DELTA PROJECT ISSN 0105-8517
REPORT NO. 13

A PETRI NET DEFINITION OF
A SYSTEM DESCRIPTION LANGUAGE

by
Kurt Jensen
Morten Kyng

Ole Lehrmann Madsen

This paper has also been published in: Semantics of Concurrent
Computatiion, G. Kahn (ed. ), Lecture Notes in Computer Scignce
vol, 70, Springer Verlag 1979, 348-368,

DAIMI PB-96

November 1981 (second edition)

Computer Science Department — | h‘r! ' T
AARHUS UNIVERSITY |

Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55

=i |l|
i

—

—HI




A PETRI NET DEFINITION
OF A SYSTEM DESCRIPTION LANGUAGE

Abstract

This paper introduces a language, Epsilon, for the description of
systems with concurrency, and presents a formal definition of Epsilon's
semantics. The language is based on Delta, the first major attempt to
create a language solely aimed at system description without the restric—
tions placed on languages executable on digital computers. The design of
Delta was itself heavily influenced by the experience from the development
and use of Simula.

It is not obvious what kind of semantics a system description language
should have. The situation is more complex than with normal algorithmic
languages and none of the existing semantic approaches appear to be‘satis—
factory.

To clarify the situation, we first describe the language Epsilon, which
contains only a few basic primitives. Then we define the semantics of Epsi-
lon by means of a formal model based on Petri nets. The model called
"Concurrent systems'! is an extension of Petri nets with a data part and with
expressions attached to transitions and to places. The model is a further
development of formalisms proposed by R.M. Keller and A. Mazurkiewicz.
The expressions attached to places is a novel feature and is used to define
continuous transformations on the data part. The semantics of a given system
description is defined in terms of firing sequences of the corresponding

concurrent system.



1. INTRODUCTION

The purpose of this paper is to introduce a system description language,
Epsilon, based on the Delta language [Delta 75] , and to present a formal defini-
tion of its semantics by means of a model based on Petri nets ([ Petri 73, 75, 76],
[Peterson 77} ).

During the last decade there has been an increasing need to understand, con-
trol and design large, complex systems of men and machines, and thus a demand for
concepts and formal languages to conceive and describe systems with concurrency.
Mathematics was for a long time the most important tool for analysing such systems.
With the advent of the electronic computer, simulation programming languages have
become a popular tool for the description and analysis of complex systems, untract-
able by mathematics, It turned out that the process of carefully creating a system
description (i.e. a program) was often at least as beneficial as actually generating
the described mode! (i.e. a program execution in the computer store) and gathering
statistics about it. This experience gave birth to the idea of creating a language
specially designed for the description of systems, a language without the restric-
tions necessarily placed on any language executable on a digital computer. The first
major attempt in this direction is the Delta language which was created at the Nor-
wegian Computing Center and which draws heavily on the experience from the devel-
opment and use of Simula ([Simula 70], [Nygaard 70]). Delta is a tool for system
specialists and for other groups working with and influenced by data processing
systems. It is also a tool for research workers inside other fields such as biology,
medicine, and physics.

The conceptual framework behind Delta introduces a large number of new and
interesting ideas. The actual language however is not quite as carefully worked out.
It is large and complicated, and the relation between some of the language elements
is diffuse. The semantics is only informally described although the outline of an ab-
stract machine for "execution" of Delta descriptions has been defined by programming
it in the language itself.

[t is not clear what kind of information one wants to extract from system des-



criptions, i.e. what kind of semantics system description languages should have.

The situation is more complex than what is found in normal algorithmic languages

and none of the existing semantic approaches appear to be satisfactory. As an attempt
to clarify the situation, we describe a system description language called Epsilon
containing only a few basic primitives and we define its semantics by means of a for-
mal model based on Petri nets. Petri nets are chosen because they contain a number
of concepts which are closely analogous to Delta. Moreover, Petri nets are them-
selves useful tools for the description of systems with concurrency. The semantic
model is a further development of formalisms defined in [Keller 76] and [Mazur~
kiewicz 77].

Since Epsilon is intended for describing systems of interacting objects, such
as men and machines, an Epsilon system consists of a nested structure of objects.
An object is characterised by the actions it executes and a selected set of attributes,
which may be variables, procedures and objects.

State transformations can be described by means of algorithms or by means of
equations. An algorithm is used in cases where it is adequate to describe the way in
which a given state transformation is carried out. Equations are used, when it is
adequate to describe state transformations implicitly by means of the properties which
a given set of variables should fulfil, and when it is less relevant how the properties
can be achieved.

The variables of an object may be observed by other objects and will then
always have well defined values, i.e. intermediate values appearing during an algo-~
rithmic state transformation will not be observable from other objects. interaction
between objects may also take place by means of interrupts, that is an object may
require another object to execute some specific actions.

Epsilon also contains a concept of time which can be used to describe continu-
ous state transformations.

The use of equations, observation of non-local variables and the time concept
are the main features that distinguish Epsilon from normal programming languages.
Epsilon is not a complete language, but it does contain the new and essential ideas
from Delta.

In section 2 Epsilon is informally introduced by means of an example. Sections
3, 4, and 5 define the semantic model, the abstract syntax, and the formal semantics
of Epsilon respectively. Finally section 6 evaluates the approach and discusses

future work.



2. INFORMAL DESCRIPTION OF EPSILON

The main features of Epsilon will be introduced by means of an example des—
cribing four balls following a circular orbit. The balls may move in both directions
or stand still. Elastic collisions may appear between the balls. Two balls which
collide will exchange their velocity (speed and direction). An observer may place a
"wall™ in front of a ball and in this way negate its velocity. It is assumed that no
other forces influence the system, i.e. no friction, no gravitation and no loss of

energy. All the balls have the same mass and size.

w

The following semiformal description of the system, Fig. [2. 1] , introduces the ob-
jects and the kind of actions they perform. Formal language elements are written in
capital letters with keywords underlined and informal language elements (i.e. not
specified in detail) are written in small letters.

An Epsilon system consists of a nested structure of objects. The present
system consists of six such objects: four ball objects (lines 2-10), the observer ob-
ject (11-18) and the system object (1-19) containing the other objects. An object is
characterised by a set of attributes (objects, procedures and variables) and an ac~
tion part.

The declaration (11-18) introduces one object with the name OBSERVER. It
has no attributes and its action part (13-17) is a repeated execution of a LET~impera~
tive (14-16). The declaration (2-10) introduces four objects with the names BALL{1),
«+., (BALL(4). Each BALL only has one attribute: its position on the orbit (3). Its
action part (4-9) is a repeated execution of a LET-imperative (5-8).

The state of an object is a pair consisting of the values of its variables and its

stage of execution. The state of an Epsilon system is the set of states for all objects.

All objects execute their actions in concurrency.

An object may both observe and change the values of its own variables, but it
may only observe variables in other objects.

Objects can interact by means of interrupts; that is, an object, A, may require
an object, B, to execute a specific procedure, P, which must be an attribute of B.
Each object controls when it wants to accept possible interrupting procedures for
execution. Thus, objects may synchronise their actions in two ways: by observing
variables and by sending and accepting interrupts. An asynchronous set of objects
may be described by restricting all their synchronisation to take place by interrupts.
A synchronous set of objects may be described by using observation of variables to

synchronise actions.
By means of nesting of objects it is possible to restrict the observability of
object-attributes. These and other scope rules will not be defined in this paper.



SYSTEM BEGIN
OBJECT BALL(1..4):
BEGIN VAR POSITION : REAL;
REPEAT
LET POSITION = new-position DEFINE POSITION

ACCEPT OBSERVER : change-~direction
ENDLET

ENDREPEAT
] END BAL.L;
11 OBJECT OBSERVER:
12 BEGIN
13 REPEAT
14 LET observe
15 WHEN ready DO INTERRUPT selected-ball BY change-direction
16 ENDLET
17 ENDREPEAT
18  END OBSERVER;
19 END SYSTEM

1
2
3
4
5
6 WHEN crash DO exchange-velocity (crashing-neighbour)
7
8
9
o]

Figure [2. 1]

An object alternates between executing two kinds of actions: event-actions

and continuous—actions. Event-actions are instantaneous, indivisibie and executed

by one object, but possibly in concurrency with actions executed by other objects.

Continuous-actions are time consuming, interruptable, and executed in cooperation
with continuous-actions executed by other objects. An imperative containing a con-
tinuous-~action specifies an equation to be fulfilled by the system state but gives no
details about how this can be achieved.

Actions are described by imperatives.

The execution of a LLET-imperative starts with the execution of a continuous-—
action. For the LET-imperative (5-8) of a BALL this means that the equation
"POSITION = new-position" is constantly satisfied while this continuous-action is
executed. The variabies following DEFINE (here POSITION) may be changed in
order to satisfy the equation. The WHEN-clause {6) describes that the execution of
the continuous-action will be stopped when the boolean~expression !"crash! becomes
true. If this happens the imperative following DO (6) is executed. Similarly the
ACCEPT-clause (7) describes that the continuous—-action may be interrupted if the
OBSERVER sends the interrupt '"change-direction!, [f this happens the BALL will
execute the procedure !"change-direction''. In both cases the execution of the LET-~
imperative is stopped.

When the OBSERVER executes its LET-imperative (14-16), the equation



"observe" will be satisfied. At certain moments of time, the boolean-expression
"ready! will be satisfied and the OBSERVER will interrupt one of the BALLLs (15),

The system-object executes no actions.

A typical situation in the system will be that all four BALLSs are moving around
the circular orbit with the OBSERVER merely "observing'' them. The BALLs will
execute the continuous-action described by the LET-imperative (5-8) and the OB~
SERVER the one described by the LET-imperative {14-16), The system state will
satisfy the equations "POSITION = new position!' and "observe',

If two BALLSs collide the following event-actions will take place: The boolean-
expressions "crash! will be true in the two colliding BALLs. Both of the BALLs
will execute the actions described by !'exchange-velocity (crashing—neighbour)!,
Similarly event~actions will be executed if the OBSERVER decides to change the
direction of one of the BALLs. The "selected-bali" will then be interrupted and
it will execute the procedure “"change-velocity!.

In Figure [2.2] a more detailed description of the system is given. The des—
cription of the BALL s has been extended in order to specify how velocity and posi-
tion vary. More attributes have been added to each BALL (3-12), Note, however,
that some language elements are still informal.

The actions "exchange-velocity" and '"change-direction' have been specified

as procedures, A sequence of micro—imperatives enclosed within < , » describes

one event-action (5, 12, 13) and is thus an instantaneous and indivisible action.
Micro- imperatives are normal algorithmic imperatives such as assignment, selec—
tion and repetition. The equation "POSITION = new-position!" has been specified
in detail (15).

TIME is an implicitly defined variable contained in the system object and re-—
presenting time in the system modelled. TIME is continuously increased. (See 5.4
for a precise description of TIME. )

The boolean-expression !'crash!' has been separated into two parts (16-17),
one for a crash with its left neighbour, and one for a crash with its right neighbour.
For the sake of brevity we have not described ”Ieft/r‘ight—cr‘ash“ in detail.

EXECUTE is a procedure call (16, 17). PUT is a call-by-value parameter
transfer (8, 16, 17); the local variable | in EXCHANGE-VELOCITY Is assigned the
number of the left/right neighbour. Each BALL has an integer attribute with the
name B (2) which for BALL(i) (i = 1,2, 3, 4) has the value i. Pgr Tgare used to
hold the values of POSITION and TIME at the last collision.

Each BALL starts its actions by an initialisation of its local variables (13).
The initial positions, p(B) (13) for the BALL s are assumed to be modulo the length
of the orbit. The BALLS cannot pass each other hence it is sufficient to compare

their positions directly {without modulo).



17
18
19
20
21
22
23
24

SYSTEM BEGIN
OBJECT BALL(B:1..4):
BEGIN VAR POSITION, VELOCITY,P
PROCEDURE CHANGE-DIRECTION:

BEGIN ¢« VELOCITY:=-VELOCITY; P :=POSITION; T
PROCEDURE EXCHANGE-VELOCITY:

BEGIN VAR 1: 1..4;

INTERRUPT BALL(l) BY NEW-VELOCITY PUT (V:=VELOCITY);
LET TRUE ACCEPT BALL(l): NEW-VELOCITY ENDLET
END;
PROCEDURE NEW-VELOCITY:

BEGIN VAR V: REAL; <VELOCITY := Vj Py:=POSITION; T
<POSITION:=p(B); VELOCITY:=v(B);P:=POSITION; T
REPEAT

LET POSITION=P, + VELOCITY * (TIME-T,) DEFINE POSITION

WHEN leftcrash DO EXECUTE EXCHANGE-VELOCITY PUT (1:=B @ 1)
WHEN rightcrash DO EXECUTE EXCHANGE-VELOCITY PUT (1:=B & 1)
ACCEPT OBSERVER : CHANGE-DIRECTION
ENDLET
ENDREPEAT
END BALL;
OBJECT OBSERVER: ....
END OBSERVER;
END SYSTEM

0’ TO: REAL;

o' =TIME »END;

0:=TIME> END,

0:=TIME>§

Figure | 2.2

3. CONCURRENT SYSTEMS

Concurrent systems is a semantic model based upon Petri nets.

3.1 Petri nets

A Petrinet PN = (P, T, PRE, POST) is a 4-tuple, where P is a set of places,

T is a set of transitions, PRE and POST are functions from T into subsets of P.

Moreover

1) PUT#®

2) PNT=¢

3) v t€ T [PRE(t) N POST(t) = @]

A marking is a function m: P = {o,1}. A placep is marked if m(p) = 1. If

m(p) = 0, p is unmarked. For each t € T the set COND(t) = PRE(t) U POS.T(t) are

conditions for t. Two transitions t, and t, are independent iff COND(t1) nCOND(tz)
= ¢'



A nonempty subset of mutually independent transitions, X & T, has concession
in a marking m iff
1A
0]

p € PRE(X) = m(p)
vpEPR [p € POST(X) = m(p)
where PRE(X) = U{PRE(t) | t€ X| and POST(X) =u {POST(1) | t€ X}.
When X has concession in m it may fire. If it fires a new marking m'! is reached,
such that

Il

p € PRE(X) = m'(p) =0A
vVpEP p € POST(X)= m'(p)=1A
p & COND(X) = m'(p) = m(p)
where COND(X) =U {COND(t) | t€ X}. m'is said to be directly reachable from m,

which we write asm — m' or m —=—» m!,

3.2 Predicates and relations

Let /be a set of variables, which each may take values in a domain F. L.et
A SV be given, and let [A -+ F] denote all total functions from A to F. The set of
predicates over A is defined as [[A + F] + {true, false}] and is denoted by PRED

The set of binary relations over A is defined as all subsets of [A3F] x [A » F]
and it is denoted by REL

A

A"

3.3 Expressions attached to transitions

While Petri nets are excellent models for the control flow in a language, they
are less suited as models for state transformations in the data part. To remedy this
situation we augment Petri nets with a data part containing a set of variables and
we attach to each transition t an expression of the form: WHEN GUARD(t) DO REL(t)
where GUARD(t) is a predicate over a subset of variables and REL(t) is a binary
relation defining a set of possible transformations on the same subset of variables.
This set of variables is called the scope of t and is denoted by SC(t).

A transition t has concession only when GUARD(t) is satisfied by the current
values of the variables in SC(t). Ift fires, one of the possible transformations con~
tained in REL(t) is performed upon the variables in SC(t). Transitions can fire con—
currently only if they have disjoint scopes. Thus the firing rule for a subset of
transitions is modified by an added requirement on concession for each transition

and an added requirement on independence for each pair of transitions.

3. 4 Expressions attached to places

As a second extension we attach to each place p an expression of the form:

LET EQ{p) DEFINE VAR(p) where EQ(p) is an equation over a subset of variables.

This set of variables is called the scope of p and is denoted by SC{p). VARI(p) is a
subset of SCl(p).

We define a control state to be a marking, while a data state is a set of values

for the variables. A system state is a pair consisting of a control state and a data



state,

such that the data state satisfies all equations attached to places marked in

the control state.

An equation is satisfied in a data state iff the predicate constructed from it in

the usual way evaluates to TRUE.

The firing of a set of transitions can now be described as the following two

steps:

A)

B)

The control state is changed according to the modified firing rule, while the
data state is changed according to the relations attached to the firing tran-

sitions.

The equations attached to places marked in the new control state are estab-
lished. This is done by changing the values of some of the variables in

U {VAR(p) | m(p) = 1}.

The "intermediate state'! between A and B is not considered a system state

since there may be equations, which are unsatisfied aithough they are attached to

marked places. Formally we will define the firing of a set of transitions as an in~

stantaneous and indivisible action leading directly from one system state to the next

without any intermediate state.

3.5 Concurrent systems

of all

A concurrent system is a triple CS = (CON, INT, INIT) where
CON, the control part, is a Petri net (P, T, PRE, POST)

INT, the interpretation, is a pair (DATA, EXP), where
1) DATA, the data part, is a pair (V,F), where V is a set of variables,

which each may take values in domain F.

2} EXP, the expression part, is a 5-tuple (EQ, VAR, GUARD, REL, SC)
consisting of five functions:
EQ : P—»U{PREDA|AQ\/}
VAR P AP(V)
GUARD : T = U {PRED A | Acvi
REL : T=U{REL, | Acv]
sc T PUTAP((V)
such that

vp€ P [EQp)€ PREDSC(D) A VAR(p) ¢ SC(p)]
V1€ T [GUARD(t) € PRED g4y A REL() € RELSC“)]

INIT, the initial system state, is a system state, (ml’sl)' See below.

The set of all markings, M =[P = {o,1 }], are called control states. The set

data values, S = [V + F], are called data states. A pair (m,s) € Mx S is a

system state iff Yp€ P [m{p) = 1= EQ(p)(sSC(p)] , Where sSC(p) is the restric~
tion of s to SC(p).




For Petri nets we have defined a set of concepts, such as independence, con-
cession and direct reachability. We will now define similar concepts for concurrent
systems. Since the latter definitions are generalisations of the former ones, we will
use the same names. To avoid ambiguity, we will prefix the new concepts with "cs-",

Two transitions ty and t,are cs—independent iff t and tz are independent and
SC(tI) n SC(tZ) =@.

A nonempty set of mutually cs—-independent transitions, X & T, has cs-conces—

sjon in a system state {m,s) iff

1) X has concession inm
2) Vv t € X [GUARD(t) (SSC(t))]
When X has cs-concession in {m,s), it may fire. If it fires there are two dif-

ferent possibilities:

A} If there exists a system state (m',s') such that
Pa
1) m ——== m!
1 H =gl 1 = 1
2) 3s' €S [ViEX [(SSC(t)’ s'se(r) € REL(t)] As,=s'y As'g=sg]

where A =V -U {SC(t) | t€X} andB =V - U {VAR(p) | mi(p) = 1}
(m',s') is said to be cs—directly reachable from (m,s), which we write as

(m,s) — (m',s') or (m,s) .G (m!,s').

B) If such a system state does not exist, firing of X in (m,s) is a violation.

From now onh we will omit the prefix 'cs=!' and always refer to the definitions

of concurrent systems and not to those of Petri nets.

A sequence of system states, fs = {(mi,si)} <i<n where 1€ n<w, isa firing
sequence iff (mi,si) —>'(mi+1,si+1) for all i, where 1< i< n. fs is finite iff n < =,

A finite firing sequence is maximal iff no transition has concession in (mn’sn) and
violating iff a set of transitions may fire as a violation in (mn,sn). Moreover by de-
finition fs. FIRST = (m1,s1), fs.LAST = (mn,sn) if n< » else undefined, |fs| =n,
and (m,s) € fs iff (m,s) = (mi,si) for some i, where 1< i< n.

Having now shown that concurrent systems have a rigorous mathematical defi-
nition, we will in the rest of this paper use a more informal notation consisting of the
normal graphical notation for Petri nets, augmented with expressions as indicated
in subsections 3.3 and 3. 4. Scopes will always be implicitly defined by the involved
subexpressions for EQ(p), GUARD(t), and REL(t). If EQ(p) or GUARD({t) is omitted
this is equivalent to the always satisfied equation, which is denoted by TRUE. If
REL (t) is omitted this is equivalent to the identity relation. If VAR(p) is omitted this

is equivalent to the empty subset of variables.

3.6 Comparison with similar formalisms

Adding a data part to a Petri net and attaching expressions to transitions have
also been proposed in [Keller 76] and [Mazurkiewicz 77]. The attachment of ex-
pressions to places is primarily inspired by the LET-imperative in Delta, which

allows the values of variables to be defined implicitly by means of equations at the




expense of algorithmic transformations. A similar idea is present in assignment
systems, [Thiagarajan & Genrich 76].

In the formalism of Mazurkiewicz one is only allowed to attach expressions to
transitions in such a way that {Petri net) concurrent transitions get disjoint scopes.
Furthermore Mazurkiewicz formalism consists of a scheme and an interpretation.
The schemes adhere to the Petri net firing rules. An effect similar to the use of
GUARDS are introduced via the interpretation,

Iin Keller's formalism there is no concurrency between transitions: "if there
is any possibility of simultaneous events occurring, such an occurrence can be re-
presented as a sequence of occurrences of events in some arbitrary order. !
Keller only allows functions on variables, not relations in general. In Keller's
terminology this means that our model is '"nondeterministic! while his model is

"deterministic. Both models are "polygenic",

4. SYNTAX OF EPSILON

In this section the (abstract) syntax of Epsilon is defined using an extended

BNF. The use of {A} list{B} means one or more instances of A separated by B,

i.e. A, ABA, ABABA, etc.; Iist0 indicates that the list may be empty. An optional
clause is indicated by opt{...}. .
Syntax

1 < Epsilon-system> ::= SYSTEM < object descriptor>

2 <object-descriptor> ::= BEGIN opt{<dec|>;} <imp> END

3 <decl> 1= <decl>; <decl> | VAR {<id>} list],}: <type>

4 | OBJECT <id> opt {(<id>: <range>)} : <object-description>

5 | PROCEDURE <id>: BEGIN opt{<decl>;} <imp> END

6 <imp> ii= EMPTY i <imp>; <imp> ] EXECUTE <proc~id> <put> <get>

7 | INTERRUPT <object> BY <proc-id> <put>

8 | LET <equation> opt{DEFINE {<var-id>] Iist{,}}

9 { WHEN <boolean~exp > DO <imp >} Hsto

10 {ACCEPT <object> : <proc-id> <get>} listy ENDLET

1 | REPEAT <imp> ENDREPEAT |<<micro-imp>»

12 <object> ::= <object-id> | <object-id>(<range-exp>)

13 <micro~imp> :i= EMPTY | <micro-imp>; <micro~imp> [ <var-id> ::= <exp>
14 | IE <selection> F1 | DO <selection> OD

15 <selection> ;= {<boo|ean-—exp> - <micr-o—irnp>} Iistf o}

16 <put> ::= opt{ PUT({<var-id> := <exp>} list{,} )}
17 <get> ::= opt{ GET({<var-id> := <var-id>} list{,} }




The syntax of identifiers, types, ranges, equations, and the various expres-
sions will not be specified. <id> is used when an identifier is declared. <object~id>
is an application of an identifier declared as an OBJECT, etc. A precise definition
of the context dependent parts of the syntax will not be given in this paper. The
scope rules resemble those of Algol 60. Only VAR and PROCEDURE declarations
may appear in a procedure. Recursive procedure calls are not aliowed, neither
directly using EXECUTE nor indirectly by means of INTERRUPT (see also sec~
tions 5 and 6).

PUT and GET-clauses are call-by-value and ¢all-by~result parameter trans-
fers. In PUT (GET) the leftside {rightside) of the assignments indicates local
variables in the procedure whereas the rightside (leftside) is an expression (var-—

iable) evaluated at the place of the procedure activation (EXECUTE or ACCEPT).

5. SEMANTICS OF EPSILON

In this section we use concurrent systems to define the semantics of Epsilon,
This is done by defining a syntax~directed translation of Epsilon descriptions into
concurrent systems. In this paper the translation is only informally defined. 1t could
be formalized using an attribute grammar with concurrent systems as attribute values,
In [Pear‘l 78] a similar syntax-directed translation is formally defined by means of a
van Wijngaarden grammar.

The set of behaviours for a concurrent system, defined in section 5.4 by means
of firing sequences, constitutes the semantics of the corresponding Epsilon descrip-
tion.

For each language construct a corresponding concurrent system is given. The
concurrent system for objects and procedures are defined in section 5. 1. For each
variable appearing in the description of an object or a procedure there will be a
corresponding variable in the concurrent system.

It is important to distinguish between imperatives defined by <imp> {section 4,
lines 6-11) and micro-imperatives defined by <micro-imp> (section 4, lines 13-~14).

Imperatives and micro~imperatives belong to different levels in an Epsilon
description. The action-part is described by imperatives, Imperatives of the form,

<MIC~IMP», are called general-assignment—imperatives. Although defined by a se-

quence of micro-imperatives a general-assignment-imperative describes one indi-
visible and instantaneous event-action.

The actual choice of micro~imperatives in Epsilon is of less importance for
this paper. We have chosen Dijkstra's guarded commands because they are useful
and to illustrate that nondeterministic control structures are simple to define in
terms of concurrent systems.

We shall use two levels of concurrent systems to model imperatives and micro-
imperatives respectively. At the imperative level there is a single high level con-

current system containing a concurrent subsystem for each imperative in the system,



At the micro-imperative level there is a separate low level concurrent system for
each general-assignment-imperative. Each low level concurrent system contains a
concurrent subsystem for each micro-imperative in the corresponding general-assign-
ment—-imperative. The concurrent subsystems representing imperatives and micro-
imperatives are defined in section 5.2 and 5. 3 respectively.

A general-assignment of the form <MIC-IMP» will in the high level concurrent
system be represented by one transition having an attached expression of the form
DO REL. REL is defined by means of the firing sequences in the low level concurrent
system corresponding to MIC-IMP,

The use of Petri nets often leads to large and unstructured nets. This disad~
vantage can be diminished by the use of levels of concurrent systems. There is no
reason to have only two levels. The concurrent systems corresponding to micro-
imperatives may use operations like +, *, etc. These will be part of the Epsilon
language, and might also be defined using concurrent systems.

The use of concurrent systems at different levels resembles the use of mor-

phisms in Petri nets [Petri 76] and the ""structured neis" of [Kotov 78].

5.1 Objects and procedures

Each object is characterized by a set of attributes (objects, procedures and
variables) and by an action part.
The actions in the system object are represented by a concurrent system of

SYSTEM
OBJECT

the form:

[5.1]

Dashed rectangles are used to indicate a set of identical concurrent subsystems.
The text in the upper, righthand corner indicates the name and range of a variable

used to give places, transitions, and expressions inside each concurrent subsystem
a common subscript. In this simple situation each concurrent subsystem consists of
only two places. The range, OP, is the set of all pairs of identifiers, OB J:PROC,
which occurs in one or more ACCEPT~clauses for the system object.

The special rectangle surrounding "SYSTEM OBJECT!" indicates a closed
concurrent subsystem (i.e. a concurrent subsystem, where no place in the subsys-
tem is a condition for a transition outside the subsystem). The closed concurrent
subsystem may have more conditions outside the subsystem than shown (cf, [5. 7] ).

Each procedure attribute in the system object is represented by a concurrent
system of the form

[5.2] (ezem)— e (=)

where PROC is the name of the procedure.




Each object atiribute in the system is represented by a concurrent subsystem
constructed by the same rules as the system object,

Thus in the (high level) concurrent system representing an Epsilon system
there is a concurrent subsystem for each object and for each procedure.

The closed concurrent subsystem in [5. 1] and [5. 2] are constructed from the
imperatives contained in the object and the procedure respectively. Initially all
BEGIN places for objects are marked, all other places are unmarked, and the values

of variables are determined by language defined defaults.

5.2 Imperatives

Each imperative is represented by a concurrent system of the form:

f5.51 [ @)
EMPTY~-imperative
The EMPTY-imperative is represented by

5.0 @

Sequencing
The imperative ”IMF’]; lMPz” is represented by

[5.5) [ve fF—O—re. G

This should be understood as the concurrent system obtained by identifying the END

place of the concurrent system representing IMF’1 with the BEGIN place of the con-
current system representing IMPZ. Similar remarks will tacitly be assumed for all

following compositions of concurrent systems.

Procedure call

The imperative '"EXECUTE PROC PUT(a := eXp)GET(b := )" is represented by

DO 3 :i=&p DOB:=¢

[5.6]

where the subsystem containing B, E, and PROC is the one introduced by the dec-
laration of PROC, see [5.2].

The ''dashed" places, transitions, and directed lines are used to indicate that
the corresponding concurrent subsystem is not local to the procedure call, i.e. the
subsystem is shared by all calls of the procedure (and all interrupts). The PUT-~
clause specifies a call-by-value parameter transfer, where the variables a (local
to PROC) are assigned the values of the expressions éxp (evaluated in the calling en-
vironment). Analogously the GET-clause specifies a call-by-result parameter trans-

fer, where the variables b (in the calling environment) are assigned the values of the
variables ¢ {local to PROC). Note that recursive procedure calls are not allowed.



Interruption
Consider the imperative "INTERRUPT OBJ BY PROC PUT(a := exp)" executed

by an object OBJS. When OBJ is a simple object identifier containing no range ex—
pression (OBJ = OBJR), the INTERRUPT-imperative is represented by

DO T :=exp

[5.7]

‘The places INT belong to the concurrent system

< and ACCOBJ
representing OB.JR (see [5.1]). B
PROC in object OBJ (see [5.2]). When INT
from OBJ_. with procedure PROC is waiting to be™ executed by OBJ_,. When this

OBJ_:PROC PROC

PROC is the BEGIN place for the procedure

OBJS:PROC is marked, an interrupt

S
interrupt is accepted by OBJ

”’ ACCOBJ .proc becomes marked (s!:;e [5.97).

t is a set of auxiliary variables usé&d to remember the values of exp until
OB\JR is ready to recejve them. Each INTERRUPT transition has its own set of
auxiliary variables.

Normally OBJS is allowed to proceed immediately, without waiting for OBJR
to accept and execute the interrupting procedure PROC. ORBJ

when INT

s will be delayed only

i ked already. Note that recursive interrupts are not
oBJ_:PROC 'S Mar
allowed. S

When OBJ contains a range expression (OBJ = OBJ(i)), the INTERRUPT-

imperative is represented by

[5.8]




15

R is the set of values, which the range expression may take.

LET-imperative
The imperative

"LET EQ DEFINE VAR
WHEN'BO0 | 0O 1MP

WHEN BOO DO IMP,, (n=0)

ACCEPT OB-J1 :PROC GET (b . E])

1

ACCEPT 0BJ miPROC GET(b :=c ) (m= 0)
ENDLETT m m

is represented by

[5.9]

where the subsystem containing Bj’ Ej and PROCJ. is the one introduced by the dec-
laration of F’ROCJ. in the object, OBJ, executing the L ET-imperative, see [5. 2].
i i 1.
lNTOBJjZPROCj and ACCOB\JJ:PROC are defined in [5. 1]
The place lNTOBJ :PROC . is marked by OB\JJ when it executes an imperative
of the form ”INTERRUPJT OBJ "BY PROC, “, see [5. 7].

When the ACCEPT~clause contains r‘ange expressions, [5. 9] is modified

analogously to [5.8].

Repetition
The imperative "REPEAT IMP ENDREPEAT!" is represented by

[5.10]

[}—O—f==

General-assignment—imperative

The imperative "€MIC~IMP»!" is represented by

DO REL

o1



where the relation REL will be defined below by means of a separate (low level) con-
current system, CS, constructed from the micro-imperative MIC-IMP by the rules
defined in section 5. 3. The variables of CS and the scope of transition €<MIC-IMP>
are the set of variables, A, observed or changed in MIC—IMP. The variables must

all be jocal to the object. CS has the form

5.1 [ @

Let Mg and me be the control states for CS in which only BEGIN and END
respectively are marked and let a final state be any state of the form (mE,u). Let
FS(s) be the set of firing sequences, fs, where fs.FIRST = (mB,s). Recalling that

F is the value domain for the variables A we define REL as follows:

Vs,r€ [A=F] [(s,r) € REL —>
(3 fs € FS(s) [fs.LAST = {mg,r)] A
Vv fs € FS(s) [fs is finite A (fs is maximal = fs. LAST is a final state)])].

Let a data state s be given. If it is possible to go into an infinite loop (an in-
finite firing sequence exists) or to enter a non-final state where no transition has
concession, then the above definition implies that there is no r such that (s,r)& REL

In this case the firing of the transition representing the general-assignment-impera-

a

tive in the data state s is a violation.

5. 3 Micro—~imperatives

Like imperatives each micro-imperative is represented by a concurrent system
of the form [5. 12]. In contrast to imperatives BEGIN and END will be the only
places outside the closed concurrent subsystem being conditions for transitions

inside.

EMPTY~micro-imperative

The EMPTY-micro-imperative is represented by

[5.13] E2)

Sequencing

The micro~imperative “MIC—IMP'; MlC—IMPz” is represented by

[5‘ 14] BEGIN MIC-IMP] l . MIC—IMP2 I @

Assignment
The micro-imperative "VAR := EXP" is represented by

DO VAR := EXP

5. 1e) =



Selection
The micro-imperative {defined in [Dijkstra 757)

"IE  GUARD ; —= MIC-IMP,

0 GLIARD2 — MlC—lMP2
1 GUARD — MIC-IMP (n=z 1)
i
is represented by
T T T T T T Tz

WHEN GUARD .

s G wren, O H a0
' | !
— d

Repetition
The micro-imperative (defined in [Dijkstr'a 75])

"DO  GUARD , —= MIC-IMP
1 GUARD, —= MIC-IMP

1
2

1
2

I GUARD —> MIC-iMP (nz 1)
n n
op

is represented by

-~ = 1<i<n
| WHEN GUARD, |
i

ey s, | O fomoe,
|

- - = - - - = — !
WHEN = (GUARD ; V...V GuARDn)
g END = »{ END

5.4 Systems

The experience with Delta indicates that a global and continuous time concept
is useful and simplifying in the description of a large number of systems, and we
have therefore included the variable TIME in Epsilon.

The representation of a continuous time concept by Petri nets has no satis—
factory solutions [Petr-i 76] . For this reason we have chosen not to incorporate
incrementation of the variable TIME in the firing rules of concurrent systems, but
to treat it separately.

Systems which are most adequately described without a concept of global time,
€.g. computer networks and systems containing physical particles with a relativistic
behaviour, are described in Epsilon by omitting any use of the global variable TIME.

A behaviour of a concurrent system without TIME is a firing sequence for it

starting with the initial system state.



An Epsilon description without global TIME is well-behaved iff all of its be-

haviours are non-violating.

The behaviours of an Epsilon system with TIME are more complicated, since
they are functions from an interval (consisting of the possible values of TIME) into
firing sequences. We shall require that in a closed interval of TIME transitions
have only concession for a finite number of values of TIME. Furthermore we require
that only a finite number of firings take place at any value of TIME. This implies
that at most values of TIME no transition has concession and the value of TIME is
continuously increased, without changing the marking, until some transition gets
concession. Then the value of TIME is kept constant until the concurrent system,
by firing of transitions, has reached a system state, where no transition has con-
cession. The value of TIME is again increased and so on. This informal description
of behaviours for systems involving global time can be formalised in a way, which
contains the corresponding definition for systems without global time as a special
instance:

The following definitions are defined relatively to a concurrent system,
where FS is the set of firing sequences, (ml,s]) the initial state and tg = sl(TlME).

A behaviour of a concurrent system is a function b:J - FS, where Jis a

closed interval of reals and there exists a finite sequence of reals, =ty <, <

"'<tn—1<tn51n+1 with n= 0, such that . z
1) J=]:t0,tn+1] /\(ml,sl)=b(to).FIRST
2) Ve Ut > 1ete {1 ]
3) v i€{0o,1,...,n vt€ ]ti,ti_H[ [b(ti).LASTNb(t)N bt 4} FIRST]
4) V 1€ JV(m,s) € b(t) [s(TIME) = 1]
5) Vore -l i} [blt) is maximal]

where (mv,sl)N (mz,Sz) [hid
a) My =my
b) vV VE V [s](v);«é sy(vi= veE U {VAR(p) | m,(p) = 1} U {TIME} ]

B(t) is the set of behaviours b: [to,t] # FS. An Epsilon description with global
TIME 1s well-behaved iff

Vtz ot (B £ @) A (Vb E B(t) [b(t) is finite and non-violating])].

The definition of behaviour given above resembles in some repsects "iterated

firing of occurrence' defined in [Moalla, Pulou & Sifakis 78].



6. CONCLUDING REMARKS

In the preceding sections we have presented the kernel of a system description
language and a mathematical mode! used to give a formal definition of the semantics.
The presence of the formal definition improves the useability of the language in the
description, analysis, and design of systems:

The use as a descriptional tool is enhanced by providing a rigorous basis for
an understanding of the language. This basis stresses the use of Epsilon as a tool
for hierarchical system description. Furthermore it can be used to isolate the im-
portant aspects of given system descriptions and thus be a help in the difficult task
of formutating an equivalence-concept for system descriptions.

The formal definition may be used in the analysis of systems to prove global
properties of a given system description, e.g. that it is welli-behaved. It is an im-
portant subject for future work, to formulate suitable global system properties and
to develop formal methods for proving them by testing only local properties. This
research can draw on a large body of related resulis in the field of Petiri nets. in
practical work with large and complicated systems this is most often the only mana~
geable alternative to simulation on a computer system. For a discussion of how to
obtain executable programs from system descriptions, see [Kyng 76] .

In the design of systems, it will be possible to describe the anticipated design
and to analyse it in order to check before implementation, whether it is consistent
and has the desired properties. In this way the formulation of the mathematical

mode! and the formal definition improved the design of Epsilon itself,

Related work

Other uses of Petri nets as a semantic model of languages may be found in
[Lauer & Campbell 75] and [Pear! 78] where the semantics for path expressions
and a process control language respectively are defined. An attempt to define a for-
mal semantics of the control flow in Delta is reported in [Delta 79]. There the se-
mantics of a large part of Delta is defined using a Petri net model, which is described
and analysed in [densen 78]. Epsilon is designed using the large number of improve-

ments and simplifications of Delta resulting from this work.

Extensions of Epsilon and the model

In order to get a complete system description language Epsilon has to be en-
larged in several respects, e.g. structuring facilities, parameter mechanisms, and
control structures. Among the obvious candidates for extensions are classes and
subclasses with virtuals as known from Simula, The formal definition of these con-
cepts by means of concurrent systems is straightforward. We do, however, also
want to include recursive procedures (and interrupts), reference variables, and
dynamic generation (and destruction) of objects, and this calls for an enlargement

of the semantic model. In [Delta 79] we used infinite nets (but only finite markings).



20

At present we are considering a solution based on a model containing labelled tokens
representing the identity of the different objects and the different procedure activa-

tions. This approach is inspired by [Genrich & Lautenbach 79].

Acknowledgements

We want to thank Antoni Mazurkiewicz and Kristen Nygaard for providing the
initial inspiration for this work. Moreover we are grateful to Mogens Nielsen and

Erik Meineche Schmidt for stimulating discussions and many helpful comments.

References

Delta, Holbek~Hanssen, E., Handlykken, P. and Nygaard, K.: System Description
and the Delta Language. Norwegian Computing Center, Oslo 1975,

Delta, Jensen, K., Kyng, M. and Madsen, O.L.: Delta Semantics Defined by Petri
Nets. DAIMI PB-95, March 1979, (Comp. Sci. Dept., Aarhus University).

Dijkstra, E.W.: Guarded Commands, Nondeterminacy and Formal Derivation of
Programs. Comm. ACM 18, 8 (August 1975), 453-457,

Genrich, H.J. and Thiagarajan, P.S.: Net Progress. Computing Surveys Vol. 10,
No. 1 (March 1978), 84-85.

Genrich, H.J. and Lautenbach, K.: The Analysis of Distributed Systems by Means
of Predicate/Transition-Nets. Gesellschaft fur Mathematik und Datenverar-
beitung, Bonn, January 1979 (Draft version).

Jensen, K.: Extended and Hyper Petri Nets. DAIMI TR-5, August 1978. a

Keller, R.M.: Formal Verification of Parallel Programs, Comm. ACM 19, 7 (July
1976), 371-384,

Kotov, V.E.: An Algebra for Parallelism Based on Petri Nets. Mathematical Foun-
dations of Computer Science 1978, J. Winkowski (ed.), Springer Verlag
(1978), 39-55.

Kyng, M.: Implementation of the Delta Language Interrupt Concept within the
Quasiparallel Environment of Simula. DAIMI PB-58, August 1976.

Lauer, P.E. and Campbell, R.H.: Formal Semantics of a Class of High-L evel
Primitives for Coordinating Concurrent Processes. Acta Informatica 5 {1975),
297332,

Mazurkiewicz, A.: Concurrent Program Schemes and their Interpretation, DAIMI
PB-78, July 1977,

Moalla, M., Pulou, J. and Sifakis, J.: Synchronized Petri Nets: A Model for the
Description of Non-autonomous Systems. Mathematical Foundations of Com-
puter Science 1978, J. Winkowski (ed.),Springer-Verlag (1978), 374-384,

Nygaard, K.: System Description by Simula — An Introduction. Norwegian Com-
puting Center, Oslo, 1970,

Pearl|, Wegner, E. and Hopmann, C.: Semantics of a lLanguage for Describing
Systems and Processes. IST Report 36, Gesellschaft fur Mathematik und
Datenverarbeitung, Bonn, Mai 1977 (revised January 1978).

Peterson, J.L.: Petri Nets. Computing Surveys Vol. 9, No. 3 (September 1977),
223-252., Commented in [Genrich & Thiagarajan 78] .

Petri, C.A.: Concepts of Net Theory. Proc. Symp. Summer School on Mathematical
Foundations of Computer Science, High Tatras, Sept. 3-8, 1973, Math. Inst.
Slovak Academy of Science, 1973, 137-146.

Petri, C.A.: Interpretations of Net Theory. Interner Bericht 75~07. Gesellschaft
fur Mathematik und Datenverarbeitung, Bonn, July 1975.



21

Petri, C.A.: Nichtsequentielle Prozesse. Interner Bericht 76-6, Gesellschaft fur
Mathematik und Datenverarbeitung, Bonn, June 1976 (translated to English by
P. Krause and J. Low},

Simula, Dahl, O.-J., Myhrhaug, B. and Nygaard, K.: Common Base Language.
Norwegian Computing Center, Oslo, 1970,

Thiagarajan, P.S. and Genrich, H.J.: Assignment Systems - A Mode| for Asyn-
chronous Computations. Interner Bericht 76-10, Gesellschaft fur Mathematik
und Datenverarbeitung, Bonn, November 1976,



	20051004105549_Page_01_Image_0001.tiff
	20051004105549_Page_02_Imag.tif
	20051004105549_Page_03_Imag.tif
	20051004105549_Page_04_Imag.tif
	20051004105549_Page_05_Imag.tif
	20051004105549_Page_06_Imag.tif
	20051004105549_Page_07_Imag.tif
	20051004105549_Page_08_Imag.tif
	20051004105549_Page_09_Imag.tif
	20051004105549_Page_10_Imag.tif
	20051004105549_Page_11_Imag.tif
	20051004105549_Page_12_Imag.tif

