit and an implicit linear multistep formula are used
together as a predictor-corrector pair the region of absolute stability will
depend on the stability polynomials of both formulae and of the mode.

If the first and second polynomials are denoted p*(z) and ¢*(z) for the
predictor and p(z) and ¢(z) for the corrector (see (2)), then the stability
polynomial for the predictor-corrector method in P(EC)"E-mode
(m=1)1is [15, p.97]:

(3) TI'(Z,F;) = p(z) -h olz) + Mm(r\) . [p*(Z) -F@*(Z)]
where
_ _ 1-hg,
(49 ™M_(h = (hp)" ——
m k 1 - (th)m

For P(EC)™ mode we have [15, p. 98]

(5)  mzP) = g 2 [o(2) ~Fol2)]+M_[F) + [p*(2)ol2) - plz) 0¥ (2)] .

For m > 1, resp. 2 we cannot solve explicitly for h. In order to determine the
boundary locus curve we shall in general have to use a root-finding routine
to determine m + 1, resp, m values of h for each value of 6. Thus the boundary
locus curve will often consist of several curves as seen in fig. 7 for

the classical Milne!s method [18, p.66], [15, p.93] in PECE mode.

The boundary locus curve for Milnels predictor is the imaginary axis
traversed twice upwards, and there is one root of modulus larger than

one in the left half-plane and three in the right half-plane. The boundary
locus curve for Milne!s corrector is the interval [ ~i V3, V3] on the
imaginary axis (traversed up and down again) and there is one root of
modulus larger than one in each half-plane. Thus neither the predictor

nor the corrector has a region of absolute stability. Nevertheless,

Milne!s method has a stability interval which is roughly (- .85, - . 30)

and a stability region thereabout as seen on fig. 7. Unfortunately, 0 is
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Fig. 8., Stetter-Simpson, PECE mode.

Boundary locus curves. The numbers indicate number of roots larger than

1 in each region.
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not on the boundary of this region and Milnel!s method (in PECE mode)

is therefore not to be recommended.
Stetter [ 28], [ 15, p. 101 ] has suggested the predictor

y 2+4yn+1 —Syn = h -« (4f +2fn)

N+ n+1

to be used together with Milne'!s corrector (Simpson's rule) in order to
have a stable predictor—-corrector method. The boundary locus curve
for this method (in PECE mode) is shown in fig. 8. We have absolute

stability in the almost circular region about (-1, 0).

The complicated behaviour of boundary locus curves for predictor-
corrector methods is illustrated Iin fig. 9-12 for Hamming!s method

in modes P(EC)TE, m=1,2,3,4 respectively.

We note that only part of the curves are shown, and that the straight

line segments in figs. 11 and 12 (and on some later figures) are due

to a too course step length in 0, As this happens away from the stability
region we have not taken measures to remedy the situation. The numbers
indicate the number of roots greater than one within each region.
However, we are really not interested in the whole boundary locus curve,
but only in the region of absolute stability. Therefore we shall from now
on remove the unnecessary lines from the pictures and only show those parts
that make up the boundary of the absolute stability region. This is not
done automatically by the program, but requires human intervention,
After having produced a first drawing of the boundary locus curve we
determine the stability region by sampling the roots in the regions in
question. We can then define a polygon in the —H—p!ane containing the
stability region and only draw those (parts of) curves which are inside the
polygon. We shall usually aim at polygons that are slightly larger than
necessary in order to make it easier to distinguish between cusps on the

boundary locus curve and intersections.

The absolute stability regions for Hamming's method in modes PEC)"E
for m=1,2,3,4 are shown in fig. 13. Those of the Adams-Bashforth-
Moulton (ABM) method of order 4 in modes P(EC)"E, m = 1,2, 3, 4 are

shown in fig. 14.



Boundary locus curves for Hamming!s method in modes P(EC)mE. The

numbers indicate number of roots larger than 1 in each region.
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Fig. 13. Hamming, P(EC) E.

Fig. 14. ABM, p =4, P(EC)"E.

Stability regions for modes P(EC)mE, m=1,2,3,4, The numbers indicate

the value of m.
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It is seen in these examples that correcting more than once by and

large increases the stability r*egion; [t is often argued that correcting

to convergence (m - ) will get us to the stability region of the correc~
tor. This is not the case for low order formulae where the introduction

of the factor Mm(ﬁ) sets an upper limit at ]FI = I/Bk . This is seen

on the cover where we give the boundary locus curves of the fourth

order ABM method in modes P(EC)"E, m = 5, 6,7,8{ Mm(-ﬁ) = -1 at the cusp
of each of the heart-shaped regions, and the stability region cannot

extend this far. For ABM methods of order p > 4 the assertion seems

to be true, however. As p increases I/Bk increases slowly and the
stability region of the corrector decreases and becomes the critical factor.
This is illustrated in figs. 15 and 16 where we show the stability regions
for the sixth order ABM method in P(EC)™E modes for m = 1,2,3,4

(fig. 15) and m = 5,6,7,8 (fig. 16). We notice that for m = 4,5 and 6 the
stability region actually stretches out further than that of the corrector
(cf. fig. 5) in certain directions and that we for m = 8 have an almost

identical stability region.

We stress the fact that because of the number of function evaluations,
which is usually taken as the measure of computational complexity for
predictor~corrector methods, we cannot recommend correcting more

than twice for reasons of efficiency. This is also the case for P(EC)™
mode as illustrated in fig. 17 for the fourth order ABM method
(m=1,2,3,4). We note that the stability region for P(EC)™ mode is

very similar to, although slightly smaller than, the region for F’(EC)m—1E
mode (cf. fig. 14).

The stability regions of the ABM methods of order 2 to 6 in PECE mode
are shown in fig. 18. The stability regions for PEC mode iurn out to be
slightly smaller than those for PECM mode (see p. 24 for a discussion of
modification after the corrector) and Hall has shown [12] that these are
identical to those for the predictor alone of order one higher and they
can be seen in fig. 3. This is quite remarkable when one remembers that
the argument for including the corrector is its better stability proper-
ties. For PEC mode the situation is in fact worsened -~ an additional

function evaluation is necessary for good stability.
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Fig. 15. ABM, p=6, P(EC)"E, m=1,2,3, 4.

Fig. 16. ABM, p=6, P(EC)™E, m= 5,6,7,s8.

Stability regions for modes P(EC)mE, m = 1-8. The numbers indicate the
value of m.
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Fig. 18. ABM, PECE, p = 2,3,4,5,6.

Stability regions. The numbers indicate the values of m and p respectively,
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5. Predictor -=Modifier - Corrector Methods

When solving non-stiff problems with predictor-corrector methods it is
often worthwhile to modify the predicted value before the function
evaluation and the correction. This was in fact noted already by Milne

[18, p. 65]. Ih the literature this is most often done by a modifier of the

form
(6) Stie = Vi ® H Voot = Yiaieet!
with
(7) W= (:*-(:;fl;
p+1 p+1
where C*_I_1 and C 1 are the error constants of the predictor and the

corrector r‘espectlvely [15, p. 26 and 92], and the pr‘edlctor‘ and correc~
tor have the same order, p. If O‘j = aj =0,1,...,k then the modifying
term is a first order correct estimate of the local truncation error at the
previous step, and we assume that this does not change much over one

step.

If we look a little closer at the role of the predictor we notice that its
main purpose is that of supplying a good starting value for the corrector
iteration. Indeed, we would prefer to apply the corrector only once for
the sake of efficiency. But in that case the ideal is not to compensate for
the local truncation error of the predictor but rather to estimate the
difference between the predicted and the corrected value. We are thus
led to suggest the value y =1 as a more reasonable choice. In practice
the value of ¢ given by (7) is usually close to one as C*; is usually some-
what larger than C (and often of opposite sign) and the difference between
the resulis from applylng the two approaches will most often be insignifi-
cant. So maybe the best arguments for | = 1 are that the formulae are
simpler and that we are no longer restricted to p* = p and Oﬁ} = .

ek ]
j=0,1,...,k.
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In any case these considerations led us to investigating the stability
properties of predictor-modifier—-corrector methods with various modi~
fication factors, u. The stability polynomials have been derived in
[23, p.73-74] using [29, p. 275 ] and are for PM(EC)™E mode :

(8)  mlz,h) =z [olz) ~hol2)] + Mm(F)(Z‘M) [0¥(2) = ho®(2)]

and for PM(EC)™ mode :

(9  mlz,h) = Bkzk+1 [p(z) ~hol2)] + Mm(-ﬁ)(z—p) c [p* (2 o(2) = p(2) 0% (2)]
where Mm is given by (4).

Fig. 19 shows the absolute stability regions of the third order ABM
method in PMECE mode with y =0, 1/2, 9/10, 1, 3/2. There is no par-
ticular interest connected with y = 1/2 or 3/2 but we have included these
values to show the general trend that the stability region for 3rd order
ABM diminishes with increasing modification factor. In fig. 20 we are
considering PM(EC)ZE mode and the trend is the same although less
pronounced. We remark that the use of modifier should be restricted to
non-stiff problems, where the truncation error rather than stability
limits the step~size. Fig. 21 is for PMECME mode where the second
M indicates the use of Milne's device to improve the corrected value

(see p. 24 and [15, p. 92]). Fig. 22 for Hamming's method in

PMECE mode shows a slightly different picture. L.ooking at the real
axis, the interval of absolute stability increases as |, increases from

0 through 1/2. The maximum interval is found for b =.54 and is

(- 1.08,0). From then on the trend is as for the Adams method shown.
We are not advocating the use of 'under-modifying! but merely pointing

out a curious effect.

Fig. 23 shows the effects of modifying and iterating the corrector for
ABM, p = 3 in PECE, P(EC)ZE, PM(EC)ZE, PMECE and PEC modes

(u= 9/10).. They are listed here in order of decreasing stability interval.
A similar picture is seen in fig.v 24 for order 4. The picture for Hamming
(fig. 25) is more confusing with P(EC)ZE—mode having the best stability

properties but PMECE having almost as large a stability interval,
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Fig. 19. ABM, p =3, PMECE, =0, 1/2, 9/10, 1, 3/2.

-t t ettt
-9 -1 1

Fig. 20. ABM, p =3, PMEC)?E, u =0, 1/2, 9/10, 1, 3/2.

Stability regions. The letters A, B, C, D, E indicate the various values
of y.
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Fig. 21. ABM, p =3, PMECME, =0, 1/2, $/10, 1, 3/2.

A
z

/:

Fig. 22. Hamming, p = 4, PMECE, y =0, 1/2, 112/121, 1, 3/2.

Stability regions. The letters A, B, C, D, E indicate the various values

of .



22

Fig. 23. ABM, p= 3.

Fig. 24, ABM, p = 4,

Stability regions for modes PECE, P(EC)%E, PM(EC)2E, PMECE and PEC
indicated by letters A, B, C, D, E, respectively.
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Fig. 25. Hamming, PECE, P(EC)’E, PM(EC)%E, PMECE, PEC.

|
e

Fig. 26, Hamming, PECE, PECME, PMECE, PMECME.

Stability regions. The letters A, B, C, D (and E) indicate the various

modes.
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In fig. 26 we stay with Hamming but now in modes PECE, PECME, PMECE
and PMECME. The modification after the corrector is meant to compen—
sate for the local truncation error of the corrector formula [15, p.94].
As has been pointed out by Shampine [26] the modification term does not
in general provide a first order correct estimate of the local truncation
error for Hamming's method, but applying it (in PECME mode) is never-
theless equivalent to using a 5th order corrector (in PECE mode) and,

as fig. 26 shows, the stability is improved.

The ABM methods satisfy O‘j = a? implying that Milnels device provides a
first order correct estimate of the local truncation error. We can there~
fore on a sound theoretical basis modify after the corrector which, for
an ABM method of order p, is equivalent to applying an Adams-Moulton
corrector of order p+1 (in PECE mode). As has been noted earlier [ 26 ],
[27, p. 134] this improves on the stability for p < 12. We demonstrate
this fact in fig. 27 showing modes PECME and PECE (p = 2) together
with PECE and PMECE (p = 3) and in fig. 28 which is similar with all

orders raised by one.

Fig. 29 shows the stability regions for ABM (p = 4) in modes PECE,
PECME, PMECE and PMECME (just as fig. 26 for Hamming) and in
fig. 30 we are comparing modes PEC, PECE, P(EC)Z, F’M(ECM)2
P(ECM)Z, (p = 4), pursuing the investigations of Brown, Riley and

and

Bennett [ 2, methods A, B, C, E, F|. Measurements on the plots give
the following table of stability-intervals, which is a slight improvement
of formula (74) in [15, p.103].

PEC (~-o0.16, 0)
PECE (-1.28, 0)
P(EC)? (-0.88, 0)
PM(ECM) 2 (-0.65, 0)
P(ECM)? ( ~0.95, 0)

We can add to this, that with two function evaluations the largest stability
interval, (-1.41, 0),is achieved using PECME mode, a mode not considered

by Brown, Riley and Bennett.
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Fig. 27. ABM, p = 2 and 3.

Fig. 28. ABM, p = 3 and 4.

Stability regions for modes PECME, PECE (low order) and PECE, PMECE
(high order) indicated by letters A, B, C, D, respectively.
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Ve,

. . ! , .
: : } { : . t {
-1

Fig. 29. ABM, p=4, PECE, PECME, PMECE, PMECME

Fig. 30. ABM, p = 4, PEC, PECE, P(EC)?, PM(ECM)2, P(ECM)2.

Stability regions. The letters A, B, C, D, resp. A, B, C, E, F, indicate
the various modes,
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6. Explicit Runge-Kutta Methods

An explicit, s-stage, Runge-Kutta method can be written as

s
(10) et T Y TR 2wk
i1
(11) k, = f(xn+hai’ yn+h°jij1 Bijkj)’ i=1,2,...,s.
=1
d’] = O ; a’iz LI Bi i=2,3,¢oa’So

If this method is applied to the test equation, y! = )y, we get

Yot1 = Yn Ps (h)
where PS is a polynomial of order s. If s < 4 and the order of the method,
p=s, then PS coincides with the first terms in the power series for the
exponential and thus all Runge-Kutta methods of the same order p =s < 4
have the same region of absolute stability. The familiar picture for
p=1,2,3,4is found in [ 15, p. 227 ] and also in fig. 31.

When s > p the stability region may change and we have illustrated this
in fig. 31 by also including Merson's 5-stage, 4th order method which
is seen to have a larger stability region than the 4-stage 4th order

methods.

This extra degree of freedom when s > p, which is forced upon us when
p > 4, has been used to advantage by L.awson [16 ] who has tried to
maximize the interval of stability for 6-stage 5th order methods, and
also has recommended a formula with nice coefficients and reasonably
close to the optimum. Unfortunately a misprint has sneaked into this
formula [16, p.597 | where a closer examination and use of y=1/2
yields ky = f(x_+ 1/4h, y_+1/16h (3k, +K,)).

Lambert [ 15, p..143] cites the method and copies the error. Fig. 32
shows the stability region for L.awson!s method, which has the stability

interval (—5.604, 0), together with those of Kutta-Nystrom [19],
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NI S P I
——|—— b+
-3 -1

Fig. 31. Runge-Kutta, p = 1,2, 3,4 + Merson (indicated by M).

Fig. 32. Lawson (L), Scraton (S) and Kutta-Nystrom (N)

Stability regions for explicit Runge-Kutta methods.
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[15, p.122] (s =6, p = 5) and Scraton [25], [15, p.132] (s =5, p = 4).
The latter is remarkable by having its stability set consisting of three
disjoint regions in the complex plane. The two smaller regions, of

which only the one with positive imaginary part is shown in fig.‘32,

are situated in the positive half plane where absolute stability is not

a desirable feature.
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7. Obrechkoff Methods

Obrechkoff methods [21] can be viewed as linear multistep methods that
involve higher derivatives. Following the notation of Lambert [ 15, p. 199 |

a k-step Obrechkoff method using the first | derivatives may be weritten

k

i .k .
)
(12) D gy = o on D gyl qL=1.
=0 J I ntj =1 =0 ij 7 n+j k

The stability theory can be generalized in a straightforward manner to
these methods [ 15, p. 202], and the stability polynomial for the above

method is

[ —
i M
N

! - .
- R J

The boundary locus method can be applied with the complication (for I > 1)
that the boundary locus may consist of several separate curves, a
feature which we already saw in connection with (ordinary) predictor-

corrector methods,

We shall confine ourselves to giving the boundary locus curves for four
Obrechkoff methods. The first three are selected from [ 15, p. 201-202,
formulae (6) - (8) ] and shown in fig. 33. The implicit method (formula (6))
has a rather large stability region whereas the explicit methods have
stability regions that are only slightly larger than for the corresponding
4th and 6th order AB-methods. The fourth method which is taken from
[14, p. 173 ] shows some of the complications that may arise when there
are more than one value of h corresponding to each 6. The arrows in

fig. 34 show the direction of movement of the tonﬂ—vaIues, and the
number of roots of the stability polynomial of magnitude larger than one
in each region serve to illustrate the applicability of the right hand rule

for these methods also.
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Fig. 33. Three Obrechkoff methods.

Fig. 34. Jeltsch!s Obrechkoff method.

Boundary locus curves for selected Obrechkoff methods,
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8. Stiff Problems

A system of g ordinary differential equations is called stiff if the

of.
Jacobian of the system, i.e. the matrix with coefficients Syl_ , has eigen-
values M such that d

Re(xk) <0 Kk=1,2,.0.,q and

Max(|Rex, |) >> Min(|Rey, |) K=1,2,...,q.

Typical for the solution of a stiff problem is a short transient period

with large variations and a long period (steady-state) with small variations.
In the latter the step-size will be restricted by stability considerations
unless one employs a method whose region of absolute stability covers

a very large part of the left half—plane.. Various stability concepts have

been introduced with specific reference to stiff problems :

A~stability : The stability region contains the left half-plane [8]
Alq)-stability : The stability region contains a wedge, |arg(~h) | <o [32].
A(0)-stability : Alg)-stability for someq >0 [32].

Ao—stability : The stability region contains the negative real line [5].

Stiff stability : The stability region contains {F ] Re(h) < 0} N
{h | Re(h) < =a or [Im(h)| < b} for some a,b >0 [11].

A closely related area of research is that of rational approximations,

and in particular Padé approximations, to the exponential. So closely,
indeed, that any rational approximation to the exponential can be pro-~
duced by a suitable one-step Obrechkoff method. Corresponding to
Istability! we speak of acceptability of a rational approximation for a
particular value of the independent variable if the magnitude of the
rational expression is less than one. In particular we speak of A-, A(y)-,
and AO-acceptability if the acceptability region contains the left half-

lane, a wedge, or the negative real line.
P ’ ’
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9. Padé Approximations

P_(z)
Let Rts (z) = —i(z-)— be the (s, t) Padé approximation to exp(z) with s and t

the degrees of the numerator and the denominator, r‘espectively.‘ It is
clear that Rts (z), for s > t, cannot be acceptable at infinity and there—~
fore not even Ao—acceptable.i Birkhoff and VVarga [1] proved that Rts (z)

is A~acceptable for t = s (we denote these the diagonal Padé approxima-
tions), and Ehle [10] showed the A~-acceptability fort =s+1 andt = s+ 2.
Ehle conjectured and Wanner, Hairer and Ngrsett recently proved [31 ]
that no other subdiagonal Padé approximations are A-acceptable, although

they all are A,-acceptable [30].

We give the boundary locus curves for the (0, t) Padé approximations
(t=1-6) infig. 35. The approximations are acceptable 'outside! the
curves. We note that for t = 3 the approximations are A(y)-acceptable
(0 < 1m). We also note that for 1 <t < 4 the acceptability region is the
mirror image of the interior of the complement of the stability region for
the t-stage, t-th order Runge-Kutta method, a fact which follows easily
from the observation that the stability polynomial for this method is the

(t, 0) Padé approximation to the exponential.

Fig. 36 shows the (1,t) Padé approximations (t = 2 - 6) and fig. 37 the
(2, t) Padé approximations (t = 3-6).
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43 i

2
-

-
~2 -1 1

Fig. 36. Padé (1,t), t=2,3,4,5,6.

Boundary locus curves for Padé approximations to the exponential.
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Fig. 37. Padé (2,t), t = 3,4,5,6,

Fig. 38. Implicit Runge-Kutta, (Butcher, v = 2).

Boundary locus curves.
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10. Implicit Runge-~-Kutta Formulae

With specific regard to stiff problems implicit Runge~-Kutta formulae have
been proposed, the implicitness referring to the definition of the ki which
in section 6 were given explicitly by the previous kj' For the implicit

formulae we have instead of formula (11) :

S
(13) k. = f(xn+hai’yn+h'jz="1 Bijkj) i=1,2,...,s.
which means that a (large) system of (non-linear) equations must be solved
in order to find the ki' Despite such implementation problems implicit

Runge-Kutta formulae can be quite useful because of good stability proper-

ties.

We supply in fig. 38 the (identical) stability regions of two methods sug-
gested by Butcher [4, v = 2, table 1 and 2] which happen to be equivalent
to the (2, 1) Padé approximation. Compare with the (1, 2) curve in fig. 36,
In fig. 39 we show two other methods by Butcher [3, p. 51 ], [15, p. 160
and 154 ], one implicit with boundary locus curve equal to the imaginary
axis, (it is equivalent to the (2, 2) Padé approximation) and one semi-

implicit which is equivalent to the (3, 1) Padé approximation.

In fig. 40 we indicate the stability regions of three Rosenbrock methods,
Rz, 3(u, 6i), i=1,2,3, [33], one of them A-stable and the two others
Aly)-stable with o < .
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Fig. 39, Runge-Kutta formulae, (Butcher).
- 4
=20 |
15 |
Fig. 40. Rosenbrock methods, Rz, 3(u, 6i)’ i=1,2,3, (Wolfbrandt).

Stability regions.
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11. Backward Differentiation Formulae

Among the linear multistep formulae the most popular ones for stiff pro-
blems are the backward differentiation formulae (BDF) [11], [15, p.242].
In fig.v 41 we show the boundary locus curves of the p step, p~th order
BDF (p = 2, 3,4,5,6). The stability region is the 'outside! of the curves,
and all these BDF are A(y)-stable. Ngrsett [20 ] has derived a theoretical
criterion for A(y)-stability and using this he has computed the maximum .
There are small errors in his calculations forp = 3, 4 and6, one of which
is carried over by L.ambert [ 15, p.. 242].‘ The correct values (based on

Ngrsett!'s criterion) are given below.

P Q
3 ge° 2t
4 73° 211
5 51° 50!
6 17° 50!

It is tempting from fig. 41 to guess that the 7-step BDF is not A(y)-stable.
This is verified by the close~-up picture given in fig. 42 which shows that
this formulae is not even O-stable., But it is absolutely stable 'outside!

the boundary locus curve,

It might be mentioned here that it has been asserted since 1953 that the
BDF are not O-stable for p = 7, but the first proof was published in 1972
by Cryer.
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Fig. 41. BDF, p= 2,3,4,5,6.

Fig. 42. BDF, p="7.

Boundary locus curves for backward differentiation formulae.
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12. Counter—-Examples due to Cryer and Jeltsch

With the hierarchy of stability concepts : Ay A(0)-, Alg)-, stiff}

the following questions have in the past been asked : Is an Ao—stable
method also A(0)-stable ? and : Is an A(y)-stable method always

stiffly stable : Both these questions have been answered in the negative

by the following examples of linear multistep formulae given by Cryer [5]
and Jeltsch [13].

Fig. 43, 44 and 45 show three different ways for an Ao—stable method
to avoid being A(0)-stable :

h . = l
Fig. 43: Yoro = Yiet m he (fn+2 + an+1 + fn). (Cryer)
Fig. 44 : Yotz ~Yreo T Ve ~ Y, = ¢ (2fn+3 + fn+1 - fn). (Jeltsch)
H . _L_l' _2. 3 -g- .
Fig. 451 ¥ 3 =¥ Y1 =3 =3 N s + ) (Jeltsch)

The last example, due to Jeltsch, shows an A(a)-stable method

(0 = arctan 4/2 = 79° 591) which is not stiffly stable :

1 1 3
Y43 " 2Vmt2 "2 TP (5f

3
23~ T g

Fig. 46 : g P )
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Fig. 44,

Boundary locus curves.

Fig. 43.
_LQ
\:4
~,34 :i,gaa"- LI’|’ —— L AR
Fig. 45.

L.

!
-

Fig. 46.
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13. Other Contour Lines

What we have done so far can be viewed upon as drawing contours corre-
sponding to height 1 for the surfaces that describe the magnitudes of the
roots of the stability polynomial. How about other heights ? The answer
to this question can be used to give more information on those surfaces
and thereby give an idea on the sensitivity of a method to small pertur-
bations. We believe that this information can be valuable when trying to
produce new methods according to desired specifications by combining

well-known formulae.

A more immediate use of contours corresponding to heights less than 1

is for the study of exponential stability properties of methods [29, p. 183].
Contours on both sides of 1 can also be very useful for relative stability
considerations where we compare the roots of the stability polynomial

with exp (Re(h)) [15, p.79].

A rather interesting picture is seen for the 4 stage, 4th order Runge-
Kutta methods where contours are drawn for heights 1.4, 1.2, 1.0 and 0.8
in fig. 47 and for heights 1.0, 0.8, 0.6, 0.4 in fig. 48. The figures indi-
cate the presence of two saddlepoints and three minima inside the full
region of absolute stability.l It is interesting to compare this with the
stability region of Scraton!s method (fig. 32) and with the contours for

the second order Runge-Kutta methods [ 29, p. 183].

We have also selected the fourth order Adams-Bashforth method for further
inspection because of its simple, yet interesting boundary locus curve. In
each of figs. 49-52 we show the boundary locus curve together with one
contour (1-§) less than 1 and two (1+6 , 1+28) larger than 1, where
§=10.05, 0.1, 0.2 and 0. 4, respectively. In this way one of the toutside!
contours is repeated from one figure to the next, which may help in the
identification. With reference to exponential stability we read from the

figures that the largest root inthe stability region is always larger than 0. 8.
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Fig. 47. RK4, Contours 1.4, 1.2, 1,0, 0.8.

—t———H—
=1

Fig. 48. RK 4, Contours 1.0, 0.8, 0.6, 0.4,

Contours for fourth order Runge-Kutta methods.
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WA T

Fig. 49. AB4, Contours 1,1, 1,05, 1,0, 0.95,

¢ 4 : ' |
1 t u t t
- ,l

Fig. 50. AB4, Contours 1.2, 1.1, 1.0, 0.9.

Contours for the fourth order Adams-Bashforth method.
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F——t—t I 1 ]
= L 1
Fig. 51. AB 4, Contours 1.4, 1,2, 1,0, 0.8,
+ P y | Y PR B R | . |
! T T A L U
-3 =2 -1 2

Fig. 52. AB 4, Contours 1.8, 1.4, 1.0, 0.6.

Contours for the fourth order Adams-Bashforth method.
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Appendix

Coefficients for some linear multistep formulae

The Adams-Bashforth (AB), Adams-Moulton (AM), Nystrom (NY), and
generalized Milne~Simpson (GMS) formulae are all special cases of

a class which can be written

Yotk T Yntk-s h Jé;) Y v’ fn+q
q
= h .jéoBJ fn+J
where g = k-1t and
.- {1 for AB, AM . {o for AM, GMS
2 for NY,GMS 1 for AB, NY

The coefficients Bj depend on s, t and k, and Yj depend on s and t, but
we have preferred to stay with the ordinary notation and avoid too

many indices.

The following table gives the rational values of Bj’ i=o0(1)q, g=1(1)11
for the four formulae. The order of the formulae is g+ 1 (except for GMS,
a=2, which is of order 4) such that we have coefficients for orders
2(1)12. |

The values of Yy i= 11)11 and the error constants C = 1(1) 11

p_l_'l? p
can be found in the table since

Cop = Yp = (-1P- 8, (for q = p).

Note the implicit normalization, ai = 1, and that Yo © 1 for AB and AM
and Yo © 2 for NY and GMS,




51

The table also contains the values of o i=0(1)g, g= 1(1)11, for the

implicit backward differentiation formulae (BDF):

o0 Yntj —

q

1 ol -

1 J v Yntq hfm-l-q '
The order of this formula is g such that we have coefficients for orders
1(1)11. Note the implicit normalization, Bq ™ 1, which is different from
above. |t is easy, however, to transform back to the standard norma-

lization when using the table.

The error constants of the BDF (with aq = 1) are easily obtained from the

coefficients since

-1

+1 7 o+ (pH
p Cq (p+1)

C (for g =p).
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AB

2%3
-1

*
12%g;
5
-16
23

*
247,
-9
37
~59
55

72073,

J
251
-1274
2616
-2774
1901

‘440*Bj
~475
2877

-7298
9982
-7923
4277

6048073,
J

19087
=134472
407139
-688256
705549
~447288
198721

120960% 3,
J

-36799
295767
-1041723
2102243
-2664477
2183877
-1152169
434241

AM

72078

-19
106
~264
646
251

J

14407,
27
-173
482
~798
1427
475

60480*Bj

-863
6312
-20211
37504
-46461
65112
19087

120960*Bj

1375
-11351
41499
-88547
123133
-121797
139849
36799

*
90*g;
29
~146
294
~266
269

90*;»3j
-28
169

~426
574

~-406
297

3780%g,

J

1139
-8010
24183
-40672
41193
-23886
13613

3780*Bj
-1107
8888
-31257
62928
-79417
64440
-31635
14720

GMS

124

*
90%3,

1
-6
14
14
129
28

378078,

J

-37
264
-807
1328
33
5640
1139

3780*Bj
32
-261
936
-1927
2448
-639
5864
1107

BDF

60%a,
J

-12
75
-200
300
~300
137

60% Q.
J

10
~-72
225

-400
450
=360
147

420%a,
J

-60
490
-1764
3675
~-4900
4410
-2940
1089




q AB

8 3628800 8,

1070017
~9664106
38833486

~91172642
137968480
-139855262
95476786
-43125206
14097247

) 7257600% 8,

-2082753
20884811
~-94307320
252618224
~444772162
538363838
-454661776
265932680
-104995189
30277247

10 479001600*5j

134211265
-1479574348
7417904451
~22329634920
44857168434
-63176201472
63716378958
-46113029016
23591063805
-8271795124
2132509567

11 958003200*Bj

-262747265
3158642445
-17410248271
58189107627
~131365867290
211103573298
~247741639374
214139355366
-135579356757
61633227185
-19433810163
4527766399

AM

3628800*8j

-33953
312874
-1291214
3146338
-5033120
5595358
-4604594
4467094
1070017

7257600% 8,

57281
-583435
2687864

~7394032
13510082
-17283646
16002320
-11271304
9449717
2082753

479001600% 8,

~3250433
36284876
-184776195
567450984

-1170597042

1710774528

~1823311566

1446205080
~-890175549
656185652
134211265

958003200% 6,

5675265
~-68928781
384709327

-1305971115

3007739418

~-4963166514

6043521486

~-5519460582

3828828885

-2092490673

1374799219
262747265

NY

113400*Bj

32377
~292226
1173196

-2750822
4154230
-4195622,
2839756
-1208066
473977

113400*Bj

~-31648
317209
-1431554
3831628
-6738470
8141878
~-6854054
3979084
-1492898
505625

7484400% 8,

2046263
~-22551398
113017629

-340034124
682602678
~-960397296
967079178
~697919124
354701379
-118993898
35417513

7484400% 8,

-2008375
24138388
-133012023
444399504
-1002797874
1610471928
-1888266546
1629842928
-1029300999
465162004
-141086023
37425888

GMsS

1134008,

-833
7624
-31154
74728
-116120
120088
~42494
182584
32377

113400% 8,

729
-7394
33868

-92390
166582
-207974
181324
-68738
189145
31648

7484400 B

-42505
473164
~2400729
7335888
-15023790
21705672
~22652334
17067984
-6449433
12908620
2046263

7484400% 8

37888
~-459273
2557004

-8652249
19838928
~-32528046
39209928
~-35155374
23319504
~8533273
13325388
2008375

53

BDF

840*@j

105
~960
3920

-9408
14700
-15680
11760
-6720
2283

2520%

-280
2835
-12960
35280
~-63504
79380
~70560
45360
-22680
7129

2520*0&j

252
~-2800
14175

-43200
88200
127008
132300
100800
56700
-25200
7381

27720*&j

-2520
30492
-169400
571725
-1306800
2134440
-2561328
2286900
-1524600
762300
-304920
83711
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Coefficients for Padé approximations to the exponential function

The Padé approximations to the exponential function may be written

in the form

s _ S '
Ry(z2) = a &
where

P (z) = i -——L———(SH_.)! S!: zj
s, t i=0 (s=j)t j!

s .
= a.s,t) - 29 ,
=0

and

O

N

St
I

S, t Pt,s(--z)'

The following table contains the values of aj(s, t), j=0(1)s, s=0(1)6,
t=0(1)6.

Nl o 1 2 3 4 5 6

0 1 B
1 1 1 t=20
2 2 2 1

3 6 6 3 1

4 24 24 12 4 1

51 120 120 60 20 5 1

6 | 720 720 360 120 30 6 1

N| o 1 2 3 4 5 6

0 1 _

1 2 1 t=1
2 6 4 1

3 24 18 6 1

4 120 96 36 8 1

5 720 600 240 60 10 1

6 | 5040 4320 1800 480 20 12 1

N 0 1 2 3 4 5 6

0 2

1 6 2 t=2
2 24 12 2

3 120 72 18 2

4 720 480 144 24 2

5 5040 3600 1200 240 30 2

6 | 40320 30240 10800 2400 360 36 2
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S 0 1 2 3 4 5 6
0 6 t=3
1 24 6

2 120 48 6

3 720 360 72 6

4 5040 2880 720 96 6

5 40320 25200 7200 1200 120 6

6 | 362880 241920 75600 14400 1800 144 6

&N 0 1 2 3 4 5 6

0 24 t=4
1 120 24

2 720 240 24

3 5040 2160 360 24

4 40320 20160 4320 480 24

5 362880 201600 50400 7200 600 24

6 | 3628800 2177280 604800 100800 10800 720 24

N 0 1 2 3 4 5

0 120 t=5
1 720 120

2 5040 1440 120

3 40320 15120 2160 120

4 362880 161280 30240 2880 120

5 3628800 1814400 403200 50400 3600 120

6 | 39916800 21772800 5443200 806400 75600 4320 120
N 0 1 2 3 4 5 6
0 720 t=6
1 5040 720

2 40320 10080 720

3 362880 120960 15120 720

4 3628800 1451520 241920 20160 720

5 39916800 18144000 3628800 403200 25200 720

6 | 479001600 239500800 54432000 7257600 604800 30240 720
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Figures
Fig. Method Order Mode Page
1 Nystrom 5 P 6
2 AB 6 P 6
3 AB 2-6 P 8
4 Nystr'b'm 2-6 P 8
5 AM 2-6 C 9
6 GMS 4-7 C (GMS = Generalized Milne~Simpson) 9
7 Milne 4 PECE 11
8 Stetter 4 PECE 11
S Hamming 4 PECE 13
10 Hamming 4 P(EC)ZE 13
11 Hamming 4 P(EC)3E 13
12 Hamming 4 P(EC)4E 13
13 Hamming 4 P(EC)E, m=1,2,3,4 14
14 ABM 4 pPEC)E, m=1,2,3,4 14
15 ABM 6 PEC)E, m=1,2,3,4 16
16 ABM 6 PEC)'E, m=5,6,7,8 16
17  ABM 4 pPEC, m=1,2,3,4 17
18 ABM 2-6 PECE 17
19 ABM 3 PMECE, u =0, 1/2, 9/10, 1, 3/2 20
20 ABM 3 Pm(EC)%E u =0, 1/2, 9/10, 1, 3/2 20
21 ABM 3 PMECME, . =0, 1/2, 9/10, 1, 3/2 21
22 Hamming 4 PMECE, u =0, 1/2, 112/121, 1, 3/2 21
23 ABM 3 PECE, P(EC)?%E, PM(EC)%E, PMECE, PEC 22
24 ABM 4 PECE, P(EC)%E, PM(EC)%E, PMECE, PEC 22
25 Hamming &4 PECE, P(EC)%E, PM(EC)?E, PMECE, PEC 23
26 Hamming 4 PECE, PECME, PMECE, PMECME 23
27 ABM 2,3 PECME, PECE (p=2), PECE, PMECE (p=3) 25
28 ABM 3,4 PECME, PECE (p=3), PECE, PMECE (p=4) 25
29 ABM 4 PECE, PECME, PMECE, PMECME 26
30 ABM 4 PEC, PECE, P(EC)2, PM(ECM)?, P(ECM)? 26

(AB = Adams-Bashforth, AM=Adams-Moulton, ABM = Adams-Bashforth-Moulton)
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