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ABSTRACT

There is an interesting search strategy (due to James B. Rothnie) for
efficient implementation of a limited kind of selection criterion for a rela-
tional database. This strategy is here generalized to arbitrary relational
calculus expressions, and an analysis of the resulting improvement of per-
formance is given. The strategy is used in a relational database system
TGR and an overview of the architecture of this system is presented. TGR
uses microprogrammed database primitives for searching the database.
This approach is very similar to the use of a database processor although
it also allows flexible change of processor design. The beha\)iour‘ of TGR
in evaluating typical queries is analyzed and the results are used for
pointing out the bottlenecks in a relational database system with a particular
type of structure. As a conclusion the construction of a database processor
with the database primitives from TGR as instruction set is recommended.
This would be a step towards getting acceptable performance in a relational

database system.



1. INTRODUCTION

Since 19270 when Codd suggested the relational model for database systems
[CODD?O] , there has been a great deal of discussion of how efficiently
working systems supporting this model can be implemented.

The relational database system TGR was designed to investigate these per-
formance problems. It was implemented as a Danish candidate thesis project
by Birgitte Madsen, Erling Madsen and the author [TGR?S] .

The purposes of the project were the following:

1. Design and implementation of an intermediate language, based on

relational calculus, which can be used as a basis for implementing

a full database system.

2. Design and implementation of a microprogrammed database-machine

with a number of database primitives which can be used for the imple-

mentation of the intermediate language.

3. Design, implementation and investigation of optimization features

intended to speed up retrieval from the database.
A few notes can be given about these purposes:

1) Intermediate language:
It has not been our intention to. implement a full database system and
therefore TGR lacks a lot of the facilities a commercial database |
system has to include, e.g. concurrency, security, integrity checks,
backup/recovery etc. However, proposals of how to implement these
features through the use of the intermediate language are given in

[ TGR78].

2) Microprogrammed database machine:
There is a close analogy between our use of microprogrammed database
primitives and the design of special hardware ([ OZKA75], [SU75],

[L_IN76], etc. ). As a tool for research, microprogramming is much



more flexible than the use of specialized hardware because the micro-
programmed primitives can be changed until the most suitable form

is reached. A hardware database machine can then be constructed

using the experience gained through the developmernt of microprogrammed

primitives.

3) Optimization features:
This is the main subject of this paper. The investigation of optimi-
zation features is directed toward strategies not usually used in rela-
tional database systems. However, such generally used optimization

features as use of indices and multilists can be included in TGR, too.
The rest of the paper is organized as follows:

Section 2 contains an outline of TGR. The various parts of the system are

described and an overview of the optimization features is given.

Sections 3 and 4 describe one of the optimization strategies implemented in
TGR. It is a generalization of a strategy developed by Rothnie [ ROTH74]

for a limited kind of calculus—expressions.

Section 5 gives a description of the current status of the system - what is

now implemented and what is intended to be implemented in the near future,

Section 6 investigates the performance of TGR using the optimization strategy
presented in section 4. Two queries are executed on example databases and

time measurements are given for these queries.

In section 7 our experiences with TGR are presented as the conclusion of

this report.

Throughout the paper some terminology introduced in [ ROTH74] is used.

However, most of the terms are self-explanatory.

Notation used in all figures is:
flow of control and data -

flow of data. =



2. AN OUTL.INE OF THE DATABASE SYSTEM

A full database system based on TGR would look like:

User language

interface ‘ ’U\
DBMS ¢ n
EXTERNAL
SYSTEM
EXS
Intermediate o ‘ )
language  ~ [T TTTTTTTITTTTTTTITTTTTTTT -
interface .
TGR -
DATABASE
Figure 2.1.

The intention with TGR is that it should be used as a "bottom end! in a full
DBMS. TGR only implements basic retrieval and update operations -~ other
features like security, integrity checks, recovery etc. are implemented

in EXS, the external system. Precisely what to implement in EXS and how

to implement it is up to the designer of the full DBMS containing T GR.

The interface between EXS and TGR is ILT, the Intermediate Language
of TGR.



ILT is a set-oriented, relationally complete language based on the relational
calculus. It is very similar to the ALPHA language [CODD71] and is in-
tended to be used as a target language for a user language (like SEQUEL.
[ASTR76] or QUEL [STON76]) implemented in EXS. A precise definition
of the syntax of ILT is found in [ TGR78].

For ease of implementation the format of ILT is very restricted:
- prenex normal form
- conjunctive normal form
— without the negation operator,

but none of these restrictions causes a loss in the descriptive power of ILT.

The rest of this paper will mainly deal with the retrieving of data, since this
is the most interesting part of the system. Update and data definition facilities

are described in [ TGR78].

The choice of t he relational mode! for TGR gives a very high degree of data
independence which is necessary to achiéeve the goals mentioned in the introduc—
tion. In Fig. 2.2 everything below the one-variable expression interface

can be changed, without affecting the higher levels of the system (e. g. the
usage of different logical or physical storage structures or a hardware im-

plemented database machine).
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Figure 2, 2

TGR functions_in the following way: An IL.T expression, possibly including

several tuple-variables, is decomposed by the DECOMPOSER to a sequence

of one~variable expressions. Each one-variable expression is executed by
the DATABASE MACHINE (DBM) and this execution transfers some tuples
to the DECOMPOSER. These tuples are used by the DECOMPOSER both to

select the next one-variable expression to submit to the DBM and to do the
feed-back optimization described in sections 3 and 4. Also, some of the

tuples are transferred to EXS as the value of the ILLT expression.

The modularity in this approach gives the possibility to separate the DBM
into modules, one for each storage structure supported, as described in

[ ROTH74] and to create and remove modules without affecting the DECOM-~
POSER. However, when dealing with complicated expressions joining

several relations, it has a great impact on the performance to choose the



right sequence of one-~variable expressions for the DBM. The approach in
TGR is to use the knowledge of existing storage structures (or use of spe-
cial hardware) in the decomposition to find the optimal sequence of instruc-
tions for the DBM. This is based on a generalization of ideas presented by
Pecherer in [PECH76] but .only partially implemented. The approach will
not be further discussed in this paper but a detailed description is found in
[ TGR78].

As mentioned before the structure of the DBM can vary a lot within the design
of TGR. The only demand is that the one-variable interface be supported.

The DBM can be software, firmware or hardware implemented and for instance
the hardware implemented '"'search processor!' developed at Braunschweig
[LEIL?S] could be used directly in TGR, since it supports a one-variable

expression interface,
Our design of the DBM uses a mixture of software and firmware implemen-—
tation and it is our hope that this design can eventually be used as a guideline

for a hardware implementation of some parts of the DBM.

The structure of the DBM is:

DATABASE
MACHINE CONTROLLER
— e one-page
instructions
PAGEHANDLER EXECUTOR
control data transfer from
information to ¥ secondary to
disk-control- primary memory
ler

Figure 2.3




The components in Figure 2.3 are:

- The CONTROLLER: translates a one-variable expression to a sequence
of one-page instructions for the EXECUTOR at the same time control-
ling the PAGEHANDLER.

- The PAGEHANDLER tr‘ansfer‘svdata pages, which are going to be

examined by the EXECUTOR, between secondary and primary memory.
- The EXECUTOR: executes the one-page instructions.

TGR is implemented on a system comprising two microprogrammable com-
puters, RIKKE and MATHILDA ([STAU74], [KORN75]) belonging to the
experimental equipment at DAIMI, University of Aarhus. A short description

of this system is found in appendix A.

The EXECUTOR of the DBM is microprogrammed on MATHILDA to simulate
a database processor. The rest of TGR is programmed in BCPL on RIKKE,



3. ORPTIMIZATION OF TWO-VARIABLE EXPRESSIONS

In this section the basic ideas behind feedback-optimization, one of the
optimization strategies used in the decomposer of TGR, will be outlined.
These ideas are the same as used by Rothnie in DAMAS [RéTH?ﬂ , the

only difference being their adaption for TGR.

Let us ook at a very simple example:

Example 3. 1:
R1 is the relation Al A2
3 6
4 5
10 2
15 0
R2 is the relation Al A2
2 8
5 7
9 6
8 3
The query

GET RILAT: VR2(R1.A1> R2.A1TARI.A2< R2.A2)

is executed as follows:

For the tuple <3,6> from R1, relation R2 is scanned to see if the qualifica~
tion of the query is satisfied (i.e. VR2 (3> R2.A1A 6< R2.A2)). This is
not the case since the tuple <5,7> from R2 does not satisfy (3>R2.A1 A

6<R2.A2). From this we gain the following information:

If the condition F1 = (T1.A1< 5V T1,A2=2 7) is true for a tuple T1 in R1

then the qualification for this tuple is false.

It is clear that the above statement is true because we know that the tuple
<5,7> exists in R2 and F 1 is the negation of the condition from the qualifi-

cation.
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The information is used to eliminate those tuples from R1 which cannot cause
a true qualification. For each of the tuples eliminated,a partial scan of R2

is saved. The elimination is done by creating an elimination-filter on R1

containing F 1 as condition. For every tuple found in a scan of relation R1
the elimination-filter is checked and, if the condition is fulfilled, the tuple

is eliminated.

F1 is actually true for the next tuple <4, 5> from R1 and this tuple is there-

fore eliminated.

The tuple <10, 2> does not satisfy the filter so R2 is scanned. The qualification
is true for this tuple which means that < 10> is in the result., The scan of R2
gives the information that every tuple T2 in R2 satisfies (10> T2. AT A 2<T2.A2).
Using this information some tuples can be found for which we can deduce,

without scanning R2, that the qualification is true, namely the tuples T1

from R 1 satisfying F2 = (T1.AT12=2 10A T1.A2< 2). Therefore a true-filter
onR1is e‘stablished, containing F2 as condition. If a tuple T1 from R1

fulfills F2, it is known in advance that the qualification for T1 is true, and

there is no need for a scan of R2. In this way a complete scan of R2 is saved

for every tuple from R1 satisfying F2.

In fact, the last tuple <15,0> from R1 satisfies the true-filter giving < 15> as
a result item. After that the execution of the guery is finished with < 10> and

< 15> as result,

Example 3. 1 was a very straightforward example of the use of Rothnie's
optimization method. Treating more complex queries is rather complicated
expecially when dealing with multi-variable expressions, which is the sub-

ject of the next section,.

Of course, thé use of these optimization methods will not always give a faster
execution of a query. Therefore the setting and clearing of options is used

to decide whether or not to use a specific method. In DAMAS option A and
option B are used, corresponding to the use in TGR of respectively true-
and elimination-filters. In example 3.1 the true-filter would only be created

if option A was set and equivalent with option B and elimination~filters.
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In DAMAS and TGR an option C is implemented, too. Option C is concerned
with the elimination of duplicates. For each duplicate the calculation of the

qualification is avoided. Option C will not be further discussed in this paper.

When to set an option is a very difficult problem which is not yet solved. In

section 6 a little bit more is mentioned about this subject.
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4, OPT IMIZATION OF ARBITRARY (MULTI-VARIABLE) EXPRESSIONS

The generalization of the feedback~optimization technique from section 3

has been done with the following intention. When evaluating a (multi-variable)
query in TGR, all information gained from a search of a relation should be
used, where advantageous, to avoid some searches later in the evaluation,

thereby speeding up retrieval from the database.

Section 4 describes how this goal is achieved, when and how information is
collected and how it is used. Furthermore an explanation is given of a
division of each of the two-variable options A and B, mentioned in section 3,
into three parts to encompass the new situations in multi-variable expres-

sions.

Example 4.1

R1 is the relation Al
13

5

4

9

R2 is the relation Al
8

3

R3 is the relation Al
7

S

R4 is the relation Al

SE RN
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The query

Ql = GET (R1.A1, R2.Al1):
VR3IR4 (R1.A1 <R3.Al AR2.Al > R4. AT A R3. Al # R4.AT)

is executed by an algorithm using nested loops, and a stage in this execution
is represented by a diagram like Fig. 4.1. An arrow means that the search

of a relation has come to this particular tuple called the current tuple of the

relation. If no arrow is pointing at any tuples in a relation a search of that

relation is not in progress and the current tuple is undefined,

R1 R2 R3 R4
- 13 -+ 8 7 7
5 3 9 4
4 11
9
Figure 4. 1.

Fig. 4.1 represents the start situation where searches are opened on R1
and R2 and the next thing to happen is to search R3 and R4 to check the qua-
lification of Q1 for the combination (<13>, <8>) from R1 and R2.

R1 R2 R3 R4
- 13 -+ 8 -+ 7 7
5 3 9 4
4 11
9
Figure 4, 2

In Fig. 4.2 a search of R3 is opened, to check if all tuples from R3 satisfy
the condition C1 =[13 <R3.Al] (from R1.Al < R3.Al in the qualification of Q1).
C1 is immediately false for the tuple T3 = <7> and therefore the qualification

for (<13>, <8>) is false. T3 can be used to establish the information that a
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tuple from R1 satisfying F1 = [RI VAN - 7] always gives a false qualification.

Therefore an eliminination-filter is created on R1 with the condition F1

(in fact, the filter is on the combination of R1 and R2 but as it only concerns

R1 it can be put on R1). This is an example of a use of option-Blall, a special

instance of option B concerned with the universal quantifier.

The next interesting situation is:

R1 R2 R3 R4
13 - 8 - 7 5 7
- 5 3 9 4
4 11
9
Figure 4.3

where the qualification for (<5>, <8>) is examined. The search of R4
checks if there exists a tuple T4 from R4 such that: [8 > T4. AT A7 # T4, Al].
This is the case for the tuple <4> from R4. Having the knowledge that the
tuple <4> with this property exists in R4, a true-filter F2 = [RZ.AI > 4 A
R3. Al # 4] is put on the combination of Rl, R2, and R3.

This is an example of option Asome, an instance of option A concerning the

existential quantifier.

In the situation

R1 R2 R3 R4
13 - 8 7 7
-+ 5 3 - ] 4
4 11
9

Figure 4. 4
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the combination <5>, <8> and <9> from R1, R2, and R3 satisfies the true-
filter F2 and therefore R4 is not searched. The search of R3 has now been
finished and the qualification for <5>, <8> is found to be true. This can
be used in the following way: If a combination of tuples T1, T2 from R1 and
R2 by insertion in the qualification creates the same or a weaker condition
than the condition created by (<5>, <8>) then the qualification is true for
(T1,T2). Therefore a true-filter F3=[TI1.Al <5 A T2, Al = 8] is created
for the combination of R1 and RZ2.

The option used here is called option Aall, an instance of option A concerning

the universal quantifier.

Ri1 R2 R3 R4
13 8 -+ 7 7
- 5 -+ 3 9 4
4 11
9
Figure 4.5

In the situation presented in Fig. 4.5 a search of R4 for a tuple satisfying
[3 >R4.AT A7 75 R4.A1] is opened which eventually yields a false. At
this point an elimination~filter F4 = [R2. Al < 3 A R3. Al = 7] is created to

ensure that the search of R4 is avoided when a search is opened with a
Istronger! condition than [ 3 > R4, A1 A7 # R4.A1]. This option is called

option B2some.

The search of R3 is also stopped since the condition was false for the tuple
<7>. Again an elimination-filter is created, this time on Rl and R2 with the
condition F5 = [RI.Al =27 v R2. Al < 3]. In option B2all, as this option is

called, as in option Asome and option B1lall, the tuple which causes the con-

clusion of the search, is used in the creation of the filter to give as strong
a condition as possible. Using the other options no such tuple can be used

because information is obtained concerning an entire relation.
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The filter F5 is the last filter created in this example and the filters F1,
F2, F3, F4, and F5 are shown in Fig. 4.6.

F2 - true. <5,8>
[R2.AT>4 & R3. A 1#4]

F3 -~ true,

[RT.AISS & R2.A128] e
e @ F4 ~ elim.
[R2.A1=3 & R3.A1=7]

F1-elim.
[R1.A127]

F5 -~ elim.
[R1.A127 V R2. A 1=3]

13 8 =7 7
- 5 - 3 9 4
4 11
9
-
Ri1 R2 =3 R4
Figure 4.6

In Fig. 4.6 the filter F1 is redundant because it is contained in F5. Situations

like this should be avoided although they are not always as simple as in Fig. 4.6,

R1 R2 R3 R4
13 - 8 7 7
5 3 9 4
- 4 11
9
Figure 4.7

The execuiion of the query is continued and in the situation in Fig. 4.7 the
true-filter F3 is used to find that the qualification is true for the tuple

combination (< 4>, <8>).
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R1 R2 R3 R4
13 8 - 7 7
5 - 3 9 4
- 4 11
9
Figure 4.8

In Fig. 4.8 the elimination-filter F4 is used to finish the search of R3

thereby concluding the examination of the qualification for (<4>, <3>).

Both (<9>, <8>) and (<9>, <3>) satisfy the elimination-filter F1 and these

combinations are therefore eliminated, too.

Example 4.1 should give a (very simplified) picture of where and how the
feedback-optimization is used in TGR. In the rest of this section a more
precise description is given of the various options and the structure and

use of filters.

4, A Filters

In example 4.1 filters were constructed from (parts of) the qualification,
perhaps using some of the current tuples. If R1, R2, R3 and R4 were large
relations a great number of filters would be created which would mean a
very big overhead in the algorithm. To avoid this, a strategy for the crea-
tion of filters is used differing slightly from the straightforward one used

in example 4. 1.

For instance, take a look at Fig. 4.4 and the filter F3=[T1.A1 <5A T2. Al = 8].
If the r‘elatioh R1 contained a tuple <6> then the filter F = [TI.AI <6 A

T2.A1 = 8] is created at some stage of the algorithm. F has a structure

similar to that of F3. The only difference is that the tuple <6> from R1 is

current when F is constructed while <5> from R1 is current at the time F3

is constructed.
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This is used in the following manner by the algorithm for execution of a

particular query:

1)

2)

4)

For each relation it is decided which options to set.

For each of these options a filter is created where the condition is
only a template with holes to be filled with values from the current

tuples.

Every time a filter is going to be created at execution time the only

thing to be done is to write attribute values of some of the current

tuples into a data area for the filter. This gives a new value group

in the data area of the filter.

To find out if a combination T of tuples satisfies a filter the template
is filled with values from one value group at a time to establish a
condition C for T. This is continued until either C is true for the
combination T i.e. the filter is satisfied, or until every value group

has been inserted in which case the filter is not satisfied for T.

The precise definition of a filter can now be given.

A filter consists of the following parts:

a)

b)

c)

d)

Relation-part

The filter is checked for combinations of tuples from these relations.

Type

Elimination - or True-filter.

Condition

The template to be filled with values from d).

Data-part

A data area containing attribute values of tuples which are current
tuples at some specific points of time (shown in section 4. D, tables
4.1 and 4. 2).
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From this it is seen that the time spent to construct filters is negligible
since the construction of templates is done only once and the insertion in the
data-part of values from current tuples is an extremely simple operation.
Therefore the overhead introduced by the use of filters is concerned only

with the checking of filters.

4, B Conjunctive Normal Form (CNF)

The query is required to be in CNF for two purposes:

1) To be able to use a simple algorithm [PECH76 | to optimize the order

of the relations in the nested loops.

2) To make it possible to create fairly simple rules for the construction

of filters.

Further, CNF is used to have a simple means of finding the condition Gi to

be checked when searching a relation Ri'

A precise definition of Gi can be given in the following way [PECH76]:

LetQ= 94 A 9, AN 9yes k =2 1 where the gJ.'s are disjunctive expressions:
— J J J > < <
gJ. \/1\/\/2\/...\/\/53,sj 1, 1<k
where the YJi's are simple expr‘essiohs, i.e. either

RI.AC op Rq.Ad or RI.AC op K,

op € |=, ?’é, <, >, =, 2}, 1<1,g< mand K is a constant.
Define
Hg = { i | one or more domains of Ri are referenced by 95}
§
and
P=igjll=max(l—l )f, 1<i<n
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where n is the number of different relations in Q. (The situation where one
relation is searched more than once is not considered here to avoid the

treatment of tuple-variables.)

Then

G = I, 4 I, " N 9p,
where

p'={9p1’gpg’ ’gpm}

(In the above definitions the order of the relations is assumed to be 1,2,...,n).

The use of CNF causes no loss in the descriptive power of the language
since every query can be converted to CNF. The conversion is straightfor-
ward [Chan73] but may introduce several copies of parts of the query. It is
a trivial matter to keep track of these copies thereby avoiding more than

one evaluation of the same condition.

Example 4, 2

Again, let us look at Example 4. 1:

Q1 =GET (R1.A1, R2.A2) :
VR3 IR4 (R1.AT<R3.ATAR2.A1> R4 ATARIATE R4, AT

Here no condition is used searching R1 and R2, i.e. G1 = true and Gz = true.
By the time of the search of R3 the expression R1.A1< R3.A1 can be cal-
culated and therefore G3 =RI1.AT<R3.A1l. Equivalently, Gq = R2.A1>
R4.A1TAR3.AT# R4, A1,

4,C Rules for the construction of filters

Until now no query involving the logical operator V has been treated. This
is because it often complicates the construction of templates considerably.
Option Asome and option Aall are especially complicated and the precise
rules for these options will not be given here. Instead we will look at the
rules for option Blsome. (The precise rules for all options are given in

[ TGR78].)
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Option Blsome

Option Blsome is used where Gi is not satisfied for any tuples in the rela-
tion Ri' The filter F is in this case consiructed only from Gi since the

knowledge achieved from the search of Ri concerns only Ri and Gi'

If
G. = g, ANg., A. A g,
i Iy is I
where
g. = viv vl v v
1 2 : S
then
F = 4d° Ag!l AL A gl
i in in
where
g! = ZJ/\ZJ/\ ’../\zj
i 1 2 " Sy

where ZJP is formed from YIJA using the rules:

D vl = (ReA ) op (RLA ) k< i gives

It

J 1
z (Rk.Ap) op (Ek'Ap) where

E, is the current tuple of Rk; that is a hole is left in the template for

k

the element Ek'Aq and at execution time the value Ek'Aq is put into
the data-part of the filter when appropriate (i.e. Gi is false for every
tuple in Ri)‘

op op'!

< >

> =

= z

> <
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20 Yl = (ReA) op(R.A ) Kk<iandI<igives

i
zl = (Rk./—\p)-nop (Rl.Aq)

3) Yi = (Rk.Ap) op K

I -
Zr‘ = (Rk. Ap) _Iop K

k< i, K is an arbitrary constant, gives

4) For other forms of \/ﬂ\ the following applies.

If G. = VY then z) = false,
i r r

No filter can be constructed from this Gi’ i.e. the filter is false

for every tuple.

Otherwise Z'Jﬂ = true.

The YIJ,\ part of Gi does not contribute to the filter.

Example 4.3

Let us look at relations R5, R6, R7 and R8 and the situation

R5 R6 R7 R8
-+ 3 - 4 4 7
5 A 2 9 5
. . .
from the execution of the query
Q = GET (R5.A1, R6.A1): IAR7 IRS8 (

Here we have

®
\"
n

ooooooooooo

R5.A1T=R6.A1TV R5.AT=2 R7.A1
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The use of the rules for option B lsome gives the template

[R5.A1 =R6.A1A R5.A1=< X] where the X indicates the ""hole' for R5. A1,
an attribute value of the current tuple for R5. In the above situation from the
execution the current tuple of R5 is < 3> and the value 3 is therefore Inserted
in the data-part of the filter. Afterwards the filter is checked following the

algorithm on p. 18 for every new combination of tuples from R5, R6.
In the use of option B Isome the or-signs do not give very complicated rules.

Instead the filter in many cases will be very weak, as is seen from example

4, 3 where the V in the query is converted to an A in the filter.

4.D Options

If a certain option is set, data is inserted into the data-part of the filter at
situations shown by the following table 4. 1 and table 4. 2. (The tables deal

with quantified relations only.)

The third column shows when the data area of the filter is filled, after
searching the relation Ri' The order of relations is 1,2,...,n, i.e. the filter
is on the combination Rl’RZ’ .o ’Ri-—1'

In table 4,1 Ri is quantified by an existential quantifier.

option filter type situation

Asome true G. and the "rest!! of the qualification

(concerning only R. .,...,R ) are true
. i+1 N
for some tuple in Ri'

Bl1some| elimination Gi is false for every tuple in Ri'

B2some| elimination Gi is true for some tuples in Ri’ but for
all such tuples the '""rest! of the qualifi-
cation is not.

Table 4,1
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In table 4., 2 Ri is quantified by a universal quantifier.

option filter type situation
Aall true G. and the '"rest! of the qualification
(concerning only R qre-e ,Rn) are true

for every tuple in -

B1lall elimination Gi is false for a tuple in Ri'

B2all elimination| There exists a tuple in R. for which G,
is true but the rest of the qualification
is not.

Table 4.2

The only situation where useful information is achieved about a relation Ri
from the target list is when no tuple from Ri satisfies Gi' This situation

is equivalent to the situation from option.B lsome for an existentially quantified
relation and therefore this option is used for relations from the target list.

No other options can be used because the qualification is evaluated only for

a combination of tuples from all relations in the target list.

In section 4 the implementation in TGR of a feedback optimization method for
arbitrary database queries was presented. A pr‘oposall is given in [ROTH?Z]
for an extension of DAMAS to implement the feedback mechanism for queries
with any number of unquantified and existentially quantified relations. As
mentioned earlier the feedback optimization in DAMAS and TGR for two-
variable queries are equivalent except for the use in TGR of filters; this
postpones the time for the use of the feedback information. It means fewer

searches but requires more administration and primary storage space.

In the implementations of the more general database queries mentioned there

are some big differences, namely:

- In DAMAS feedback information is achieved for a single relation R and
the appropriate actions are done for R immediately. This is completely

equivalent to having a temporary filter on that relation in TGR. The
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filter lasts until a new search is started on R. Therefore all infor-
mation is then lost in DAMAS. In TGR another line of action is
chosen, namely to have filters on combinations of relations; the fiiter

survives throughout the whole execution of the query.

- The use of the universal quantifier gives additional filters in TGR
and also causes differences in the filtering conditions concerning the
existential quantifier. The reason for this is that a universal quanti-
fier in a query changes the deductions that can be made from a result

of an existentially quantified relation.

- The conjunctive normal form of queries in TGR gives a systematic way
of creating templates. Many special situations have to be handled in

Rothnie's proposal, especially in connection with the V operator.

Consequently, Rothnie's proposal for DAMAS does not use all the information
found by searching relations. To reach this goal in TGR the use of filters
instead of immediate actions as in DAMAS is hecessary. Therefore more
overhead and a greater need for storage space is introduced in TGR but

we believe that this is more than counterbalanced by the additiona! number

of saved searches.

A more detailed comparison between TGR and DAMAS is beyond scope of this
paper but some more information about the performance of TGR is given in

section 6.
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5. STATUS OF IMPLEMENTATION

In this section we describe what has so far been implemented of TGR, and

what we intend to implement in the near future.

Combining Fig. 2.1, Fig. 2.2 and Fig. 2.3 from section 2 gives a picture

like Fig. 5.1, which shows the structure of a full database system using TGR.

User language
interface T 7777 'y

DBMS
Y
External system

EXS

TGR

DECOMPOSER
l i

DATABASE MACHINE

CONTROLLER

T N

PAGE-
HANDL ER EXECUTOR

DATABASE

Fig. 5.1
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To get a useful test vehicle, we have already implemented a small part of the

external system, e.g. data definition facilities.

All the relational calculus interface LT between EXS and TGR concerning
retrieval operations is implemented, but only simple update commands are

available.

The DECOMPOSER is implemented on RIKKE in BCPFL as described in sec-—
tions 2-4. The only options implemented at this point of time are option Blsome
and option C. However, most of the subroutines used for option Blsome can be
used for the other options too. Therefore the implementation of these options

is straightforward and should soon be finished. No access paths are yet sup-
ported by TGR, i.e. tuples within a-relation are stored randomly and no

indices or other logical structures are supported. This is a drawback of the
current implementation of TGR, using conventional disks for secondary storage,
since this method gives poor performance for large relations. Anyhow, the

implementation is very useful to test the feedback-optimization.

The CONTROLLER and PAGEHANDLER are implemented on RIKKE in BCPRL.

as described in section 2.

Some parts of the EXECUTOR are microprogrammed on MATHILDA and the
communication modules between RIKKE and MATHILDA are finished. In the
present version of TGR a BCPL version implemented on RIKKE is being used
until the microprogramming on MATHILDA is finished. The performance of the
BCPL version of the EXECUTOR gives an idea of the performance of a final
microprogrammed version as the factor of improvement in execution time

usually lies between 10 and 100,

The present version of TGR is very useful as a test vehicle for the various
optimization techniques to find the relative improvement of performance. It
cannot be used to search in large relations because this would involve com-
plete scans of these relations. To get better performance in this case too,

one of the following lines of action can be taken:
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1)

Finishing the microprogramming on MATHILDA and further developing
the system to implement varijous access paths for the relations. To
support these access paths additional microprogrammed primitives
should be implemented and the CONTROLLER should then translate one-
variable expressions to a sequence of instructions utilizing the access
paths on the relation. If no access paths exist for a certain relation,

the usual approach is chosen. The DECOMPOSER also uses knowledge
of the existence of access paths to find the optimal order of the rela~

tions.

To replace the DATABASE MACH]NE.by a special-purpose device like
the "search processor!! mentioned on p. 7. This storage device searches
the entire database throughout a revolution and therefore no access paths

are necessary.

Proposal 1) is chosen for the following reasons:

The optimization done in TGR is very well suited for queries involving
many relations whereas nearly nothing is done for queries concerning
one relation. The performance of a "search processor!! still is not good
enough for queries involving many relations since the number of revo-
lutions would be some fraction of the product of the sizes of the in-
volved relations. This number would in most cases be too big to get
acceptable performance but here for instance the feedback optimiza-
tion would help considerably. Anyway, we believe that the optimized
number of revolutions would in some cases still be too big for today!s
equipment thereby ruining demands on maximum response time. When an
extremely fast bubble~-memory with large capacity appears maybe the

problem will be solved and proposal 2) above can be chosen.

A characteristic of most existing database applications is that most of
the queries are for a single tuple of a single relation. [t therefore seems
a waste to search the entire database unless you have an extremely fast

secondary memory [SENK78].
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The price of a fixed head disk as used in many database machine
projects [OZKA75], [SU75], [LIN76], is still too high to be really
competitive with the price of one-head disks and the price seems to

be remaining high.

Bubble memories or CCD's could be used instead and are used inisome
projects [CH/—\N?B] but they are still too expensive and of too small
capacity and speed. Therefore 2) above cannot yet be chosen. However,
the development of cheaper and cheaper bubble memories with growing
capacity shows that there is a future in this area for bubble memories.
In a few years database machines with a large capacity bubble memory

should be commercially available.

In some database machine projects (the search processor [LEIL78] and
the Data Base Computer (DBC) [BANE78]) another strategy is used,
namely to read all tracks of a cylinder of a normal moving head disk

in parallel. Furthermore the disk controller is extended with logic for
each track to provide content-addreéessable search. In the DBC proposal
this is used together with clustering in cylinders of related tuples to
achieve a performance enhancement over existing database systems;

this looks very promising.

The current RIKKE-MATHILDA configuration does not support this
strategy. However, if hardware were available these ideas could easily

be incorporated in TGR.

An appropriate access path to support in TGR is an indexed organization

because this can give the wanted direct access to the tuples. It is not yet

decided if other access paths should be supported too. Therefore the future

plans for the further development of TGR are:

To design and implement subroutines to support an inverted file organi-
zation and incorporate these new ideas into the DECOMPOSER, the
CONTROLLER and the EXECUTOR.

To finish the micro-programming of the EXECUTOR primitives including

the new primitives for the handling of indexes.
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The use of an inverted file organization does not affect the feedback
optimization. After the search of a relation the feedback optimization needs
to know only if a tuple exists satisfying a certain condition. The way this

information is achieved does not matter.

Anyhow the use of indexes affects the selection of options because the

execution time for a query is decreased. The overhead for an option in
the feedback optimization method is the same whether or not indexes are
used. Therefore the cost/benefit calculation for the selection of options

(see section 6) has to take into account the possible use of an index.
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6. PERFORMANCE ANALYSIS, EXAMPLES

TGR is an experimental system and is only used as such, i.e. the database is
of an experimental nature too. Therefore no statistical information about the
performance of TGR used for practical purposes is available. In this sec-
tion statistical information about the performance of TGR for queries on a
small experimental database is presented. As mentioned in section 5, TGR

in its current implementation performs poorly for gueries on large re-
lations so to test the feedback optimization only small relations are used.

In example 6. 1 program generated relations are used and in example 6.2
very small relations concerning Date's supplier-part-project example
[DATE?’?] are used. Throughout the section only option B 1some and option C

are considered because these options are the only ones currently implemented.

Example 6.1

Three program generated relations are used. Each relation consists of two
attributes which contain integer values generated randomly in different inter-

vals. The intervals are shown in table 6: 1.

. lnte[‘va! of mtenf*val of Number of tuples
Relation attribute 1 attribute 2
R1 1 - 128 51 - 178 1400
R2 1 - 64 1 - 1048 1000
R3 1001 - 1512 1 - 128 1000
Table 6.1

The query executed on this database is

Q1 = GET R1.AI, RI1.A2, R2.A2:
AR3I(R1.AT> 100 A R1.A2 < R2.A1 A R3.A1< R2.A2)
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The possible options to set for Q1 are:

- option C (elimination of duplicates in target list)
~ option B1 for R2 (creates a filter F1 on R1)
- option B1 for R3 (creates a filter F2 on R1, R2)

The filters F 1 and F2 have the following structures (see rules in section 4):

F1
F2

i

[R1.1= X] where X is the first attribute of a current tuple of R1.

[R2.2< Y] where VY is the second attribute of a current tuple of R2,
The results of using.the various options are shown in table 6. 2.

Relative time measurements are used in the tables because these give the

easiest way of comparing results from the use of different options.

The execution time for Q1 without any options is set to 1000.
(The figures in the tables are experimental results and therefore only approx-

imate values. )

C C C
Options none Blon R2|B1on R2 Blon R2
Blon R3|IBlon R3|B1on R3
Entire algorithm 1000 18 18 105 916
Computation of condition 193 5 5 36 208

for tuples

Checking of filters 0 1.5 1.5 1.4 0.1
Searching R1 0.4 0.4 0.4 0.4 0.4
Searching R2 95 9 9 95 11
Searching R3 902 6 6 7 901

Table 6. 2



33

(The remaining three possibilities of combination of options do not give

additional information and are therefore omitted. )

Explanation of the rows in the table:

- Entire algorithm: The execution time for the query.

- Computation of condition for tuples: The total time spent to find out
if conditions (Gi's) are true or false for the tuples examined in the

query. The time used to compute filter-conditions Is not included.
-~ Checking of filters: The total time spent to check filters.

— Searching ''relation!'; The time spent to search !"relation'"., Included are:
time used for disk access, finding tuples on a page and computation of

conditions and checking of filters for the tuples in ''relation!,

Table 6, 2 shows a very big improvement of execution-time by the use of the
feedback—optimization. Option B1 on R3 gives a very big improvement whereas
option B1 on R2 gives a somewhat smaller, but in any case both options ought
to be set. Option C does not give any visible additional effect, neither

positive nor negative.

The cost of checking the filters is very small compared with the decrease in
time spent on other parts of the algorithm. In this example the storage re-
quirement for the data-part of the filter is negligible; why this is not always

true is discussed later in this section.

In example 6. 1 both options B1 and B2 could be used with advantage but this

is not always the case.

In example 6.2 we will look at a database query for which some options should

be set and others should not.

The database.is slightly more realistic than in example 6. 1, namely the
supplier-part-project example from [DATE77]. The query considered is from
exercise 5. 16 in the same book, Only the relations P and SPJ are used and

the definitions of these are:
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P (P#, Pname, Color, Weight), i.e. a tuple (x, name, zzz, y)
indicates that there exists a part with name '"name', part

number X, color zzz and with weight Y .

spJd (SH, PH, JH, QTY), i.e. a tuple (x, vy, z, v) indicates that the

supplier with number x supplies part number y to project number z

in the quantity v.

The purpose of the query Q2 is to find S# values for suppliers supplying

at least one part supplied by at least one supplier who supplies at [east one

red part, i.e.

Q2 = range SPJY SPJ
range SPJZ SPJ
GET SPJ.S#:
A spuy ASPJIZ TP

SPJY.P# = SPJ.P# A
SPJZ.S# = SPJY.SH A
P.P# = SPJZ.P# A
P.Color = tred!

)

The possible options to set for this query are:
- option C
- option B1 for SPJY (creates a filter F1 on SPJ)
- option B1 for SPJZ (creates a filter F2 on SPJ, SPJY)
- option B1 for P (creates a filter F3 on SPJ, SPJY, SPJZ)

The filters F1, F2 and F3 have the structures:

F1 = [SPJ.P# =A] where A is the P# attribute of a current tuple
of SPJ.

F2 = [SPJY.S# =8] where B is the S# attribute of a current tuple
of SPJY. |

F3 = [SPJZ.P# =C] where C is the P# atiribute of a current tuple

of SPJZ.
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The results of using the various options for Q2 are shown in table 6. 3.

1 3 4 5 6 7 8 9
C C C
Blon SPJY B8lon SPJY Blon SPJY |Blon SPJY
Options No 1Blon SPJz Blon SPJZ [B1on SPJZ |8 1on SPJZ
Blon P Bion P Blon P Bilon P
Entire algorithm 1000 129 126 249 1007 1008 1022 252 350
Computation of 428 31 31 61 432 440 431 60 143
condition for tuples
Checking of filters 0 22 21 5t 1 2 2. 55 0
Searching SPJ 1 1 1 1 1 1 1 1 1
Searching SPJY 26 18 17 27 27 27 28 27 16
Searching SPJZ 125 59 59 129 126 126 127 134 53
Searching P 800 | 19 18 24 806 806 812 25 262
Table 6.3

In contrast to example 6.1 option C here gives a quite good improvement and
option B1 on P performs especially well. The fastest execution is reached
using these two options (column 3), whereas the use of option B1 on SPJY
and option B1 on SPJZ slows down the execution (columns 5, 6 and 7). This
is because no tuples at all are eliminated using these options and therefore

only the overhead from the checking of the filters is introduced.

From examples 6.1 and 6.2 it can be deduced that a reasonable improvement of
performance can be achieved if the right options are selected. The cost of
checking the filters has been very small compared with the benefit. We will

now look in a little more detail at what is actually the cost of using a filter
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both in terms of time and space. Let us use an example involving relations

R1, R2, R3 and R4 in the indicated order where a filter F is used on the

combination R1,R2.

Time: F is checked for every combination of tuples from R1,R2. A
check of F requires a calculation of the condition of F for each value
group in the data area, The number of value groups increases thorugh-
out the execution therefore no precise expression can be given for the

cost of checking a filter.

For every combination of tuples from R1,R2 eliminated by the use of

F a search of R3 and perhaps some searches of R4 are saved. {What

is saved is dependent on the option. E.g. for option Blsome only a
search of R3 is avoided.) Therefore an approximation of what is saved
for every elimination can be calculated from information about the type
and structure of the filter, sizes of relations and the distribution of
values in the relations. Closed expressions for this calculation is given
in [ROTH72] for tvvo-—var*iéb!e queries and also approximations for the
cost are given. We have not done the equivalent work for arbitrary
queries in TGR. To compare cost and benefit in TGR a very straight-

forward procedure can be used:

Both the cost and benefit can be measured in terms of the number of
tuples for which a condition is calculated. The cost is calculated using
probability theory on the Gi's. The calculation of the benefit is done
ina similar way. First making an approximation of the expected number
of value groups again through the use of Gi's. Then by examination of
the filter-condition in order to estimate the probability for it to be
satisfied. The complexity of the condition (filter or Gi) is taken into
account too, by modifying the number of tuples with a factor describing
the complexity. To make the procedures feasible some assumptions
have to be made, e.g. that values in relations are randomly distributed

(which is certainly not always true).

Space: The use of storage space is measured by the number of value
groups times the size of a value group. The number of value groups is

some fraction of the product of the sizes of the relations which the
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filter covers. If this number is big a lot of space is used and also a
lot of time is used for the checking of the filter. [f is seen that the
analyses of time and space are heavily interconnected and if the use
of time is reasonable then the use of space would be too, relative

to the sizes of the involved relations.

A proposal for a strategy for automatic selection of options

1. Compile-time selection.
Using the above mentioned method a cost/benefit calculation is made

for every possible option and the appropriate options are set.

2. Runtime selection.
Throughout the execution, the performance of the filters is watched
by comparing the number of eliminated (or true) tuples with the number

of checked tuples. If too few tuples are eliminated the option is cleared.

Since the calculation from 1) is quite inaccurate the results could be tested
during the execution for some of the options. This WouIdAbe done by setting
the options for a short while and then ook at the results as 2) above. A
more precise selection of options would be achieved then but also more

overhead is introduced.

The automatic selection of options has not yet been implemented in TGR but
it is recognized that this aspect of the feedback optimization is about the
most important to get good performance. This is seen from examples 6, 1

and 6.2 where some options had to be selected to get acceptable performance
(option B1 on R3 in example 6. 1 and option B1 on P in example 6. 2), the
selection of others were more or less unimportant and some options should

not be selected.

In this section two examples have been used to give the reader an idea of the
performance of TGR using the feedback optimization. Tables 6.2 and 6.3
gave an impression of which options to select for particular querijes. Be-
sides, the relative time measures shown in the tables can be used to see what

is the bottle-neck of the system. A lot of time is spent evaluating conditions
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(from the qualification or a filter) for tuples. A great part of this time will
be saved as soon as the microprogramming of the database primitives is
finished. Further, experiments have shown that TGR is not at all disk bound.
Therefore, microprogramming would be a step towards a balanced system.
Hopefully, a completely balanced system will be reached when the improve-

ments of TGR, proposed in section 5, are carried out.
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7. CONCLUSIONS, FURTHER RESEARCH

The TGR project was started in 1977 for three purposes as mentioned in

the introduction, namely design and implementation of

1) An intermediate language.
2) A microprogrammed database machine.
3) Optimization features.

All three aspects are discussed in this paper but most emphasis is placed

on 3) where only the feedback-optimization is presented.

It is shown that the feedback-optimization gives a great improvement of per-
formance if the right options are selected. How to select the right options-is
only outlined since this subject is not yet fully investigated. Some research

should be made in this area in the future.

The feedback-optimization is very well suited to complex gueries involving
many relations but it is not any help for single relation queries. Therefore
feedback-optimization cannot be used as a stand-alone optimization method.
It should be used in a database environment where the information need is
changing a lot and is of a very complex nature. Other optimization methods
should be available especially for single relation queries which appear fre-

quently in database systems.

Another way to improve performance of database systems is by the use of
microprogramming or construction of specialized hardware. In TGR a number
of database primitives are designed forming a database machine. The data-
‘base primitives are intended for microprogramming but the implementation

is not yet fully finished. The current implementation of TGR therefore uses
an implementation in a high level language (BCPL.). This implementation

does not perform very well for large relations and a number of improvements

are proposed in this paper:

— Design and microcoding of primitives to support an inverted file or-
ganization. (Relations are stored randomly and no logical storage struc-

tures are supported yet. )
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~ Conclusion of the microprogramming of the existing database primi~-

tives.

It is our hope that the investigation and implementation of these primitives
will eventually be used as a guideline for the construction of specialized
hardware which can be used as a backend processor in a database system
with a structure like that of TGR (replacing the EXECUTOR of the Database
Machine, see e.g. Fig. 5. 1).

As described in section 5 another step could be taken to incorporate special-
ized hardware into the system, namely to replace the Database Machine

(Fig. 5.1) by for example the ""search processor! [LEIL78] or equivalently
supporting a one-relation interface. In this kind of system the feedback opti-
mization would be a very big help, in fact nearly indispensable. However,
we believe that the performance of this kind of system is still not good enough
to be competitive to avaitable commercial systems. Thé reason for this is
that e.g. the fixed head disk as used in the '"'search processor! is of too

low capacity and speed and too expensivé to be used evaluating multi-
variable queries for very large databases. But as soon as the price getis
reasonable for bubble memories or CCD's with large capacity and speed

then this line of action will be very suitable.
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Appendix A

A description of the RIKKE-MATHILDA system

This appendix gives a very superficial description of the RIKKE-MATHILDA
system. More detailed information can be found in [STAU74], [KRES75]
and [KORN?S] . The system was designed and built at the Computer Science

Department, Aarhus University.

RIKKE MATHILDA

WS

Pis
A
A

Fig. A. 1

RIKKE is a microprogrammable processor [STAU?ZL] on which a virtual
stack machine is realized. A single-~user operating system, the RIKKE

BCPL-system [KRES75], runs on this machine.

Wide Store (WS) is considered to be the main memory of the computer
system. It is a sharable 256K byte memory which can be accessed by

as much as 4 independent physical processors. In the configuration shown
in Fig. A. 1 only 3 pro¢essors are connected to WS, namely RIKKE, MA~
THILDA and the disk controller,
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MATHILDA is a microprogrammable processor [KORN?S] which serves as
an external functional unit for the BCPL.—-system. Microcoded routines can

be called from and executed concurrently with BCPL programs on RIKKE.

The secondary storage used in the RIKKE-MATHILDA system consists of two
9. 6 Mbyte disk units.
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