METHODS FOR COMPUTING

LALR(k) LOOKAHEAD

by

Bent Bruun Kristensen¥*
and
Ole Lehrmann Madsen

DAIMI PB-101
July 1979
(revised April 1980)

* Aalborg University Center, Aalborg, Denmark

ISSN 0105-8517

Computer Science Department

AARHUS UNIVERSITY

Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 ~ 12 83 55

T ]

S




ABSTRACT

Methods for constructing LALR(k) parsers are discussed.
Algorithms for computing LALR(k)~lookahead are presented

together with the necessary theory to prove their correctness.
Firstly a special algorithm for the LALR(1) case is presented.
Secondly a general LALR(k)-algorithm with k>1 is presented.

Given an item and a state the algorithms compute their corresponding
LAL R-lookahead during a recursive traversal of the L.R(0)-machine.
Finally the LALR(Kk) algorithm is generalised to compute LAL R(k)-
lookahead for all items and states visited during the recursive

traversal performed by the former algorithms.
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1. Introduction.

The subject of this paper is a well known approach to the construc-
tion of LR(k) - parsers. In [ DeRemer 69 and 71] DeRemer proposed
to construct LR(k) -parsers indirectly by

- constructing the LR(0)~ machine,

- trying to resolve parsing conflicts by adding Jookahead to

items in the LR{0)-machine,. and

- if this fails,trying to solve parsing conflicts by splitting states

in the LR(0) - machine.

For this purpose two subclasses of the LLR(k) - grammars have been
defined: the Simple LLR(k)- grammars (SLR(k)) and the LLookahead
LR(k) —~grammars (LA LR(k)).

A grammar is SLR (k) if parsing conflicts in its LR(0)- machine
can be resolved by adding as lookahead to any item the set of ter-
minal strings (of .length k) that may follow the leftside of the
production in the item in any sentential form. |. e. the lookahead of an
item in a state T does not depend on T.

A grammar is LALRI(k) if parsing conflicts in its LR(0)- machine
can be resolved by adding only the necessary lookahead to the items.
The SLR(k) -grammars are a proper subset of the LALR (k) - gram-
mars. In the latter case lookahead for an item in a state depends

on the state whereas this is not the case in the former situation.

The LALR(k) - grammars are again a proper subset of the LR (k)-

grammars.

Unfortunately DeRemer only gives a practical solution for the
SLR(k) case. Other people ( [Lalonde 71], [ Anderson, Eve and
Horning 73], [ Johnson 74], [ Pager 77a and 77b]) have later
presented solutions for the other cases. The topic of this paper

is to present and prove efficient algorithms for computing LALR(k)

lookahead.



De Remeris approach is in widespread use and a number of parser
generators based on SLLR - and LALR grammars exist. The work
reported here is based on the experience gained by implementing

and using the BOBS-system,which is an LALR (1)- parser gene-
rator [ Eriksen et- al 73],-

The motivation for this paper is a general dissatisfaction with the
published algorithms for computing LALR (k) - lookahead. They

seem to be more complicated than necessary and their efficiency

in practice is sometimes doubtful. Furthermore the correctness

of these algorithms is seldom proved.

It is possible ( and likely) that not all of the material in this paper

is new. We have, however, felt the need for a consistent and coherent

exposition.

The rest of this paper is organised as follows :

Chapter 2 is a summary of the basic terminology and results needed
in the rest of the paper. Chapter 3 contains an informal description
of an algorithm for computing LALR (k)- lookahead. In chapter 4
some properties of LALR (k) are proved. An algorithm for compu-
ting LALR (1) - lookahead is important in practice and such an
algorithm is presented and proved correct in chapter 5. In chapter
6 a general LALR (k) algorithm is presented and proved correct.
The algorithm and the one of chapter 5 computes lookahead for a
single item in a state using a recursive procedure, An improved
version of the LALR (k) - algorithm that computes lookahead for

all items visited during the recursive calls is also presented,
This will avoid recomputation of lookahead if different calls have
overlapping recursive calls. In chapter 7 the algorithms are com-

pared to other published algorithms,.

Upper bounds for the complexity of the presented algorithms are
given in the respective sections.

The algorithms follow the same scheme for solving a set of recursive
equations. A general proof for the correctness of this scheme is
given in appendix A. Appendix B shows an example of an LALR(1)

computation.



2, Basic Terminology and Results

The reader is assumed to be familiar with the terminology and con-

ventions from [Aho & Ullman 72a] concerning grammars and parsers,
Especially the following concepts are used extensively 3 FlRSTk,
EFF,, FOLLOW_, &, LR-item, (canonical) collection of sets of

LR(k)-items, GOTO, CORE,and KERNEL ([Aho & Ullman 77]).

In the following we shall repeat some definitions and theorems,

sometimes in a modified form,

A context free grammar is always assumed to have the form

G =(N, %, P, S) where N is a finite set of nonterminal symbols,

2 is a finite set of terminal symbols, P is a finite set of productions,
and S is the start symbol, All grammars are assumed to be free of
"useless!! symbols. They are also assumed to be extended with a

new start symbol S!' and the production St = S -k, where -\

is a symbol not in (N y ).

We use the following conventions : small Greek letters such as

o, By, varein (N y Z)* ; small latin letters in the beginning of

the alphabet such as a, b, c are in X; small Latin letters in the end
of the alphabet such as v, x, y are in ¥ ; capital Latin letters in
the beginning of the alphabet such as A, B, C are in Nj capital Latin

letters in the end of the alphabet such as X, Y, £ are in (Ny o).
The empty string is denoted by e,

If A =»qaB is in P and u € s*#K  ihen [A » .8, u] is an LR(k)-

item,

If [A->a.8, ul €S and S is a canonical collection of LR(k)-
items then [A -, B, u] € KERNEL (S) iff |a | > O,

Recall that EFFk(a) captures all members of FIRSTk(q) whose right-
most depivation does not use an e-production at the last step, when

o begins with a nonterminal,



If M, N < 5*% then M ® N = FIRST_({xy | x € M, y € N}),

If M is a set of subsets of S* then UM means {x|x€m me Ml

Definition 2,1

Let G be a CFG, then the LR(k)~machine for G is LRM® =

k
(M(k3 , ISS , GOTOS), where MS is a set of (LR(k)-)states, one for

each set of items in the canonical collection of LR(k)-items. We do
not distinguish between a state and its corresponding set of items.

ISS is the Initial state. GOTOS is the GOTO-function defined on

G G
ka(Nuz)—»Mk.
O
For a given grammar G we will in the following assume the existence

of its L_RMS on this form. The superscript G is omitted when this
causes no confusion. GOTOk is extended in the obvious way to
*
M) X(NUZ)* 4 M.
The number of items in an LRM, is defined as #items = 2 |T],

where |T]is the number of items in T.

The notion of LALR can be summarized in the following definitions

and theorems :



Definitions

L.et G be a CFG , with LR(k)-states M , k > 0,

k’
(2.2) Let T ¢ M_ , then
L'Rk ([A’}@'B]’T) = {u \ [A > (e By u:l €T }'

(2.3) Let [A » q.B, u] be a LR(k)-item and let S ¢ M then
CORE ([A - a.B, u]) = [A » a, 8], and
CORE(S) = {CORE(l) | 1 ¢ s},
We shall not distinguish between the items [A - .8, e]
and [A - q.8].

(2.4) Let T € My » then
URCORE,_ (T) = {s ¢ M | COrRE(S) = T 1.
(2.5) Let T&€M_, then

O’
L_Al_Rk([A_xx,. 8l, T) =u {I_F%k([A-aoc.B],S) | S ¢ URCORE, (T) }.

(2.6) G is said to be LALR(k), k >0, if for all T ¢ My
and for all distinct items [A - q,B] and [B = y.] in T

we have

(*) EFFK(B) ®, I_ALRK([A -a B8], T) N I_AI_RK([B Y., T) =@,

(2.7) Let T € M., X € (Ny 9) and o € (N U Z)¥, then

PRED(T,q) = J (T} fa=e
.U {PRED(S,q") | GOTO_(S,X) = T} ifa =¢'X .

(2.8) Let TE€ M, then sSucc(T) = U{GOTOk(T,X) | XeNU L},

(¥) The @, _-operator has higher precedence than the N-operator.



Theorems

(2.9) Let T € Mk’ then
LR, ([A »a.8, TV ={w]|we FIRST (y) A
(1S

St=% YAy =YaBy A GOTO , Ya) =T J.

k' Tk

(2.10) Let TE M, then

0’
LALR ([A-5a.B],T)={w]| we FIRST, () A

St :*;m YAy = Yagy A GOTO_ (IS _, va) =T},

(2.11) Let T €M, then

V'S € PRED(T,q) : LR ([A 50a.8],T) =LR ([A 5.08],S)

(2.12) Let T € M_and let [A-.0] # [S ».s—{k], then
LRk([Ae.oc],T) =

U{FIRST, (Y@ LR ([Bogp.Ay],T) | [B-o.Ay,u] € T},

Proofs

2.9, 2.11 and 2, 12 follow directly from the algorithms developed
in section 5.2.3 in [Aho & Ullman 72a ] for constructing the canonical

collection of LR(k})~items. 2. 10 may be proved using 2.5 and 2. 9.




3 Informal Description of the LALR(k)-algorithm

The L_AL.Rk—Iookahead of an item [A - q.] in a state T may informally
be described as the set of terminal strings (of length k) that may
appear on input if during parsing the reduction A - o can be

applied in state T,

We want to compute LALR ([Asa. ], T) using the LR(0)-machine, LRM,,.
We are thus interested in the set of states where the parsing

may be resumed after the considered reduction,

Let S be a state containing the item [A - ,a] and GOTO(S,a) = T,
The parsing may be resumed Iin S after the reduction and will then
continue with a read transition on A, PRED (T,a) is exactly the set

of such states,

After the transition on A in S, the parse stack has the form :
ViV, eee v, S R, where R = GOTO(S,A) is the top member of the
stack, Any terminal siring of length k that may be read starting
from this parse stack is in LALR_ ([A » a.],T). These terminal

strings may be characterised as follows @
(3.1) They are in LALR_ ([A - .a],T), and

(3.2) State S contains items of the form [Bi <. A Yi],
i =1, 2, ¢0ey P, P > 0, and R will thus contain the
items [Bi - @ A, Yi], i=1, 2, o0y P. This implies that

U{ FIRST_ (v,) | i=1, 2, «.., P}

K

can be read from R. Now if some Y, =% w and |w| < k,

then we may reduce by Bi - A \Ei before we have

read a string of length k, This means that we must compute

the terminal strings that may follow Bi after such a reduc~

tion, We know that S is still on the stack when the

reduction B, - A ¥, is applied, so LALR_ ([Biecpi.A ‘J{i],S)
is the set of terminal strings that may legally follow Bi

after the reduction,




In order to compute L,AI_RK([Bi - cpi.AYi],S) we may
recursively repeat the above process by considering
PRED(S,@i) etc, This gives rise to a recursive L_AI_Rk.-

algorithm, Fig, 3.4 gives a picture of the situation,

There are a number of problems with formulating a recursive I_AI_Rk-
algorithm, First the I_RMO—machine is in general full of cycles which
may cause difficulties in terminating the recursion. Second the
predecessor "tree!' obtained by tracing backwards is very little

tree structured in general, as a lot of overlapping takes place.

This may cause difficulties in avoiding recomputation of LALRk-—
values that have been computed. It is a question of devising an algorithm

that is linear in # items instead of being exponential.

Before we present an algorithm we shall formalize the above dis-
cussion by characterising I_AI_Rk in terms of LRMO in the same way

as Lﬁ(is characterised in terms of I_RMP (2,10, 2.11),

u
Bi - ,cpiA‘k’i
s
] i cpiA
S B. » Cp--AY- R
! ! ! A B - Qp.A,Y
©. 7 1 I
.._m...,L)A 7 e
. AY.
y I [
i
(o8
Y
T N
o JA - a. B = oA




4 Properties of LALRI(k)

The first step in section 3 (3.1) was to trace backwards in LRM,,
We characterised I_AI_RK('[A - q. B8], T) in terms of
L_Al_Rk([A > ,a8],S) for all S in PRED(T,al.

Lemma 4,1

Let T € MO , then
LALR ([A - a B8], T)= U{LALR _([A - .a8],S) | s € PRED(T, o)}

Proof
Definition 2.5 and Theorem 2. 11 may be used {o show that

LALR ([A = o 8], T)=
UILR ([A= .aB],R) | R € M A CORE(GOTOK(R,OL)) = T}

and

U{LALR ([A > .aB],S) | S € PRED(T,a)} =

U{LR (TA~ .aB1,R) | R € M_ A GOTO (CORE(R), ) = T},

The lemma now follows from the fact that

CORE (GOTO,_(R,a)) = GOTO,(CORE(RY), a)
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The next step (3.2) was to characterise L_AI_'Rk([A > .0l T)

L.emma 4.2

Let T €My, [As.q]€T and A#S! Then
L_AL.Rk([A -».,a], T)=
U{FIRST, (V) &_ LALR ([B > 0. AY], T) | [B » @ AY] € T1.

Proof
By using 2,5 and 2,12 we obtain :

LALR, ([A - .a],T) =
U{FIRST, (¥) &_ LR ([B~¢.A¥],S) | S € URCORE, (T) A
[B » p.AY] € T}

U{FIRSTK(Y) ®_M | [B - 0.A¥] € T A
M= U{LR ([B~¢.AY],S) | s € URCORE, (T)}1.

Finally we have that
M= LALR ([B ~ ¢.AY], T)

and this proves the lemma,

By combining lemma 4.1 and 4,2 we obtain the following theorem I

Theorem 4,3

Let T €My, [A-0.8]€T and A#S!. Then
LALR ([A ~ a.B],T) =
UIFIRST (¥) ®_ LALR ([B - ¢.A¥],S) \
S € PRED(T,q) A [B » 0. AY] € S},
O
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5. The LALR(1) Case

In practice algorithms for computing LALR(1) are of much more
interest than a general LALRI(k)-algorithm for k > 1,
In this section we shall present an LALR(1) algorithm, Theorem 4,3

may in this case be simplified, FIRST_  in the equations 4.3 is

1
straightforward to compute directly on LRMO. This is expressed in

the following definition and lemma,

Definition 5,1

Let T € MO’ then
TRANS(T) = {a | [B »g.a¥] € T} U
U{TRANS(GOTO,(T,A)) | [B - . A¥] € T A A =% e}

l,emma 5,2

Let T € MO’ then
TRANS(T) = U{FIRST (8) | [A > 0. 8] € KERNEL(T)} - (e}

Theorem 4,3 may now be reformulated in the following theorem

Theorem 5,3

Let T € MO’ then
|_A|_R1("[A » a0 B],T) = U{ L(S,A)|S € PRED(T,al)}

where
L(s,A) = TRANS(GOTOO(S,A)) U
U{LALR ([B - 0.A¥],S) | [B » p.A¥] € S A ¥ =% el
Proof
It is easy to show that

LAI_RI([A ».0],8) =
U{FIRST (¥) | [B »pa.¥] € GOTOL(S,A) 1 - {e} U
U{LALR, ([B = ¢.AY],S) | [B » g, AY] € S A Y =% el
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The Theorem may now be proved using 5..2,

L.et us now consider the identities in 5,3 as a set of equations
defining a recursive function I_AI_F\’1 from ltem X State to P(Z*k).
We may then solve these equations in order toc compute LALR(1)-
lookahead, The equations may have more than one solution,
However, we are only interested in the smallest solution as

expressed by the following theorem,

Theorem 5.4

Consider the function
F : ltem X State - P(5*K)
defined by the set of equations

fe} FA=StA[Asa.8]€ET
F(Ae@.BJ,T) =
U{L(s,A) | 3 € PRED(T,a)} IfAZS!

where

L(s,A) = TRANS(GOTO,(S,A)) U
U{F([B -» 9. AY],S) | [B » 0. A¥] € S A ¥ =% e,

L_AI_R1 is the smallest solution to the equations in the sense
that if G is another solution then I_AI_R1(I,T) c G(1,T)

for all 1 and T,

Proof

L_Al_Fi’1 is clearly a solution (5, 3).
Let w € I_AL_R1([A - a. B, T), then we have from

(2.10) a derivation of the form :
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Sl@*yBOyzycpoBI‘k’oy:fx‘ycpoB]Z
T Y 9 By ¥z ey o By zos .
=Y Py Pp oeee @AY Z Yy @y 9 e g A Z
=Y Py Py e CPHOCBZ

i =0, 1, ..6, N, n =20

where Bi = @ Bi+1 R i

i
are productions and B_,. = A, vy + z, hence w € FIRSTI(YO)

and GOTOO,(!S,O,Y Py Py eee Py a) = T,

Let S, =GOTOLIS), y@y @, «o0o ) , 1 =0,1, ..., n,
then [Bi > . B, Yi] €S, and
Si E pRED(T, Cp'il'l"‘! e Cph O«) ) i = 0, 1 9 o0 nc

Hence

F‘([Bo =2 xyoj, Sy

N

F(By >y By v, Sy)
= F(B so .Av ], S )
c F([A 5q.8], T

As w € I'—'IRST1 (‘l’o) we have that
w € F([By = o . B, Y51, S,) and then
w € F([A - q,8], T).

This proves the Theorem.
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The algorithm may be realised by the function LALR-1 (5. 5),which
has a local recursive procedure LALR. Procedure LALR is a
straightforward transcription of the equations in 5.3 (or 5. 4).

Each level of recursion adds lookahead symbols to a global variable
L. A. The recursion is stopped either when no v =% e or when
making a recursive call with a set of parameter values that have
appeared in another recursive call.v A global variable Done collects
these parameter values'.The intuition behind Done is that I_AI_F?1

for parameter values in Done is either computed (and added to LA)
or a recursive call to compute it is initiated. In the latter case we
have that I_AL.R1 for the considered parameter values is ciréularly
dependent on itself. A general algorithm following this scheme is

presented and proved correct in Appendix A.

The function TRANS is implemented in a similar way. The global

variable TM collecis parameter values of TRANS.

Notation
In the algorithm the construct

FOR a € M WHERE P(a) DO S END FOR means

FOR a&€M DO
IE P(a) THEN S ENDIF
ENDFOR

The construct ASSUME has no effect and is used to give names to

components of structured variables.



Algorithm 5.5

FUNCTION LALR-1 (I : Item ; T : State) : SET OF 5 ;
VAR LA :SETOF r;

Done : SET OF Item X State

™ _S_I_Z_‘[Q_F_ State ;

PROCEDURE TRANS (T : State) ;
BEGIN TM:=TMU {T};
FOR [B 5¢. X V] € TDO
IF x€ R THEN LA : =LA U {x]
ELSE IF (x=" e) A (GOTO(T,X)¢4 T™M) THEN
END 1IF
END FOR

END TRANS ;

0

PROCEDURE LALR (I : Item ; T : State) ;
BEGIN Done : =Doney { (I,T) };
ASSUME 1= [A 54.8];
FOR S ¢ PRED (T,y) DO
™ :=¢@; TRANS(GOTO (S, A)) ;
FOR [Bsg. AV | €S

15

TRANS(GOTOO(T, X))

WHERE (v =™ e) A ([Bsg. AV |,S) § Done DO

LALR ([B »¢p. AV ],S)
END FOR
END FOR
END LALR ;

BEGIN Done:=LA:=TM:=¢@;

ASSUME 1= [A 5a.B]

IFE A=S! THEN LA :={e} ELSE LALR(I,T)
ENDIF ;

LALR-1 : = LA

END LALR-1 ;

Notice that the statement TM : = @ in procedure LALR may in fact be

removed,
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5.1 Worst Case Analysis

Below we give some remarks on time and space requirements of algorithm
5.5, This is done by discussing upper bounds of the number of recursive

calls of procedure LAL.R.

A trivial upper bound is the size of the domain for Done,which is the
number of states times the number of items. However, the algorithm only
makes a recursive call LALR(I, T) if the item 1 is in state T. This gives

that # items is an upper bound on the number of recursive calls.

The body of the outermost FOR-loop of procedure LALR computes
I_AI_R1([A -».a],S). The algorithm may be improved by adding ([A ».a ],S)
to Done in the beginning of the statement controlled by the FOR-loop, and

only execute this statement if ([A » .q |,S) was not already in Done.

The algorithm can be further improved by avoiding recursive calls
of the form LALR([B -».AvY ], S). This gives an upper bound that
is the number of all items in the KERNELs of all states.

For a grammar of the size of that of Pascal one may typically have about
300 states with 10 items per state and 2 items in the KERNEL of each
state. However, the difference between the upper bounds and the "normall!!

in practice is quite large.

5.2 The BOBS-~-implementation

A slightly different version of algorithm 5.5 is used in the BOBS-system,

Consider the following definition

Definition 5.6

For all A €N and SEMO we define

LAA,S) = TRANS(GOTOO(S,A))U
ULALR ([B 5. AY],S) | [Boo. Av]es A v=Fe)
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It is easy to see that the following lemma is true
Lemma 5.7

For all items [A 5.q ] and S € M, we have

LALR,([A -+ .0 1,S) = LA(A,S)

The procedure LLALLR of algorithm 5..5 may now be improved to the following

algorithm :

Algorithm 5, 8

PROCEDURE LALR (I : ltem; T : State) ;
BEGIN ASSUME | = [A 4. 8] ;
FOR S € PRED(T, )
WHERE  (A,S) ¢ Done DQ
Done : = Done y {(A,S)} ;
TRANS(GOTOO(S,A)) ~,
FOR [B »gp. AY] € S WHERE v =* e DO
LALR([B 5¢. AY],S)
END FOR
END FOR
END LALR ;

The domain of the set Done is now N X State. The function LA is com-

puted by the statement list controlled by the outermost for-loop.

The set Done is represented as a linked list of states, one for each non-
terminal. This could be improved by using a bit-vector of length equal

to the number of nonterminal transitions in the LR(0)-machine. In order
to ease the computation of PRED we have for all items [A - q. B] a list of

states in which the item appears.
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The LALR(1) algorithm has been used in the BOBS-system since 1973 and
has proved its usablility in practice. The system also includes an SLR(1)
lookahead algorithm, but the difference in speed between SLR(1) and

LALR(1) is so little that LALR(1) is used by default.

Finally we notice that the difference in speed between the algorithms

5.5 and 5.8 is minor.
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6. The LALR(k) Case

Here we shall give an algorithm for computing LALR(k) that works

for all k = 0, We cannot just make a recursive procedure using

4,3 directly but we have to make a transformation of 4,3 in the same way
as we did in the LALR(1) case., In the LALR(1) case 5.3 expresses
that all recursive dependencies of L.AL.FR1 are of the form

I_AI_R1(I', T < L_Al_R](l, T). In the LALR(k) case we need to
k—-concatenate FIRSTK(Y) with the result of a recursive call

I_ALRK([B » . AVY],S). This approach will not work if we use the
same scheme as in algorithm 5.5. The reason is that a recursive call
I_Al_Rk(l, T) will not necessarily compute L_AI_Rk(l,T) because of the way
the recursion is stopped when there are cycles in the LR(0)-machine.

We shall thus reformulate 4,3 into the following theorem :

Theorem 6,1

Let TEM, [A-a.8]€ Tand A#S!. Then

LALR ([A »a. B],T) =
u {FlsAlu FL (sA)U L (sA |S € PRED(T,q)}

where
F (S,A) = {w | w e FIRST (1) A |w|=k A
[B»p.AY] €S},
FL (s,A) = U {((FIRST _(¥) - {e]) ®_LALR([B »¢.AY],S) |
[B2gp.A¥] € S A i=k - lFlRSTk(‘Y)—{eH
A 0< i< ki,

min

L (S,A) = U { LALR ([B > AY],S) | [B »g.Av] € S
AY =% e}
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Notation

Let M ¢ Z*k , then lMImir\ is the length of the shortest

h i M M H == =
string in My if M = @ then [M[ . =0.
We may now view 6,1 as a set of equations defining the recursive
functions I_ALRk, I_AI_Rk_1,
of 6.1 is that the recursive dependencies have been separated into
two cases : either LAI_RK(H,T') c I_AI_RK(I,T) or
(FIRST, (¥) - {e})®_ LALR.(I',T') < LALR (I, T) with 0 < i < k.
Consequently L.AI_RI<
LALR, is in itself. LALR may use L.ALRi, i < k but the oppo-

1 Kk
site is not the case,

oo 3 I_AI_R1. The interesting property

is recursive In itself in the same way as

IT 6,1 is viewed as a set of equations, it is again the smallest

solution that interests us, and a theorem similar to 5.4 could be for-
mulated, Using 6.1 we may now define a recursive function LALR-k
that has an item, a state, and k as a parameter, All inner recursive
calls of LALR~k are with a decreased k-value so the recursion will
stop, As LALR-k is a function, all inner calls will of course

return the desired result which may be used for k-concatenation.

The function LALR-k has a local recursive procedure, LALR, which
compuies I_AI_Rk for fixed k in the same way as the procedure LALR
of 5,5 did handle LALR

to the appendix,

1.For* the correctness of this we again refer

We assume the existence of a function FIRST~k which is easy to

implement (see e.g. [Aho & Ullman, 72a]).
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Algorithm 6.2

FUNCTION LALR-k (I : ltem ; T : State ; k : Integer) ; SET OF Z*k ;

VAR LA : SET OF sl ; Done : SET OF ltem X State ;

PROCEDURE LALR (I : Item 3 T : State) ;

VAR F : SET OF s ; i s Integer ;
BEGIN Done : = Done U {{I, T)} ;
ASSUME I = [A - q. B] ;

FOR S ¢ PRED (T,a) DO
FOR [B » o, AY¥] € S DO
F:=FIRSTK(Y); LA :=LAU{weF | |w|=kK};
i =k - |F -{e} lmin
| 0< i< k THEN

P

?

LA: =LA U(F-{e}) &_ LALR-Kk([B »p.AY],S,i)

ENDIF ;

IF eeF A([B»g. AY¥],S) ¢ Done THEN
LALR([B = ¢. A ¥], S)

ENDIF

ENDFOR
ENDFOR
END LALR ;

BEGIN LA :=Done : = @ ;
ASSUME 1= [A5a.8]3
IF A =3! THEN LA :={e} ELSE LALR(I, T)
ENDIF ;

LALR-k : = LA
END LALR-k ;
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6.1 Worst Case Analysis

The trivial upper bounds of the number of recursive calls of procedure

LALR in algorithm 6,2 is clearly much larger than that of algorithm 5,5,

For each invocation of the function LALR-k we may use, as an upper
bound on the number of recursive calls of the procedure LALR, the
same bound as for procedure LALR of algorithm 5,5. This bound was
the number of items in all states (# items), Each invocation of LALR
may call recursively on LALR-k where k is at least decreased by one,
This gives an upper bound on O({ # items)k) for the total number of

recursive calls of procedure LALR for all invocations of LALR-k,

We may, however, save values of LALR-k that have been computed
and in this way avoid recursive calls of LALR~k that have previously

been computed,

For fixed i, a call of the form LALR-k(l,T,i) will thus only be per-

formed at most Q( # items) times, Each invocation of LALR-k has

0(#items) as a bound on the number of recursive calls of its local procedure
procedure LALR, Thus O(( # items)z) will be a bound on the number

of recursive calls of procedure LALR in all possible calls

LALR-k(l, T,i), Considering all calls of LALR in all instances of

LALR-k we thus obtain a bound on one call LALR-k(l, T,k) to be

O( # items + (k1) » ( # items)? ).

If we want to compute I_AI_Rk(I,T) for all I, T we will thus have a

bound on

O(k-+ (# items)?).
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6.2 lmproving the LALR(k)-algorithm

In the preceding section we have indicated that the efficiency of the
LALRk—algorithm may be improved by saving already computed
LALLR, ~information,

k
It is, however, possible to do better. In the following we shall describe

an improvement of algorithm 6.2, Consider the definitions :

Let TEM,, 1=[A sa.B], 1€ T and A # 3!, Then
[6.3] D, T) = {{[B 5> ¢.A{],S) | S € PRED(T,a) A [B-g. Ay] €S}, and
Closur‘ek(l,T) = {{1, T} U U{Closur‘ek(d,S) | (J,S) € D, (1, T)}.
Dk(l,T) is the set of pairs of items for which the double FOR-loop in 6.2
is executed. Closur‘ek(l, T) is the set of pairs of (item, state) that are
visited during the recursive activation of the initial call of LALR(I, T).
The improved algorithm will compute LALR -lookahead for all elements

k
in Closur'ek(l,T).

Consider the procedure LALR of algorithm 6, 2. Symbol strings added to
the set LA between the entry and exit of a call LALR(I, T) are clearly a
subset of L.AI_Rk(l, ™.

Let the set of strings added to LA between the entry
[6.4] and exit of a call LALR(I, T) be called Partial LALR(I, T)
(or PLA(l, T) for short). Thus PLA(l, T) c I_AL.Rk(I, T).

Thus PLA is a function that is determined by the performance of algorithm
6. 2 (to assure that PLA is well defined, we assume that the double FOR~

loop goes through the elements in Dk(l, T) in a fixed order.

In the improved algorithm procedure LALR will save PLA(I, T) in a glo-
bal variable Res(l, T) for all | and T visited during recursive calls of
LALR, Res(l, T) will be marked such that it is possible to see whether
Res(l, T) = LALR(I, T) or not. In the latter case the marking will also
indicate the lookahead set that has to be added.
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The reason that we only have inclusion in [6.4:[ is that we do not call

on LALR for parameter values which are already in Done,

If a call LALR(Il, T) implies that LALR(J,S) is a candi-
date for a call (i.e. (J,S) € D, (1, T)) and (J,S) € Done,
then LALRK(J,S) c LALRk(I,_T) but PLA(I, T) does not
necessarily include LAI_Rk (v, ).

[6.5]

A parameter set (J,S) may be in Done for one of the following two

reasons

A call LALR(J, S) has been. initiated but not yet comple-
[6.6 ] ted ; i.e. an instance of LALR with parameters J,S

is on the runtime stack,
[6.7] A call LALR(J,S) has been executed and completed.

In case [6.6] we have in addition to [6.5] that

I_Al_Rk(l,T) c LALRK(J,S), and thus
[6.8a] L.AL_Rk(I,T) = L_AI_Rk(J,S) and
PLA (I, T) c PLA(J,S)

In case [6.7 ] we may have a dependency which is similar to that in [6,8a].
LALRk(J, S) may depend on one or more elements on the runtime stack.

In this case we have that

there exists an (L, R) on the runtime stack such that :

LALR, (L,R) = LALR (J,S),

[6.8b] LALRk(l,T) c LALRk(L.,R), and thus
LALR (I, T) = LALR (L,R) =LALR (J,S), and
PLA(I,T) ¢ PLAL,R),

PLA(J,S) < PLA(L,R).
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k(\J,VS) does not
depend on an element on the runtime stack. Then PLA(J,S) = LALRk(J,S).

In case [6. ’7] we may alternatively have that LALR

In case [6.8a-b] we have that PLLA(J,S) must be added to Res(l, T) in
order to complete it to LALRk(I, T). In both cases we have that an element,
say (M,U), on the runtime stack will include PLA(J, S). In case [6.8a]
(M,U) = (J,S) and in case [6.8b] (M,U) = (L,R). We may then mark

Res(l, T) in such a way that we can add PLA(M,U) to Res(l, T) when
PLA(M, U) is computed.

The improved algorithm is outlined below :

[6.9] The set Done is separated into two sets Stack and FIN in
order to distinguish between the situations [6.6] and [6.7 [.
At entry to a call LALR(I, T), (I, T) is added to Stack ;
at exit from the call, (I, T) is removed from Stack and

added to FIN. (See also the algorithms in appendix A).

[6.10] Instead of saving lookahead elements in LA, these are

saved in Res(l, T).

[6.11] Suppose that we in the body of a call LALR(I, T) are
going to involve a recursive call LALR(J,S) (i.e.
(J,8) € Dk(l, T)). Instead of performing the call, we

check for one of the following situations :
[6.12a] If (J,S) € FIN then we add Res(J, S) to Res(l, T) ;

[6.12b] If (J,S) € Stack then we add a special symbol #(J,S) to
Res(l, T);

[6.12¢c] If (J,S) ¢ FIN U Stack then we perform a recursive call
LALR(J, S) and add Res(J, S) to Res(l, T). (Res(J,S)
includes PLA(J, S)).
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Having executed the double FOR-loop we have the following two situations :
[6.13] No symbol #(L,R) is in Res(l, T). Then Res(l, T) = LALR, (1, T).

[6.14] One or more symbols #(L.,R) are in Res(l, T).

Let #(L'VSI)’ #(LZ,SZ), cee #(Ln,Sh) be the special

symbols in Res(l, T), and let #(Li’si) be below #(Li_l_.i,Si_H)
(i=1, 2, .., n=1) on the runtime stack.
Then PLA(L,,S.) ¢ PLA(L,,S,), 1=2, 3, ..., n.

Consequently we need only keep #(L1,S1) in Res(l, T).
Furthermore if #(1, T) is equal to #(L1’S1

even delete #(1_1,51). If we eliminate as many special

) then we may

symbols as possible then we end up with one of the following

two situations :

[6.15a] The symbol #(l, T) has been removed from Res(l, T). Then
Res(l, T) = L.A]_Rk(l, T). All occurrences of #(1, T) in sets
Res(M, U) where (M, U) ¢ FIN are then expanded by Res(l, T).

[6.15b] One symbol #(L.,R) # #(1, T) is in Res(l, T). All occurrences
of #(I, T) in sets Res(M, U) where (M,U) € FIN are in this
case replaced by #(L,R).v (Note that PLA(L,R) includes
PLA(I, T)).

The expansions described in [6. 15a—b] may be performed by keeping track

of the sets
[6.16] RF(1,T)) ={M,U) € FIN | #(1, T) € Res(M, U)}

In [6.15b] we have that Res(l, T) = {#(L.,R)} UM, wherell ¢ s*K 1t s
sufficient just to save only #(L.,R) in Res(l, T), and then let the call
LALR(I, T) return {#(L,R)} UM, Thus in [6.12c], instead of adding
Res(J, S) to Res(l, T), the set returned by LALR(J,S) should be added
to Res(l, T). We will then have that for all (I, T) € FIN, either

Res(l, T) = LAL_Rk(I, T) or Res(l, T) = {#(L,R)} where (L., R) € Stack
and LALR, (1, T) = LALR (L, R) and PLA(I, T) ¢ PLA(L,R).
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We have earlier argued that in a call of LALR-k(l, T,i) an upper bound
on the number of calls on its local procedure LALR is O(# items),

If we call LALR-k for all I, T we get a total upper bound on LALR
which is Q(( # items)z).

In the improved algorithm we save LALR for all (J,S) visited during

Kk
the call, Consequently a call LALR-k(l,T,i) will not call LALR on
(J,S) if LALR(J,S) has been performed in another activation of
LALR-K with the same i, An upper bound for calling LALR-k for all

I,T will thus be Q(# items),

If we consider an upper bound that includes calls of procedure
LALR in all recursive activations of LALR-k, then we may com-
pute LALR-k(l,T) for all I, T with a bound

Q- (# items)),

In [Kristensen & Madsen 80 ] a general version of the above described
algorithm is given in all details together with a correctness proof. A
more detailed complexity analysis is also given; This analysis considers
the number of times the statements in the double FOR-loop is executed.
Furthermore the overhead involved in saving and expanding the #(L, R)

symbols is considered. The results may be summarised as follows :

Consider the following definition

[6.17] Sk(I,T) = {(L,R) | (L,R) € Closure, (I, T) A (1,T) € Closure, (L, R)}

The statements in the double FOR-loop is executed at most [Dk(l, T)| times
for an activation LALR(I, T).

The expansion described in [6,15] will perform at most 1S, (1, T)| replace-

ments for an activation LALR(I, T).
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Let n, = > | D

K o En | I,T) | and m_= 2 [Sk(l,T) | »
’ k

(
k k

(I,T)emk
where mk ={(I,T) | T¢ M ATE T}, Then LAL_Rk(l,T) may be com-

puted for all (I, T) by executing at most
QO(k- (nk+mk))

primitive operations (like : =), |-operations on lookahead sets, and

FIRSTI< computations. Both Nic and m, are less than # itemsz.

In [Kristensen & Madsen 80] it is furthermore shown that ny using the
UNION=-FIND algo‘rithm in [Aho, Hopcroft & Ullman 76 | to implement
the saving and expansion of the #(L., R)-symbols the bound m_ may be
replaced by

where G(n) € [1,5] if ne [1,

6.3 Computing FIRST, on the LR(0)-Machine

k

In algorithm 6. 2 we have assumed the existence of a FIRSTk algorithm
for computing the lookahead strings. It is interesting to investigate the
possibilities for computing the lookahead strings directly on the LRMO.

It might be simpler since a lookahead set is a union of sets of strings that
can be read from certain states. Such approaches are used by DeRemer
and L.al_onde to compute SLR(k) and LALR(k) sets respectively. The pro-
cedure TRANS in algorithm 5.5 is an algorithm for the case where k = 1,

The only complication is to handle e-productions.

Here we shall describe an algorithm for the general case with k> 1.
Whether or not this algorithm is more efficient than a standard algorithm

for computing the FIRST, function is open.

k
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Consider the situation in algorithm 6.2 where in state S we are to

compute L_AL_Rk
[B; *CPi-A Yi] sy 1 =1, 2, oo, N, N >0, be all items in S

for the item [A - ,a]. Let the items
with a dot before A,

In order to compute LALR we need the sets FlRSTk(\fi), i =1, 2,.0.,N

k
and we assumed the existence of a function FlRSTk,

The set U{FIRSTK(‘Pi) li=1,2, ..., n} may be computed by simu-
lating all possible steps that the parse algorithm may take

starting in the state GOTOk(S, A) with an empty parse stack, Let W

be the string read during a path in the simulated parsing. A path is

continued until either
[6.9a] lw| =k, or

the parser is about to reduce with one of the

[6.9b]  productions B, » @ A Y. and the depth of the

L

parse stack is |‘fi

It is not sufficient to compute U{FIRSTK(Yi) | i =1, 2, ceey N},
as a wwith IWl < k needs to be k-concatenated with

LALR ([B - ¢ « A v.1,8) if ¥ =¥ w, We must be able to dis-
tinguish between a w coming from a ‘i’i and a Vv from a \Hj with

i #Jj. For this purpose we introduce a set of new symbols

[6.10]  ® = {#A 5qp] | A g €Pl.

which will be used as markers, added to the end of strings w for

which |w]| < k.
We will then compute the set
[6.11] F—"#(S,A)=U{FIRSTK@H 7#[5 %CP.A&,]) | [B » @.AY] € S}

The above sketched algorithm must then be modified, In case [6,9b]
the string w must be replaced by w #[Bi > A Yi].
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In algorithm 6,2 the lines

FOR [B »p. AY¥] € S DO
F = FIRST (v) ; LA:=LAU{w [ |w|=K;

are replaced by :

FI : = F_(S,A); LA : =LA U (FI n =R
FOR [B »p. AY] € S DO

Fi={w | w# € FI 1,

[B-ecp,A‘f]

In general it is not possible to simulate all steps of the parser in
order to compute the set F#(S,A). If the grammar contains e-~productions
or some nonterminal, B, is circular (B y B), then there may be
strings that have an infinite number of right-parses, In such cases

the parser would enter a loop where it only performs reductions,

This is the same problem as that of simulating a nondeterministic

bottom-up parser (c,f, [Aho & Ullman 72 a] p. 303),

Let a configuration of the parser be a pair consisting of the
parse stack and the string read so far. Let (L,w) , (M,v) be
configurations, Let the relation - be defined by (L,w) - (M,v)
iff the parser in one step may go from (L,w) to (M,v), I, e,

either by a read-iransition or by a reduce transition,

(1) if the grammar is circular we may reach a confi-
guration (L., w) such that (L,w) >t (L,w) is

possible,

(2) if the grammar contains e-productions then we may
reach a configuration (L, W) such that for ail n > 0
there exist configurations (Li’W) (i = Ty 2, coey n)

such that {L,w) St (|_1,W) St ST (I_n,w),
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If one keeps track of all configurations being reached by the par-
ser then it is easy to check for the above situations, In the second
situation there is an {1 > 0 and a j > i such that

(L,w) T (I_i,vv) >t (Lj,W) and top(l_i) = top(I_J_),'

Below we describe a data structure that in a simple way Keeps
track of the configurations entered during the simulated parse and

which makes testing for the two conditions simple,

The configurations may be collected in a tree where each node is

a pair consisting of a state and a string :

A node identifies a unique configuration in the following way :
The stack is the list of states in the nodes on the path from the

root to the node, The stiring is the string at the node,

During the simulated parsing, the tree will be expanded with a node

each time a transition is carried out,

If during parsing an attempt is made to add a node that is already

in the tree then we have circularity,

If a branch in the tree has the following form then we have that the

stack may grow infinitely
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7 Comparison

Our LALR(1) algorithm was originally inspired by the one presented
in [l_al,‘..onde 71]. This algorithm is presented In general terms
leaving several questions unanswered and only a few argumenis

for its correctness are given, l.al_onde!s algorithm is very recur-
sive and repetitive, but as stated in [L_al_onde 71] this is neverthe-
less essential for computing localised lookahead, For this reason it
is necessary ito limit the amount of recursion as the algorithm
otherwise might easily turn out to be inefficient, Lalondes algorithm
involves a lot of overhead in keeping track of the so-called "main-
line predecessor paths!" and !'side paths!'", The use of mainline pre-
decessor paths and side paths seems to be an unnecessary compli-
cation, This complication seems to arise because of an attempt to
compute I:lRSTk

algorithm this corresponds to calling LALR~k recursively whenever

as anh integral part of the LLALR-algorithm. In our

the simulated parser (section 6. 3) performs a reduction, However,
there is a great difference between reductions that imply situation
[6.9b] and those which do not. This clearly gives problems with

handling the so-called side paths,

The reformulations of Theorem 4.3 into Theorems 5,3 and 6,1

are essential for avoiding this complication.

In [Andersen, Eve and Horning 73] two methods for ccnstructing
LALR(1)-parsers are treated, The first method involves the con-
struction of LR(1)-items but a merging operation is used to com-
bine states that only differ in their lookahead, A second method
is in the form of a recursive expression of LALR(1)-lookahead.
This expression is similar to Theorem 4,3 for k = 1 An outline

of an actual algorithm is given without any pproof of correciness,
The outlined algorithm seems close to the LALR(1) algorithm of
section 5, but on the other hand it is mentioned in [Andersen, Eve
and Horning 73] that their technique is the one being used by
[Lal.onde 71].
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In [Altman 73] a new type of grammar, the comprehensive LR(k)-
grammars, are introduced, These grammars are situated inbetween
SLR(k) and LALR(k) grammars and they are introduced in order

to reduce the amount of overhead involved in Lal.onde's algorithm.

The first LALR(k) definition in [Anderson, Eve & Horning 73] also
appears in [Aho & Ullman 72a] and [De Remer 74], Informally
stated : all states in the LLR(k)-machine that only differ in lookahead
(having a common CORE) are merged into one state., If no conflicts
arise, the grammar is said to be LALRI(k), (This is the LALR(k)
definition (2.6) used in this paper). Techniques based on an initial
construction of a full L_R(k)-machine, followed by a state merging
are unrealistic for practical grammars, even in the case of k = 1,
Especially space requiremenis are too expensive, Such approaches

are thoroughly discussed in [Aho & Uliman 72b],

The Lane Tracing Algorithm of [Pager 77] is essentially another
implementation of the methods of L_al_.onde, Anderson, Eve and
Horning and our method, He gives a detailed description of an
LALR(1)-algorithm, For a given item and state he computes a set
of lanes. A lane is a list of pairs, (item, state) that appear in

the recursive calls of algorithm 5,5, In order to reduce the number
of different lanes that have to be treated, he makes optimisations
that correspond to the way recursion is stopped in Algorithm 5,5,
The upper bounds for his algorithm and algorithm 5.5 seem to be
the same. However, his algorithm is very complicated and impene-
trable and no correctness proof is given, It is claimed that similar
principles can be used for a general LALR(k) algorithm but no de-

tails are given,

The methods described in [Johnson 74] and [Aho & Ullman 77 ] represent
approaches that are quite different from the ones described above,
l.ookahead symbols are characterised as being generated either
spontaneously or as propagating, Consider Theorem 5,3 and let w

be in L_AL_R1 ([A » a.B], T) If W is in TRANS(GOTOO(S,A)) for some S,

then w Is generated spontaneously whereas if w comes from some
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I_ALRI([B »>cp..AL|J],S) then w is said to propagate from the item

[B ——>cp-A\lJ:| in S. The method of Aho & Ullman then consists of

(1) computing all spontaneously generated symbols and (2) then keep
on propagating symbols until no more propagation is necessary. This
algorithm computes LAL.R(1) lookahead for all items in the LR(0)-
machine. This is, however, usually not necessary as it is only neces-
sary to compute the lookahead for conflicting items.' According to

Aho & Ullman the algorithm has been designed for speed and may take
up too much space to be practical. A variant of this method is used in
YACC [Johnson 74] where the use of space has been turned into time

requirements.

Aho & Ullman do not give a correctness proof of their algorithm.

Since the submission of the original version of this paper, another
efficient LLALR (1) algorithm has been published in [De Remer &
FPennello 79].‘ This algorithm resembles the one described in section

6. 2, restricted to the k = 1 case. The main difference is that in
[DeRemer & Pennello 79 ] the problem is transformed such that standard
algorithms for directed graphs may be used.. A brief comparison of the

algorithms is included in [Kristensen & Madsen 80].
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Appendix A -~ A correctness proof for a general algorithm.,

The presented algorithms follow the same scheme for solving a set
of recursive equations, Here we give a general proof for the correct-

ness of this scheme,

Definition A1l

Let F be a function from a set D into powersets of R and let F be

defined by the following set of recursive equations :
Va€eD: Fla)=06) U UFD) | b e Pa}

where G is a function D - P(R) and for all a€ D, P_is a

powerset of D,

The following algorithm (A2) computes the smallest solution (FO) to
the above equations provided that the function G is correctly imple-

mented and that the domain of D is finite,

The solution is smallest in the sense that if F1 is another solution
then Fo(d) c FI(d) for all d € D,

(*) P(R) is the set of powersets of R.
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Algorithm A2

FUNCTION F(a : D) : SET OF R ;
VAR Res : SET OF R ;
Done : SETOE D ;

PROCEDURE F1 (a:D);

BEGIN
Done : = Done U {a} ;
Res :=Res U Gl(a);
FOR b € P_ WHERE b ¢ Done DO
F1(b)
ENDFOR ;
END F1
BEGIN
Res : = Done : = @ ;
F1(a) ;
F :=Res;
END F ;

The functions computed by algorithm 5.5 and 6. 2 do not directly have

the same form as F but a simple transformation will do.

An upper bound on the number of activations of the local procedure F1

in algorithm A2 is
O (o)
for one activation of F.
By considering the FOR~loop in F1 to be of the kind

FOR b € P_ - Done DO

then the algorithm F is linear in |D

To prove that algorithm A2 correctly computes the minimal solution to

the equations in A1, we may split the set Done into Stack and Fin without

affecting the r‘esult..
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The elements in Stack correspond to recursive invocations of F1
that are on the runtime stack whereas the elements in FIN

correspond to invocations of F1 that are processed,

The algorithm is equipped with assertions, and these are enclosed by

M. As an abbreviation we define

FSF
FS

U{F (o) | b € Stack U FIN }
U{Fo(b) | b € Stack }

Resr_., is the value of Res at assertion P,

Consider {P1} S {P2}. If x is a variable then x' in P2 is the

value of x before the execution of S.

Algorithm A2 then appears as :
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FUNCTION F(a : D) : SET OF R;
yﬁ Res : SET OF R
FIN , Stack : SET OF D ;
PROCEDURE F1 (a : D) ;
BEGIN "{P} = { FSF = Res U FS
Stack : = Stack U{a} ; Res : = Res U G(a) ;
nfQ} = {(FSF = Res U FS = Res, U Gla) U FsS U
UlFyle) [ e e P nFING J
FOR b € P WHERE - b € (Stack y FIN) DO
mfQu
F1(b)
"{R} = {FSF = Res U FS = Res! U FS u F(b)
A b € FIN A Stack = Stack!}!
END FOR ;
"QAVDbEP : bc Stack Uy FIN 3!
Stack : = Stack - {a} ; FIN : = FIN y{a}
(S} = {FSF = Res, U FS U Fo(a)}"
END F1 ;

il

BEGIN Res := FIN : = Stack : = @
NFSF = Res U FS A Res = FIN = Stack = @ }"
F1{a)
"{Fyla) = Res = y{Fyb) [ b € FIN} }u

F : = Res
END F ;



Proof

(a)

(b)

(c)
(d)

(e)

()

(a)
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Lemma A3
(FSF = Res U FS)
Fi(a)
(FSF = Res U FS = Res! U FS ( Fo(a)}

{a € FIN} A {Stack = Stack!}

We assume all inner calls of F1to be correct and next

verify that the body of F1is correct,

If P holds then @ will hold, Note that
UF,lc) | c € P n FIN} < FSF,

R is true after the inner call,

We must prove that R implies Q,
Res! |y FS in R is identical to the value of
Res U FS before the call Fi(b) i.e.
R> FSF = Res UFS
= Res_ uGla) U FS y
U{Fole) | ¢ € P, n FIN'Ju Fylb)
Resp, uGla) y Fs u
U{Flc) | c € P nFIN}

o Q

QA Pa c (Stack U FIN) o
FSF = Res | FS = Res., U Fs U c&fa) U
Uf{F,le) | ¢ ¢ P_}

= Resp U Fs U Fo(a).

Taking a off the stack and adding it to FIN does not change

the above assertion, so we see that S holds,

As D is finite, the FOR-loop and the recursion will stop as

FIN is increased in each call,
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Theorem A4

Algorithm A2 correctly computes the minimal solution to the

equations in Af.

Proof :

Follows from lemma Al and the pre/post assertion of the initial
call of F1 in F,
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Hér*e we give an example of a computation of LALR(1)-lookahead

Consider the grammar G defined by the productions

The interesting parts of the

1

St eS-—l
S -

A - d
B - d
D -

E >

(the empty string)

fA | fBx | faD

z | e

abAE | abBx IaD iAz ‘Bx

LR(0) - machine for G are given below

4

St 5 .S 2 S - a.,bAE
S - .abAE a, bBx
.abBx a.,D
.ab D - ,fA
LAz . TBx
. Bx . fTaD
A - ,d b
B » .d h
3 s » ab, AE
ab, Bx
A - ,d
B -» .d
; Jd
d A - d,

B - d,

D~ f.A
f. Bx
f.ab
A - ,d &
B -» .d
5 D - fa,D
D - ,fA
. TBx
a
. TabD
d
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A call LALR-1{[A - d. ], 6) may traverse the following parts of the

predecessor tree in the order given by the number of the boxes,

6 A - d.,
d d d
2 3 5
1 .S - . Az 3 S_eab,AE 4 D of. A
include z include z
ab T f
4
6 3
1 St >, S 2 S -»a,D 5 D-sfa.,D
include -
fa fa
! 9 10 \
1 St »,S-
include - 2 S-~»a.b 5 D-»fa,D

A box contains the number of the state and the considered item
and the lookahead added in this state, The interior nodes in the
predecessor tree corresponds to states where a recursive call is
made, The leaves correspond to states where the recursion is
stopped either because no item is of the form [B - v. A ¥] where

Y =% e (box 2, 4 and 7) or because the considered item and state is
in Done (box 9 and 10),
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