DEL TA PROJECT ISSN 0105-8517

REPORT NO. 12

DELTA SEMANTICS

DEFINED BY PETRI NETS

by

Kurt Jensen
Morten Kyng

Ole Lehrmann Madsen

DAIMI PB-95
March 1979

(revised version)

Computer Science Department

Ny Munkegade — DK 8000 Aarhus C ~ DENMARK - i
Telephone: 06 — 12 83 55]

— | |
AARHUS UNIVERSITY]]
T

| 1
=
i

Preface

This report is identical to an earlier version of May 1978 except
that Chapter 5 has been revised. A new paper : "A Peiri Net
Definition of a System Description Language!', DAIMI, April
1979, 20 pages, extends the Petri net model to include a data

state representing the program variables.

DELTA SEMANTICS DEFINED BY PETRI NETS

Kurt Jensen,
Morten Kyng, and

Ole LLehrmann Madsen

Abstract

Delta is a language designed for general system description. It is
partly built upon Simula, but is more than a programming language,
since It contains several features, which cannot be implemenied on
a computer system. E.g. a continuous time concept, concurrency
between an unbounded number of components and the possibility of

using predicates to specify state changes.

In this paper a formal semantics for Delta is defined and analysed

using Petrl nets.

Petri nets was chosen because the ideas behind Petri nets and Delta

colncide on several points.

A number of proposals for changes in Delta, which resulted from
this work, are also reported here, whereas a number of different
extensions to the Petri net formalism may be found in [Jensen 78]
(DAIMI TR-5).

TABLE OF CONTENTS

Chapter 1 :

INTRODUCTION

Chapter 2 :

MINI-DEL TA, A SUBSET OF THE DELTA LANGUAGE

2.1 Delta Concepts
2.2 The Mini-Delta Language

Chapter 3 :

PETRI NETS

3.1 Petri nets
3.2 Extended Petri nets
Further extensions of Petri nets

3.4 Finite markings and finite firings

Chapter 4 :

MINI-DEL TA SEMANTICS

Delta-Objects

4,2 Synchronization between creation, termination
and destruction of objects

4,3 Synchronization between objects which

execute concurtrent actions

23

30

31
43
46
53

55

57

61

67

Chapter 5 :

PROPOSALS FOR CHANGES TO THE DELTA SEMANTICS

5.1 Imperatives
5.2 Creation and destruction of objects

5.3 Regisiration and execution of events

Chapter 6 :

CONCLUSION

REFERENCES

90

90
107
122

129

135

Chapter 1

INTRODUCTION

This paper defines, by use of Petri nets, a formal semantics for parts of

the system description language Delta.

Delta was developed at the Norwegian Computing Center in 1973-75,

and is partly built upon Simula. It is more than a programming lan~-
guage, in that it contains several features, which cannot be implemented
on a computer system (e..g.‘ a continuous time concept, concurrency
between an unbounded number of components and the possibility of

using predicates to specify state changes).

A formal syntax and a !'semi formal!!l semantics for the language is
defined in [Delta 75]. The semantics is defined in terms of partly a

verbal description and partly an '"idealised interpreter!,

As a consequence of this definition method and because of the number of
new concepts introduced, the exposition in [Delta 75] lacks clarity

and stringency in several aspects. It thus seemed reasonable to
assume that the understanding of the language could be enhanced by

a formal definition of its semantics, and that the language itself

could be improved by means of the insight gained from the formal defini-

tion.

As a tool in this semantic specification Petri nets seemed adequate,
primarily because they support the study of concurrency as a discipline
in Its own right, and not as just an extra complication calling for further
generalizations of the theory of sequential programs (such as e.g. inter-

leaving).

Petrl nets have received widespread use as models for systems con-

taining asynchronous concurrent actions.

As stated in [Peterson 77] Petri nets have been used to describe,

analyse and designh a big spectrum of different hardware and software

products.

The ideas behind Delta and behind Peiri nets coincide on several points:

1. A system is considered as a humber of components

(processes acting in concurrency).

2. At discrete momenis of time a set of events may cause

an abrupt change in the system state.

3. In the open time Intervals between events the system is
described by a set of conditions satisfied by the system

state.

4, System descriptions should be hierarchical, allowing

further details to be added at succeeding levels.

1. to 4. summarize common ideas behind Delta and Peiri nets. It is

debateable to what degree the Petri net formalism, at present, satisfies
4,

To be fair we should also mention that there are some major differences

between Delta and Petri nets:

(A) Delta has a global time concept.

Petri nets have not.

(B) In Delta events are mutually exclusive while Petri
nets allow concurrent events it they operate on different

resources (conditions).

On the other hand (A) and (B) may be taken as an indication of areas
in which Deltals present semantics can be improved using experience

from Petri nets.

Other uses of Petri Nets as a semantic model of languages may
be found in [L.auer & Campbell 75] and [Pear! 78] where the se-
mantics for path expressions and a process control language re-

spectively are defined.
This paper assumes no special prerequisites.
It can be used

—-as an introduction to Delta defining a semantics for the main
part of the language. Used in this connection it would be pre-

ferable to read it "in concurrency" with [Delta 75].

—as an introduction to Petri nets and a major example of their

use.
The rest of this paper is organized as follows:

Chapter 2 is an introduction to Delta and the subset of Delta

(called Mini-Delta) for which we define a semantics.

Chapter 3 introduces Petri nets and the different extensions used.
This chapter is essentially identical to the first five sections in
[Jensen 78], in which a number of extensions to Petri nets are for-

mally defined and compared.

Chapter 4 defines a semantics for Mini-Delta "equivalent' to the

semantics defined in [Delta 75].

In chapter 5 we discuss different proposals for changes to the semantics

defined in chapter 4.

Chapter 6 concludes the paper, points out some open. problems and

indicates directions for future work.

The different extensions to Petri nets reported in chapter 3 (and
[Jensen 78]) are due to Kurt Jensen. All other chapters in this

paper document joint work of all three authors.

We want to thank Antoni Mazurkiewicz and Kristen Nygaard for
providing the initial inspiration for this work. We are grateful
to Erik Meinecke Schmidt for many helpful discussions and comments.
Moreover we have received helpful comments from Petter Handlykken,

Brian Mayoh and Peter Mosses.

Chapter 2

MINI-DELTA, A SUBSET OF THE DELTA LANGUAGE

The purpose of the Delta-project at the Norwegian Computing Center
has been to develop a conceptual framework for concelving systems, and
an associated system description language for understanding and commu-

nicating about systems.

In this work SIMUIL_A has been an Important starting point.. Besides

being a programming language SIMULA is also a simulation language

and it turns out that in many applications the experience gained by making
a SIMULA description (i. e. a program) of the system considered is more

useful than the actual simulation results ([Nygaard 73], [Simula 70]).

However, being a programming language, SIMULA imposes a number

of restrictions on the system describer. He/she is forced to conceive a
system as a model corresponding to the execution of a quasiparallel
program, i.e. the basic description tool is the algorithm. Furthermore
a set of algorithms used to describe a system has to be merged into

one sequence of actions during program execution.

Delta tries to avoid "computer—-imposed! restrictions. In a Deita

description various ways of describing system properties can be combined:

- algorithms/predicates. In addition to algorithms which describe

actions that explicitly make changes in the system state, predicates
can be used to specify actions that implicitly change the system

state.

- discrete/continuous. Discrete as well as continuous changes of

the system state can be modelled. The latter by describing system
properties which depend on time and change continuously while time

is increasing.

- quasiparallel/parallel. It is possible to describe a system of

components operating truly in parallel.

- formal/informal. It is possible to have a combination of a formal

and an informal description. The latter by using natural language.

In this chapter we introduce some of the Delta concepts (section 2. 1) and
a subset of the Delta language called Mini-Delta (section 2. 2). Section

2. 2 contains a formal definition of the context free syntax of Mini-Delta
and an informal (and incomplete) definition of its semantics. In chapter

4 we present a formal definition of a semantics for Mini-Delta. For

a complete description of Delta, the reader is referred to [Delta 75].

This chapter is based on [Delta 75] and we shall often refer to specific

pages in this report, We sometimes use a modified terminology.

As Mini-Delta is a subset of Delta we shall not distinguish between Delta

and Mini-Delta when this causes no confusion.

2.1 Delta Concepts

The system considered for a description is called the referent system.

The person making the description is called the systiem reporter.In a

communication process a Delta system description may be used to gene~

rate a model system on for example, a black board or on a piece of

paper or in one's mind. The person generating the model acts as a

"generalized computer!!, a Delta system generator, executing a Delta

system description. In [Delta 75] an idealised Delta system generator

is defined which is able to generate canonical model systems. The

idealised system generator defines the semantics of Delta,

In [Delta 75,p. 15] a system is defined in the following way:

"A system is a part of the world, which we choose to regard as a whole,

separated from the rest of the world during some period of consideration,

a_whole which we choose to consider as containing a collection of components,

each characterized by a selected set of associated data items and patterns,

and by actions which may Involve Iitself and other components!!,

The components of a Delta system are called objects. All objects may
execute actions in concurrency. Besides actions, an object is charac~

terized by a set of data items and patterns (by patterns we mean types,

functions, procedures and classes).

The state of an object is given by the value of its associated data items

and its stage of execution. The state of a Delta system is the total set

of states for all objects and the values of some data items assoclated
with the system (the variable TIME described below is an example of

such a system item).

The system state may be changed by means of usual algor‘ithms.' It may
also be changed by means of pr'edicates.' When a predicate is imposed,
upon the system state, parts of the state which correspond tfo the

free variables in the predicate are assigned values In such a way that

the predicate Is satisfied.

Objects may interact by means of inter‘rupts.' That is, one object may

force another object to execute some specific actions.

A Delta system description describes a system during some period
of time. The variable TIME (or MODEL TIME) is used to model time

in the referent system.

The execution of a Delta system takes place in two different modes:

- concurrent mode. All objects are executing actions. Changes in

the system state are described by means of predicates, one for
each operating object. That Is, the action executed by an object
specifies a predicate to be imposed upon the system state;‘ The
value of TIME is continuously incr‘eased; Predicates may refer
to the value of TIME, which means that the state of the system is

changed as TIME is increased.

- event mode. Only one object is executing actions. Changes in the
system state may be described using algorithms as well as predi-

cates. The value of TIME does not change.

The normal situation is that the system is in concurrent mode where
the system states are assumed to model the referent system. Such states

are called representative states. At some specific moment of TIME

an event may take place and the execution shifts to event mode. An

event appears if e. g.

— an object wants to stop imposing its present predicate upon

the system state,

or

— a new object enters the system.

In event mode the objects may send interrupts. Event mode ends when

~ the object wants to impose a new predicate upon the system

concurrent with the other objects

or

— the object has no more actions to execute.

In the following example we illustrate the concepts introduced.

EXAMPL E

We describe four balls which follow a circular orbit. The balls may
move in both directions or stand still. Elastic collisions may appear
between the balls. Two balls which collide will exchange their velocity
(speed and direction). An observer may place a "wall! in front of a
ball and in this way negate its velocity. We assume that no other for-—
ces influence the system, i.e. no friction, no gravitation and no loss
of energy. Furthermore we assume that the balls have the same mass

and size.

First we give a rather informal description of the system where we
merely Introduce the objects in the system and the kind of actions they
perform. The only data attributes being specified are the position

on the orbit for each ball. Following the Delta conventions formal lan-
guage elements are written In capital letters with key words underlined
and informal language elements (i.e. not specified in detail) are weritten

in small letters,

10

S~

® N 6 »;

10
11
12
13

14

15
16

17

18
19
20
21

22
23
24

25
26
27
28
29
30
31

32

. OBJECT BEGIN

CLASS BALL :
OBJECT BEGIN
QUANTITY POSITION : REAL ;

TASK BEGIN
REPEAT
(%
WHILE no-crash LET {POSITION = new-position}
DEFINE POSITION ;
INTERRUPT BALLS [crashing~neighbour |

BY exchange-velocity ;

await §
*)
END TASK 3
END BALL OBJECT ;

BALLS : ARRAY [0:3] OF REF BALL ;

REF OBSERVER :
OBJECT BEGIN

TASK BEGIN
REPEAT

(*

WHILE observing LET {observe}l;
INTERRUPT BALLS [selected-ball]

BY change~direction ;

x)
END TASK
END OBSERVER OBJECT ;

TASK BEGIN
BALLS [0] : - NEWBALL ;
BALLS [1]: - NEW BALL ;
BALLS [2]: - NEWBALL ;
BALLS [3] : - NEW BALL ;
WHILE TRUE LET {TRUE]} ;

END TASK ;

END oBJECT

Comments:

2~-13 :
4 :
5-12 :
6 - 11

8

9

10 :
14

15~ 24
18 - 22
25 - 31 :
30

Declares a category of BALL-objects which have a common

structure,
Declares a variable with the name POSITION of type REAL .

A TASK describes the actions to be executed by the BALL-

objects.

The BALL objects repeat infinitely the execution of the

imperatives enclosed by (% and %),

The WHILE ~ Iimperative Is executed In concurrent mode. The

predicate !"POSITION = new-position!" is imposed upon

11

the system state. This has the effect that the value of POSITION

is constantly updated to have the same value as !'"new-position',
The execution of the WHILE~-Iimperative continues until

the condition '"mo-crash!' becomes false.

The INTERRUPT ~ imperative is executed in event mode.
The BALL~object with which the collision happens is forced

to execute the action ""exchange-velocity!'.

Await (see section 5.1, p. 102) is executed in concurrent mode,
The Ball-object waits for an interrupt to execute., Afterwards

it continues with the imperative following await.
The array BAL.L.S denotes the four BAlLl=~objects.
A singular OBSERVER object is declared and generated.

The OBSERVER may at will select and interrupt one of the

BALL ~objects in order to make it change direction.
The TASK of the system object initiates the system.

Having initiated the system, the system object continues

infinitely to impose the predicate TRUE upon the system state.

12

A typical situation in the system will be that all four balls move following
the circular orbit and that the observer merely "observe!ls them. In

this situation the BALL ~objects will execute the WHILE-imperative at

line 8 and the OBSERVER executes the imperative at line 20, all in
concurrency. The predicates! "POSITION= new-position! and "observell
are concurrently imposed upon the system state while TIME is continuously

increased.

If two balls collide, events will take place.. When they collide the con-
dition "no-crash! will become false in the two BALL —-objects which

collide. The mode of execution changes o event mode. Each of the colli-
ding BAL L ~objects will in turn send an interrupt (line 9) to the other
BAL L -object. These interrupts will be received at line 10. The effect of
line 9-10 will be that the two colliding BALIl_-objects will exchange velocity.

Hereafter the system continues in concurrent mode as before the events.

An event will also happen if the OBSERVER decides to change the
direction of one of the balls (the condition "observing! becomes false).
The mode of execution shifts to event mode and the OBSERVER inter-
rupts the "selected-ballll, The BALL -object will in this situation be at
line 8 and it will execute the action '"change-direction!' and return to line
8. Here the execution of the WHILE~imperative is {(temporarily) stopped
because of an interrupt. In the previous paragraph the execution of the

WHILE-imperative was stopped because of its condition being false.

We have assumed that three or more objects will not collide at the same
moment of TIME just as the observer will not place the wall in front of a
BAL.L at the same moment of TIME as it collides with another BALL..

Below we give a more detailed description of the system. We have added
more data attributes in order to specify how velocity and position of each
object varies as TIME increases and when collisions appear. Note, however,

that some language elements still are informal.

13

OBJECT BEGIN
CLASS BALL :
OBJECT BEGIN QUANTITY N : INTEGER ;

@ N O »n

10
1
12

13

14
15

16
17

18
19
20
21
22

23
24

25
26
27

28

QUANTITY VELOCITY, POSITION, PO, TO ¢! REAL

TASK PROCEDURE EXCHANGE-VELOCITY :
TASK BEGIN QUANTITY V : REAL ;

VELOCITY : = V; PO : = POSITION; TO : = TIME;
END EXCHANGE-VELOCITY TASK ;

TASK PROCEDURE CHANGE-DIRECTION:
TASK BEGIN

VELOCITY : = -VELOCITY; PO : = POSITION; TO : = TIME;

END CHANGE-DIRECTION TASK;

BOOLEAN FUNCTION NO~-CRASH:

BEGIN NO-CRASH: = NOT (
((POSITION - BALLS [Ne1]. POSITION = distance) AND
(VELOCITY < BALLS [Ne1] VELOCITY)) OR
((BALLS [N®1]. POSITION - POSITION = distance) AND
(BALLS [N@®1]. VELOCITY < VELOCITY)))

END NO-CRASH ;

TASK BEGIN QUANTITY | : INTEGER;
PO : = POSITION ; TO: = TIME;
REPEAT
(%
WHILE NO~-CRASH
LET {POSITION = PO+ VELOCITY * (TIME~TO0)}
DEFINE POSITION ;
I : = crashing—neighbour ;
INTERRUPT BALLS [I]
BY BALLS [I]. EXCHANGE-VELOCITY
PUT (% V:=VELOCITY *);

await
*)

END TASK

END BALL OBJECT H

14

29

30
31
32
33
34
35
36
37
38
39
40

41
42

43
44
45
46
47

BALLS : ARRAY [0:3] OF REF BALL;

REF OBSERVER :
OBJECT BEGIN
TASK BEGIN QUANTITY I : INTEGER ;
REPEAT

(%

WHILE observing LET {observe} ;
I : = select~ball ;
INTERRUPT BALL[I] BY BALL[I]. CHANGE-DIRECTION;

*)
END TASK
END OBSERVER OBJECT;

TASK BEGIN
BALL[0]:-NEWBALL PUT (¥ N:=0; VELOCITY:=vo0;
POSITION:=po *)

WHILE TRUE LET { TRUE}
END TASK ;

48 END OBJECT

3~-4:

The data attributes have been extended.

5-8, 9~ 12: The actions EXCHANGE~-VEL.-OCITY and CHANGE-DIRECTION

13-17:

19

22

have been specified by TASK procedures.

NO -~ CRASH has been specified as a boolean function. A
collision may appear with its right neighbour (15) or left
_(16) respectively. Distance depends on the size of the balls
and the circumference of the orbit.

PO and TC are auxiliary variables used to store the value of
POSITION and TIME at the last collision with another ball
or wall,

The predicate '"new position!! has been specified in detail.
The value of POSITION is continuously changed as TIME

increases,

15

24 : Note that the action EXCHANGE-VELOCITY to be forced upon
BALLS[1] is the one local to BALLS[I]. The PUT-clause is

a call by value parameter transfer.

We hope that by now the reader has an intuitive understanding of some
of the main ideas behind Delta. In the following subsections we give a more
detailed description of the semantics of Delta. These subsections

may be skipped during a first reading.

OBJECTS

An object consists of:

- an object head containing the patterns, and the values of the data

items of the object,

- a stack of activities containing the stage of execution of the object, and

- an agenda containing interrupts being sent to the object but which

have not yet been executed.

A data item is a named entity and can be either a quantity or a reference
[Delta 75, p. 16]:

- a quantity is the assocliation of a name and a constant or variable
value which is a state observed through a measurement. The set of

possible states is defined by a type.

~ a reference Is the association of a name and a constant or variable

value being one specific object in the system or no object (NONE).

16

Quantities and references correspond to usual programming language
elements such as variables and constants.' It is the value aspect which

is important. Quantities are used to represent values of abstract pro-
perties of an object. For example the age, hair-colour, weight, etc.

of a person object may be described as quantities.v References are

used as nhames of objects.' This corresponds to pointers or references

in programming Ianguages.' Objects represent real physical objects

such as persons, tables, etc.‘ whereas quantities represent absiract pro-

perties of such objects.

An action entity represents the execution of a related set of actions

(Iike the activation record and code of a block activation or of a

procedure call in Algol).

Aninfinite set of elements with identical structure is called a category.

A pattern defines a category:

- a class pattern defines a category of objects,

- a procedure defines a category of action entities,

a function defines a category of action entities for computing a

value, and

a type defines a category of quantities.

A pattern does not in itself introduce any objects, action entities or
quantities In the system but may be used by other language constructs
to generate such ones. Objects, action entities or quantities generated in

this way are said to be category defined..

Some of the above mentioned language consiructs may contain the description
of the object, action entity or quantity without referring to a pattern decla~-

ration. Objects, action entities or quantities generated in this way are

said to be singular.

In Algol 60 a procedure call referring to a procedure declaration gene-
rates a category defined action entity, whereas an inner block generates

a singular action entity.

17

Quantities, references and patterns are called the attributes of the
object. The generation of an object implies the generation of an object

head representing the attributes of the object.

A Delta system is organised as a nested structure of objects. Any object

may have internal objects.' The system as a whole is represented by

the sysiem object.

A subsystem is a set of objects consisting of an object (bound) and all
its internal objects at all levels (content). A subsystem is represented

by its bound.b

A litter is a set of objects consisting of the system object or a category

defined object (primary object) and all its singular first level internal

objects plus their singular first level internal objects etc. (secondary

objects).

There is a bijective correspondance between subsystems and bounds
and between litters and primary objects. The set of litters Is a parti-

tion of the set of all objects.

The system object and category defined objects are primary objects.

Singular objects except the system object are secondary objects.

A task consists of a set of data items, quantities and patterns (except
classes) and a sequence of actions. A task corresponds to a procedure or
inner block in Algol 60.. Each object may have an associated task, its
prime task . The generation of an object implies the generation of an action
entity representing its prime task. The object immediately begins exe-
cuting the actions of its prime task and is said to be operating. When

all actions in the prime task are executed, the object becomes terminated.

When an object terminates all objects in its subsystem are also terminated.

18

An action in a task may be a task in itself. The action then includes the
generation of a new action entity representing the task and the execution
of the actions in this new action entity (a procedure call or an inner
block). In this way the actions of an object are organized as a stack

in the usual way as e..g. in Algol 60.. Such a stack of action entities is

called an activity.

Objects can communicate by means of interr‘upts.. An object A may inter-
rupt an object B with a given task.. Object B will then temporarily post-
pohe its activity and start executing the interrupting task enforced upon
it by A. The interrupting task may itself contain the execution of new
tasks and is thereby creating a new activity.A When the interrupting ac~
tivity is completed, the object resumes the interrupted activity. An
interrupting activity may again be inter‘r‘upted.' Thus the total state of
execution for an object may be described by a stack of activities. The
reason for not viewing the whole collection of action entities as one stack
is that the action entities inside an activity are logically connected

whereas there may be no logical connection between activities.

An interrupt may or may not penetrate the resistance of the current action
of the receiver. If the current action resists the interrupt, the inter-
rupting task will remain appended to a "waiting list" called the agenda

of the object. The interrupting task will be executed as soon as the
receiver starts executing an action which is penetrated by the Interrupt.

A priority system is used to decide when an interrupt penetrates.

A task may contain two kinds of actions:

- a concurrency action

is execuied concurrently with actions executed by other objects.

Some cohcurrency actions may be interrupted.

- event action. No other object is executing any actions (changing the

system state) while an event action is executed. An event action

cannot be interrupted.

19

Actions are described by imperatives which are classified as either
concurrency imperatives, event imperatives, composite imperatives or

task imperatives.

A concurrency imperative describes a concurrency action. The entry

into and the exit from a concurrency imperative are event actions.

An event imperative describes an event action.

A composite imperative is either a compound imperative (a sequence of

imperatives), a conditional imperative or a repetition imperative. A

composite imperative selects imperatives, e. d. sequencing (IN1P1;IMP2)

or testing some condition (IF B THEN (% IMP*)). Selection is an event
action.

A task imperative is a procedure call or an inner block. It involves gene-

ration of an action entity, execution of the actions in this action entity,
return from the action entity and removal of the action entity. Gene~
ration, initiation of execution of actions, return and removal are

event actions.

In a usual programming language the state of the system (program exe-

cution) can be changed by using assignment imperatives. The assignment
imperative is also part of Delta and is classified as an event imperative.
No assignment imperative can be executed In concurrent mode, thus only

predicates can specify state changes in concurrency imperatives.

Some actions use TIME in the sense that the value of the variable TIME

is continuously increased during the execution of these actions.

Actions which may take TIME are called time consuming. Actions which

take no TIME are called instantaneous., Only concurrency actions may be

time consuming. Event actions are always instantaneous.

All time consuming actions may be interrupted and all Interruptable actions
are time consuming as the interrupting task may contain time consuming
actions. Thus actions are interruptable if and only if they are time con-

suming.

20

The following is an example of a concurrency Iimperative which may

start a time consuming action:
WHILE TIME < T LET { X = f(TlME)} DEFINE X;

This means that the value of X is constantly changed in such a way that

X = f(TIME) while TIME < T. When TIME = T, the execution of the
imperative is completed‘.i All concurrency imperatives are variants

of the above imperative in the sense that they contain a predicate to be im-
posed upon the system state and a duration clause/ designational clause

describing.the candition for the action to continue,

THE QPERATION OF A DEL.TA SYSTEM

In the previous subsection we have seen that a Delta object may execute
two Kinds of actions, concurrency actions and event actions. When the
idealised system generator [Delta 75, ch. 11] executes a Delta system

this takes place In iwo different modes:

- concurrent mode, Each operating object is executing a concurrency

action, thereby imposing a predicate upon the system state. The

total set of these predicates is called the set of effective predicates.

The system Is said to be in a concurrent state.‘ The value of TIME

is continuously increased and as the effective predicates may

depend on TIME, the state of the system may also change continu-
ously. Each concurrency action being executed has a condition for

it to continue. At some moment of TIME an event may take place.
This happens in the following situations: 1) some concurrency
actions continuation-condition becomes false, 2) a new object is
generated, 3) an interrupt is penetrating, or 4) an object terminates.

In all cases the mode of execution then shifts to event mode.

- event mode. Only one object executes actions. All other operating
objects are stopped in the execution of a concurrency action. The
value of TIME is fixed. The actions being executed by the active

object Is an event and consists of a sequence of event actions:

21

(i) If the object is operating then exit from a concurrency action
else (the object is not operating then it has just been created
and it will) start to execute actions in its prime task (and there-

by become operating).

(ii) It then continues to execute event actions until it

(iii) either has executed the entry to a concurrency action or has no
more actions to execute (it then terminates and is no longer

operating).

The mode of execution then shifts back to concurrenct mode. An event
brings the system from one concurrent state to another concurrent

state. The states occuring during an event are called event internal states.

If two or more objects are to execute an event at the same moment of TIME
then these events will take place in a nondeterministic order. If one event
implies another event these will obviously occur in their logical sequence,
Note that the concurrent mode occurs between any two eventis and this
implies that the set of effective predicates will be imposed upon the
system state, even If the events take place at the same moment of TIME.

This means that the system state may be changed between two events.

Suppose that an object A is executing a task containing the following

sequence of imperatives:

L1: WHILE BI LET PRED1 ;
el
IE B2 THEN (% e2 *)
ELSE (x e3;
L2 : WHILE B3 LET PRED?2 ;.

*) 3

L.3: WHILE B4 LET PREDS3

22

B1 - B4 are boolean expressions, PRED1 - PRED3 are predicates,
el — e3 are event imperatives, and WHILE B LET PRED are all con-

currency imperatives, and L1-L 3 are labels.

Suppose that the system is in concurrent mode and that A is executing
L1. Let the set of effective predicates be EP. (then PREDI1 is in EP).
Suppose that B1 becomes false then A is to execute an event. The fol-

lowing sequences of event actions may take place.

Exit from L1 § el ;
test of B2 ;
true : (* e2;
test of B4 ;
true : (¥ entry to L3 *)
false : (*continue after L.3 %)
*)
false : (¥ e3;
test of B3 ;
true : (x entry to L2 *)
false : (¥ test of B4 ;
true : (¥ entry to L3 %)
false : (x continue after L3 %)
*)
*)
If both B2 and B 4 are true the set of effective predicates becomes
(EP - { PRED1 }) U f PRED3 } and this is the set of predicates which

will be imposed upon the system state.

Recall that system states which have a meaningful interpretation in the

referent system are called representative states. Concurrent states

should always be representative whereas event interval states need

not be.

If the system is observed during the TIME interval [TO, T 1, - <T’OST1Soo

the state of the model system can be described in the following way:

23

The TIME axis [TO, le can be divided into a (possible Infinite)
number of open intervals

1 Tg S Ly 188,05 nn

whebe TO’ Sl’ Sz, ... are the real humbers defining the moments
of TIME when events take place. In each TIME interval a fixed number
of predicates are satisfied by the»system state. At TIME TO’ 81, Sz, .o
this set of predicates is changed. In addition the events may also

have an effect on the system state..

If in some TIME interval the set of predicates cannot be fulfilled,

then the ' system description is said to be erroneous.,

2.2 The Mini-Delta Language

In this section we introduce Mini-Delta which is a subset of the Delta
lLanguage. We have focussed upon Mini-Delta as it contains the most

interesting parts of Delta, which are:

- the ability to specify a system as a nested structure of objects

operating in concurrency,
- communication between objects in form of interrupts, and

- the specification of actions in form of concurrency imperatives

where predicates are used to specify the state of the system.

Furthermore it is possible to declare a data part of each object in
form of quantities and references. As we are not modelling quantities
we shall not use any fixed syntax for quantities. As a consequence of

this we shall not decide upon the syntax of expressions and predicates.

The assignment statements have been excluded., The effect of this is
that it is not possible to describe a change of state in the system by

an algorithm. This can only be done by using predicates. Nearly all

24

other event imperatives and compound imperatives have been included.
We have excluded some language elements which are necessary if
Mini-Delta should be used in practice, that is e. g. the virtual concept,

parameters, priorities, and prefixing.

As a tool for system description, Mini-Delta is still very useful, also
compared to Delta. By means of Mini-Delta one can make a high

level sysiem description where one only considers the structure of
the system, the interaction between objects and the shift between
states which are all representative. In Mini-Delta the important thing
is not how a given state is imposed on the system state, but which
predicates the state of the system should fulfill at any TIME. A more
refined system description specifying the transistions between

representative states would have to use full Delta.

The syntax of Mini-Delta is defined using the metalanguage proposed

by N. Wirth in [Wirth 77]. It is an extension of BNF to contain regu-
lar expressions on the right-side of a production. Nonterminals are
written as identifiers possibly containing a hyphen (-). Terminals are
enclosed in quotes ("), e.g. "BEGIN!, ::=is written as =, alternative
as l . A clause enclosed by { } may appear zero or more times. A
clause enclosed by [] is optional. Clauses may be grouped by

inclosing them in ().

(1) Mini-Delta-System-Description =
Object-Description

This describes the system object.

(2) Object-Description =

NOBJECT! "BEGIN!
{Object-Attribute-Declaration iy 1}

[Task-Description]
NEND!" 1 OBJECT!

Describes an object, its attributes and its prime task.

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Object-Attiribute-Declaration =
Pattern-Declaration

] Data~Declaration

Pattern-Declaration=
Class-Declaration

] Task-Procedure~Declaration

Class-Declaration =
NCLASS! Identifier

Object-Description

Declares a category of objects having common properties as
described by object description. ldentifier Is the title of the

class.

Task-Procedure-Declaration =
NTASK!" "PROCEDURE" Identifier ":!!

Task-Description
Declares a category of tasks. ldentifier is the title of the

task procedure.

Task~Description =
NTASK" "BEGIN"
fTask-Attr‘ibute—DecIar'ation “;”}
Imperative {“; " lmper‘ative}

NENDU "TASK!

Describes a task by its attributes and its actions.

Data-Declaration =
Quantity—-Declaration
] Reference-Declaration

| Singular-Reference-Declaration

Quantity-Declaration =
NQUANTITY! Identifier {1,11 1dentifier|
i Quantity-Type

Declares a list of quantities of the same type.' The syntax of

Quantity-Type will not be specified.

25

26

(10)

(11)

(12)

(13)

(14)

(15)

Reference-Declaration =
"REF! Identifier {'", " Identifier}

1 Class-Title

Declares a list of references with a given qualification. The

reference(s) may have as value any object in the class with

the name Class-Title or the value noobject (NONE).

Singular-Reference-Declaration =

NREF!" Identifier ":!" Object~Description

Declares a singular object which is constantly referenced by
the reference ldentifier. The object Is generated when its enclosing

object Is generated.

Task-Attribute-Declaration =
Quantity-Declaration
[Reference-Declaration

| Task-Procedure-Declaration

Note that a task cannot have internal objects.

Imperative =
Concurrency~Imperative

] Event~Imperative

| Composite~Imperative

| Task-Imperative

Concurrency-Imperative =
Time-Concurrency-Imperative

| Instant-Concurrency-Imperative

Time~-Concurrency-Iimperative =
Duration-clause Property-Clause
[Priority-clause]

[Postponement-clause]

[Resumption-clause |

(16)

(17)

(18)

(19)

27

The Duration-Clause describes the condition for the action to
continue. The Property-Clause describes the predicate to be
imposed upon the system state. The Priority~Clause describes
the actions resistance against being Iinterrupted. The syntax of

Priority—-Clause shall not be specified.

Duration-Clause =

Empty
| "WHILE!" Boolean-Expression
| NPASSINGLY!

Empty means that the action will continue forever. "WHILE!
means that the action will continue until the Boolean~Expression
becomes false, The syntax of Boolean-Expression will not be
specified. "PASSINGLY!" means that the action will continue

as long as there are penetrating interrupts. In all three cases
the action will be completed if the objects encloser terminates

Just as it may be interrupted.

Property-Clause =
NLET! 1{1 Predicate "} !
["DEFlNE“ Variable {”, H Var*iable}]

Defines a predicate over variable quantities. The variables
after DEFINE are the ones which may be changed in order to
satisfy the predicate (the free variables). The syntax of

predicate and variable will not be specified.

Postponement~Clause =

HEXIT!H Compound—-Imperative

Describes actions to be executed before a possible interrupting

task is executed.

Resumption-Clause =
NHREENTRY Compound—-Imperative

Describes actions to be executed after a possible interrupting

task has been executed.

28

(20)

(21)

(22)

(23)

(24)

Instant—-Concurrency-Imperative =

Designational-Clause [Pr‘oper‘ty—C Iause]

Describes an instantaneous and thus noninterruptable concurrency
action. The execution of the action imposes a predicate upon

the system state.

Designational-Clause =
| HPAUSE!

| "ADVANCE"

I NCONCLUDE"Y

| NTERMINATE!"

NHPAUSE!" means that the object will proceed with the Iimperative
following the PAUSE-imper*ative.' HADVANCE! may only be

used within a postponement or resumption clause and means that

the imperative containing the clause shall be completed immediately.
HCONCLUDE!" means that the current activity shall be concluded.
N"TERMINATE! means that the object shall terminate.

Event~Imperative =

Reference-Name ":=!l 'NEW! Class~Title
| NINTERRUPT!" Object~Expression

"BY! Task-FProcedure-Title

The effect of NEW is that a hew object in class Class~Title is
generated. The value of Reference-Name becomes that object.
The effect of "INTERRUPT!" is that the object denoted by

Object-Expression is interrupted. Object~Expression will not

be specified, It may e.'g. be a reference name,

Composite-Imperative =
Compound-~Imperative
| Conditional-Imperative

| Repetition-Imperative

Compound-Iimperative =

(%" Imperative {"'; !l Imperativef 1*)n

(25)

(26)

(27)

Conditional~Imperative =
NIF!" Boolean-Expression
”:I-'T-lEN“ Compound-Imperative
[M"ELSE" Compound-Imperative |

Repetition-Imperative =
NREPEAT!" Compound-Imperative
| "WHILLE!" Boolean-Expression
NREPEAT!" Compound-Imperative
| "REPEAT!" Compound-Imperative
NUNTIL Y Boolean-Expression

Task-Imperative
Task~-Description
] NEXECUTE!" Task-Procedure-Title

The first case generates and executes a singular task (inner
block). The second case generates and executes a category

defined task (a procedure call).

29

30

Chapter 3

PETRI NETS

The theory of Petri nets was founded by Carl Adam Petri In his
thesis [Petri 62]. Petri nets have received widespread use as

models for systems containing asynchronous concurrent actions.

The basic concepts of the theory are introduced in [Petri 73], [Petri 75],
[Petri 76] and [Holt & Commoner 70]. [Peterson 77] contains a

survey and an elaborate bibliography of much of the existing work

oh the subject (see also [Genrich & Thiagarajan 78] which is a reply

to Peterson!s paper from two of Petri's nearest co-workers).

This chapter is divided into four sections. Section 1 introduces Petri

nets. The definitions are illustrated by two simple examples.

Section 2 and 3 define the different extensions to Petri nets, which

are used in the Delta semantics defined in chapter 4.

Petri nets may be infinite. In section 4 our field of interest is restric-

ted to finite markings and finite firings.

This chapter is essentially identical to the first five sections in
[Jensen 78].

That paper moreover contains a definition of hyper Petri nets, where
the rules for concession and firing are defined by attaching a set of
functions to each transition. The modelling powers of Petri nets,
extended Petri nets and hyper Petri nets are defined, compared and

found identical.

3. 1 Petri Nets

A Petri net is a 4~tuple pn = (S, T, PRE, POST) where

1. S, T are sets (possibly infinite)

2. PRE, POST are relations on SxT (possibly infinite)
3. SUT+9

4. SNT=¢

5. PRE N POST =@

6. range (PRE U POST) =T

Elements of S are called places and elements of T transitions.
A marking of a Petri net, pn, is a function

m S —> {0,1]

A place s is marked in m iff m (s) = 1, s is unmarked iff m (s) = 0.

Petri nets can be interpreted in a vast humber of different ways (see
[Petri 75]). Basic for them all is that places represent conditions, which
may hold or not, and transitions represent events (actions), which may

oCccCur.

When a certain specified combination of conditions is satisfied (places
marked) a given event is enabled (has concession). Then the event may
occur (transition fires), but it is not obliged to do so. If the event occurs

it changes some of the conditions (a new marking is derived).

Different transitions may fire concurrently if they are independent (has

different conditions).

Some papers on Petri nets (e.g. [Peterson 77]) allow places to contain

multiple markings. This corresponds to a function
m: S —>» lNo

where INo is the set of all nonnegative integers.

Other papers exclude isolated places, i.e. they require that

domain (PRE | POST) =S

32

In this paper we will only use binary markings (S —=3 {0, 1}) and we

will allow isolated places .

A Petri snapshot is a pair ps = (pn, m) where pn= (S, T, PRE, POST)

isa Peiri net and m a marking of pn.

A Petri snapshot can be represented graphically as a directed graph with

two different kinds of nodes:

O for places

D for transitions

There is an arc from place, s, to transition, t:

iff (s,t) € PRE.

There is an arc from t to s:

(=)e :

iff (s,t) € POST

The marking is represented by a token (dot) in the places which are

marked.

Example 1.
The graph
S1 ‘\
[3.1] &
2 53 Sy
4
t2 t3 ty

represents a Petri snapshot, Ps; = (pn, my), consisting of a Petri net
pn= (S, T, PRE, POST) where

S = {51,52,53, Sps 55}

T= {t1,t2,t3,t4}

PRE = {(s],t1), (sz,tz), (53,t3), (53,t4), (54,t4)}
POST =

and a mar*ki_ng My, where
mr(s1 7) =1

m, (sz) = m1(s3) = m, (54') =m, (55) =0

33

34

Let s be a place and t a transition.

s is a precondition for t &= s € F’REt &P (s,t) € PRE

s is a postcondition for t <&=P s ¢ F’OSTt & (s,t) € POST

s is a condition for t ‘ér::> s € CONDt &> (s,t) € COND
where COND = PREU POST

PREt, POSTt and CONDt are unary relations on S. COND is a binary

relation on SxT.

The definition of precondition, postcondition and condition can easily be

generalized to cover sets of transitions instead of single transitions:

s € PREL &> 1t €T [sePreE]
: A

s€ PoST, &> dt €T [scPosT,]

s € COND &= At €71, [se conD,]

1

A transition, t, has concession in a marking, m, iff all preconditions are

marked and all postconditions are unmarked:

(s,t) € PRE = m(s)=1
VsES . (s,t) € POST = mis)=0

Two transitions are independent iff their conditions are disjoint.
A set of transitions, T1, has concession in a marking m iff

(i) Each transition in T1 has concession in m

(i) The transitions in T1 are pairwise independent

(i) T, @

If T1 has concession in m then T1 may fire. If T1 fires then m ceases
to exist and is replaced by a new marking, m', derived from m by un-

marking aHT1 's preconditions and marking all T1 's postconditions.

The rules defining concession and firing can be summar

m —l—sm

I

~ ,
SGPRET > mis)=1A mi(s)=0
1
Vs€sS sEPOSTT:m(s)=0/\ m!(s) =1
1
= ml(a}
ms$CONDT1:> m{s) = m!(s)

Vit € Ty [t$t, = CONDtl N CONth

T T2

m! is directy reachable from m (m """““"’5“’,%“"“} m') iff there

transitions T1 such that
T1
m ,,,.mg.éﬁmm“.::@ m!

Example 1. {(continued)

Transition t has concession in marking m, (see [3.1]).

ized as follows:

@]

exists a set of

No other transi-

tion has concession in m, . If t1 fires, my is replaced by a new marking

mzr

N

~

[3.2] s ° s [

)@...._
> Mg—i e

35

36

The only independent set with more than one transition is T24 = {tz, t4}

In m, (see [3.2]) T,, has concession.

If it fires m, is replaced by m gt

J

[3.3]

Beyond T24 three different transitions ths ts and ty each has concession

in m.,, and may fire thereby replacing m,, by Mys m5 and Me respectively:

J

, t1
[3.4]

Sz 53 [J 34 e

t2 t3 t4

[3.5]

[3.6]

38

et T1 Tz

a Petri net, pn, with markings m and m!.

. Tn be a sequence of nonempty subsets of transitions in

There exists a sequence of markings for pn

Mos My oeven m with.n =0 such that
(i) m_=m
(i1) mi:imwwg%«%mi (1<i<n)
(iii) m_ = m!

T T I—— such that
1 2 n
T, T T
1 2 N 1
m 5h S m
This defines the binary relation 5h % as the reflexive and transitive

closure of v--BF——} .

PN is the set of all Petri nets and PS is the set of all Petri snapshots.

The set of binary relations {W I pn € PN} induces a binary relation
on PSxPs:

A Pnpsmy) == (pny, my)
pn1 = pnz A m1 ——ﬁpm m2
Analogously ! mmlf,m;}* " is induced as a binary relation from

{ pn"%"*l pn € PN}

For each Petri snapshot, ps € PS, we are interested in the set of all

- Petri snapshots rechable from ps.

Thus we define a function

@p: PS —> p(PS)
by

R, (ps)= {ps'€ PS | ps —pmg—s* ps']
(P denotes powersets).

Example 1. {continued)

In my only t] has concession. If it fires we get a new marking, m7:

!)

[3.7]

%___
(e

In my only t4 has concession. If it fires My, is replaced by m.

In m5 no transition has concession.

In Mg only t2 has concession. If it fires we again get m.

40

In m,7 only t4 has concession. If it fires we get a new marking, mgt

[3.8] s

In m8 none of the four transitions have concession.

From the discussion above it follows that

R, (ps;)={ps, [1=i<8}

where Ps; isthe Petri snapshot consisting of the Petri net pn and the

marking m..

41

Let pn= (S, T, PRE, POST) and pn! =(S!, T!, PRE!, POST!) be Petri nets.

pn is a subnet of pn! iff

(i) scst

(ii) TeT

(iii) PRE = PRE! N SxT
(iv) POST = POST! N ST

Let ps = (pn, m) and ps' = (pn!m!') be Petri snapshots with pn and pn' as

defined above. ps is a subsnapshot of ps! iff

(i} pnis a subnet of pn!
(i) ¥ s€S[m(s)=mi(s)]

In the following we will not always make a sharp distinction between a
Petri snapshot ps = (pn, m) and the corresponding marking m. For instance

we will say that a place, s, is marked in ps iff it is marked in m.

We will also use notation such as ps(s), where we really mean m(s) and

write
T1 T2 e Tn R '
ps) > Ps
with ps' = (pn, m)
where we mean
T1 . T2, Tn -
m 5h > m

Example 2.

In example 1 the set of possible firings was finite.

As an example of a Petri net, which may perform an infinite sequence of
firings we introduce the following net, which represents the system,described
in chapter 2, consisting of four elastic balls moving in a circular orbit

without loss of energy (see page 9).

42

[3.9]

Each ball moves either in positive direction ("+!" marked) or in negative

direction ("=" marked).

Two neighbouring balls moving against each other may collide thereby
exchanging their direction of movement. This is represented by a firing

of one of the four transitions.

Two neighbouring balls moving in the same direction may also collide.
This changes their speed, but not their direction of movement. Thus

this kind of collisions is not represented by the firing of a transition.

43

3.2 Extended Petri nets

In Petri nets, as they were defined in the last section, it is possible to
add and remove tokens. It is however not possible to test, in a single
transition, whether a place is marked or not without destroying the

current marking.

Nondestructive tests must be performed using two transitions. The first
performs the test while the second reestablishes the marking. Il is neces-
sary to make sure that the second transition actually does fire before

other transitions "uses! the place.

When defining a semantics for Delta using Petri nets it turned out, that

we often heeded such nondestructive tests.

Hence we now introduce two new relations and define an extended Petri
net to be a 6-tuple epn = (S, T, PRE, POST, TESTM, TESTU) where

1.S, T are sets (possibly infinite)
2.PRE, POST, TESTM, TESTU are relations on SxT
(possibly infinite)
3. SUT=* @
4, SNT= @
5. PRE, POST, TESTM and TESTU are mutually disjoint
6. range (PREy POSTUTESTMUTESTU) = T
As before S is a set of places and T a set of transitions.

L.et EPN be the set of all extended Petri nets and define marking, marked,
unmarked, extended snapshot (es€ ES),precondition, postcondition,
testmarked condition, testunmarked condition, condition, independent,
directly reachable (—.=>), reachable (———-E—-é*), Rt ES —> P (ES),
subnetyand subsnapshot in analogy with the corresponding definitions for

Petri nets.

A transition, t, has concession in a marking, m, iff all preconditions and
testmarked conditions are marked and all postconditions and testunmarked

conditions are unmarked:

(s,t) € PRE U TESTM = m(s)=1

VsES
S (s,t) € POST U TESTU = m(s)= 0

44

Let m and m! be markings for an extended Petri net epn = (S, T, PRE, POST,
TESTM, TESTU).

T
1 1
[I sl 1
int eph
.'/r_ N ey
s € F—"RET > m(s)=1 A mi(s)=0
1
s € POST. 2 mi{s)=0A mi{(s)=1

1
VYs€ES s € TESTMT =2 mi{s)=1 A mi(s)=1
1
s € TESTUT > m(s)=0A mi{(s)=0
1
< s ¢ COND_r = m(s) = m'(s)

e 1 —

Vit €T, [t1 +t2 = c:ONDt1 n CONth = @]

LT1 + ¢

It should be remarked here, that similar extensions to Petri nets have

been defined by several authors (see [Peterson 77] page 246).

Some applications of Petri nets define a place to be a sidecondition for

a transition, t, if it is both a precondition and a postcondition for t.
Then the rules for concession and firing are defined such that side-
conditions are treated in the same manner as we treat testmarked

conditions.

Extended snapshots are represented graphically in the same way as Petri

snapshots with the following additions:

There is an arc

) :

iff (s, 1) € TESTM

There is an arc

O————={7]

iff (s,t) € TESTU

From the definitions it is obvious that everything, - which can be modelled

using Petri nets can also be modelled using extended Petri nets.

In [Jensen 78] it Is shown that the converse is also true: For each exiended
Petri net epn a corresponding Peiri net pn can be constructed such that
all information about epn and its markings can be derived using informa-

tion only about pn and its markings.

However it should be stressed that extended Petri nets is a valuable for-
malism in itself. Extended Petri nets can be defined, interpreted, under-

stood,and manipulated as an independent selfcontained formalism.

46

2.2 Further extensions of Petri nets

In the last two sections we have defined Petri nets (with preconditions
and postconditions) and extended Petri nets (which in addition have

testmarked and testunmarked conditions).

When defining a semantics for Delta using extended Petri nets it turned
out that there were situations in which we wanted to use transitions

with more complicated kinds of conditions.

Instead of merely introducing extensions ad hoc we will now make a
systematic investigation into the possible kinds of conditions which can

be defined in nets with binary markings (S —s { 0,1}).

The rules defined for extended Petri nets regarding concession and firing

can be summarized as follows:

(s,t) € PRE

\U/{s unmarked = t cannot fire

s marked = If t fires, s becomes unmarked

(s,t) € POST

\U’ s unmarked = Ift fires, s becomes marked
s marked = t cannot fire

(s,t) € TESTM

\J/{s unmarked = t cannot fire

s marked = If t fires, s remains marked

(s,t) ETESTU

U/{s unmarked = If t fires, s remains unmarked

s marked = t cannot fire

This can also be shown in more compact form as follows:

UNMARKED
CANNOT REMAINS BECOMES
FIRE UNMARKED | MARKED
’.—.
% TEST POST
u
Z 0 UNMARKED
<—..
SRS
EF:
£ TEST
[3 10] ¥l < x|
Se i = | MARKED
| 3¢ %
0
PRE
3 <
0
z
45

What about the five empty boxes in this table? Have they a meaningful

interpretation?

The answer is yes:

[3.11]

UNMARKED
CANNOT REMAINS BECOMES
FIRE UNMARKED | MARKED
I_.
g y | BLOCKED | TEST POST
% o UNMARKED
U WL
a)
wl v a
X! Z
gl £ % TEST DUMMY SET
é 5 g MARKED MARKED
x>
0
hy
5 % PRE SET CHANGE
O =2 UNMARKED
w5
]

48

BLOCKED: The transition cannot fire whatever the marking of the place
is. This corresponds to the situation where the place is both a precondi-

tion and a postcondition for the given transition.

DUMMY: The transition can fire whatever the marking of the place is. The

marking of the place is not changed by a firing.

CHANGE: The transition can fire whatever the marking of the place is.

The marking of the place is changed by a firing.

SETMARKED: The transition can fire whatever the marking of the place is.

After a firing the place is marked.

SETUNMARKED: The transition can fire whatever the marking of the place

is. After a firing the place is unmarked.

These nine different kinds of conditions exhaust all possible kinds of

conditions for deterministic¢ transitions in binary nets.

If however we allow nondeterministic transitions, then the table looks as

follows:
UNMARKED
CANNOT REMAINS BECOMES | UNKNOWN
FIRE UNMARKED | MARKED MARKING
|..
‘ % BLOCKED | TEST POST -
[3. 12] <Z(&1 UNMARKED

O L
Y
g % TEST DUMMY SET INCREASE
2 I| MARKED

ol B & MARKED

wi € =

X

r [a)

Y
5% PRE SET CHANGE -
0 2 UNMARKED
45
i}
§ o)
g é - DECREASE - RANDOM
<32
33

49

INCREASE The transition can fire whatever the marking of the place is.

By a firing the marking of the place is increased or unchanged.

DECREASE : The transition can fire whatever the marking of the place is.

By a firing the marking of the place is decreased or unchanged.

RANDOM: The transition can fire whatever the marking of the place is.,

After a firing nothing is known about the marking of the place.

It is difficult to give a natural interpretation of the four remaining kinds
of conditions defined in [3.12].

Instead of inventing a set of fancy arrows for the graphical representa-
tion of the different kinds of conditions in [3. 12] we propose to label

the arrows with a text:

<:> BL OCKED
S t
<:> DUMMY
S t
<:>@ CHANGE
s & b
[3.13] <:>QASETMARKED ;
(E) SETUNMARKED P
<:>QINCREASE ¢
) DECREASE
® o
<:>@ RANDOM ot

50

An arrow-head at the end of a place (transition) indicates that

tokens may be added (removed) by a firing.

For the kinds of conditions already defined in extended Petri nets we will

use the same graphical notation as hitherto:

PRE: <E£> it

POST: (::y% t
[2.14]

TESTMARKED: <€> t

TESTUNMARKED @ (E) t

It is of course possible to give a formal definition of " superextended!
Petri nets as a many-tuple containing a relation for each kind of con-

ditions defined in [3.12]. This will not be done . . . =

Instead we merely regard a graph G containing arrows from [3.13] and [3. 14]
as a graphical abbreviation for the same extended Petri net as the graph,
which

(i) Only contains arrows from [3.14].
(i1) Is obtained from G by repeated application of the following

set of substitutions.

<§>BLOCKED

CE} DUMMY

<:>QCHANGE

(:)QSETMARKED

@ SETUNMARKED

<:>@INCREASE

<§> DECREASE

@f@ RANDOM

[3.15]

o~

—r

51

52

Each transition, t with a BLOCKED conditiion get a new unique place,

tUN’ as precondition. This place will always unmarked.

When a transition t, has exatly one condition s, of a kind from [3.13]
(except BLOCKED) it is split into two, three orfour transitions (se [3.15])
which each inherits the precondition, postconditions, testmarked and
testunmarked conditions of t. In addition each of the new transitions has s

as condition of the kind shown in [3.16].

When a transition, t, has more than one condition of a kind from [3.1 3].

(except BLLOCKED) it is split for each such condition, e.g:

@SETUNMARKED NI INCREASE @

[3.16]

In particular this means that a transition with an infinite number of con-

ditions may be split into an infinite number of transitions.

53

3.4 Finite markings and finite firings

We have made no restrictions at all concerning the size of our nets.

In particular it is possible that

(i) An infinite number of conditions may be marked
concurrently.

(ii) An infinite number of transitions may fire concurrently.

However it turns out that most applications of Petri nets do not utilize

(i) and (ii) in their full consequence.

Instead it is typical to have a situation, where the nets defined each con-
tains an infinite number of places and transitions but satisfies the following

two restrictions:

(i) Only a finite number of conditions may be marked
concurrently,
(ii') Only an finite number of transitions may fire con-~

currently.

Analogous situations are known from many other fields of computer science:

In an infinite virtual storage at any time only a finite number

of bytes have been used.

The possible "routes!" during the execution of a "WHILE -
imperative or a recursive procedure can be described by an
infinite tree, but each terminating execution only traverse

a finite part of this tree.

In a cellular automata the number of constituent automa is
infinite, but at any time only a finite number is outside their

neutral state.

In the rest of this paper we only consider markings and firings satis-

fying (i') and (ii') above. Such markings and firings are said to be finite.

54

For a given extended snapshot es = (epn, m) the following three restric-
tions are sufficient but not necessary to assure that all snapshots reach-
able from es and all firings in such snapshots are finite:
(i) mis finite
(ii) Each firing of a transition in epn adds at most a
finite number of tokens to its conditions.
(iii) Only a finite number of transitions in epn can fire

when all their conditions are unmarked.

All the extended Petri nets used in our definition of a semantics for Delta

satisfy (i), (ii) and (iii) above.

55

Chapter 4

MINI-DEL TA SEMANTICS

In [Delta 75] a semantics for Delta is defined in terms of transitions
from one machine state to another in an abstract machine called

IDSG (ldealized Delta System Generator). Each transition corresponds
to the execution of a language element or to the concurrent execution of

a set of language elements.

This kind of semantics Is known as an interpretive semantics. For a

discussion of different semantic approaches see [Hoare & Lauer 74].

In this chapter a semantics for Mini-Delta is defined in terms of ex-

tended Petri nets. Each language element is represented by a rather

small extended Petri net. A Delta system described by a Delta-description,
D, is then represented by an extended Petri net, This nef is composed

by a syntax directed translation, from small subnets representing the

various language elements contained in D,

This approach can be viewed as an Interpretive semantics, too. In
this case the rules defining the behaviour of the abstract machine are
the rufes defining which transitions have concession and the rules de~

fining how a hew marking is derived when transitions fire,

In interpretive semantics it is common practice to separate each machine

state into two disjoint parts:

- a memory state which defines the current value of all

data items explicitly defined by the user (system reporter).

In [Delta 75] these items are known as specified attributes.

- a control state which defines the current progress of execution.

This can be viewed as the current values of a set of data items
implicitly defined by the user (e. g. program pointers). In

[Delta 75] these items are known as structural attributes.

56

The semantics defined in this chapter focusses upon changes in con-
trol states. It gives a detailed definition of the possible orders in

which different actions can be performed.

Sequential execution correspondends to total orders, while concurrent

execution corresponds to partial orders.

Concurrent execution of a set of action sequences implies that different

actions can be performed at the same time. This is something much

stronger than Interleaved execution, where the different actions are

performed in an unpredictable order but one by one,

The difference between concurrent and interleaved execution is
analogous to the difference between a situation, where it is meaning-
less to ask whether a < b or b < a simply because a and b are un-
ordered, and a situation, where we know that a and b are ordered, but

not whether a < b or b < a.

The two semantics ([Delta 75 and this chapter) are equivalent in the
sense that for each Delta system they define the same set of possible

partial orders,

The semantics defined in this chapter defines the effect of the changes
which should be performed upon memory states, but it says nothing

about how these changes are performed.

This chapter is divided into three sections. In section 1 three different
phases for Delta-objects are defined. These merely describe whether
an object possesses attributes and whether it performs actions. The
different objects in a Delta system shifts between the three phases. In
section 2 most of these phase-shifts are synchr‘onized.' Section 3
focusses on imperatives, executional modes, event registration and

model-time. The remaining phase-shifts are synchronized.

All names for places and transitions will be written in capital letters.

57

4,1 Delta — Objects

Delta~objects have two main properties:

(i) They may perform actions

(i) They may possess attributes (data items or pattern declarations).

Each object is in one of three different phases. Initially it is OUTSIDE
the considered system. Then it may ENTER the system either by gene-
ration of the system object or by execution of a NEW-imperative. Now

the object is ACTING. It performs actions and it possesses attributes.

An ACTING object may TERMINATE either explicitly by executing a

TERMINATE imperative or implicitly because it has no more actions

to perform or because its encloser TERMINATEs. Now the object is

TERMINATED. It does not perform any actions, but it still possesses

attributes., Finally the object may be REMOVEd from the considered
system. Then it again becomes OUTSIDE.

By the discussion above it is straightforward to represent each Delta

object by a subnet of the form:

ACTING & ENTER
F N
[4.1] | TERMINATE OUTSIDE

CTERMINATED) ’ REMOVE

where Initially only OUTSIDE is marked.

This will however not be done. Instead each Delta object is represented

by a subnet of the form:

58

ENTER

ACTING)

[4.2] TERMINATE

INSIDE

(TERMINATED) ¥ REMOVE

where all places are unmarked Initially. INSIDE is the negation of
OUTSIDE (i. e. INSIDE marked « OUTSIDE unmarked).

There are two reasons for choosing [4.2] in favour of [4.1]:

(1) In [4. 1] at any time exactly one place is marked. Thus it is
tempting to interpret the different firings of ENTER and REMOVE
in a fixed subnet of form [4. 1] as representing the same object
being ENTERed and REMOVEd from the system. In Delta this
is however meaningless. When an object is REMOVEd from the
system, there are no means by which it is possible to reENTER

the same object into the system.

(i1) For each class an unlimited number of objects may be INSIDE
the considered system at the same time. Thus the net representing
the entire system must contain for each class an infinite (but

countable) number of subnets of form [4.1] or 4. 2].
Using [40 1] with all OUTSIDE places initially marked violates the

demand made in chapter 3 to consider only finite markings.

It should be noticed that the reuse of subnets of form [4.2] is analogous

to the creation and destruction of activation records in an infinite

virtual store:

(1) When an activation record is destroyed the storage used by it
can be reused to create a new activation record. This second
activation record may be "similar! to the first one but it always
represents an execution (e. g. of a block, procedure or object)
which is logically distinct from the execution represented by

the first activation record.

(i) At any time only a finite amount of storage is being, or has been,

used,

However [4.2] does not describe the behaviour of all Delta-objects.
There are objects which never execute actions. When such an object
ENTERSs the system it immediately becomes TERMINATED. Thus
this kind of object is described by:

{ ACTING } { ENTER
[4.3] TERMINATE

(TERMINATED‘D“——" REMOVE

The phase shifts included in [4.2] and [4. 3] can be summarized in

the following diagram:

60

PERFORMS ACTIONS

OBJECT
PHASES
NO YES
not
& possible
l—.
)
m| o
. .
[4.4] ~ >
< 2
0
L] i
0
0
i I
2 DS
Q TERMINATED ACTING
INSIDE INSIDE

In the rest of this paper all subnets representing objects will be shown
as [4.2]. For objects without a prime task [4.2] should be replaced
by [4.3].

61

4,2 Synchronization between creation, termination and destruction

of objects

In the last section we developed extended Petri nets, [4.2] and [4. 3],
representing single Delta objects. We now want to stick such smaller

nets together to form a bigger net representing an entire Delta system.

UINSYNCHRONIZED NE

Our first attempt is a net containing a subnet of form [4.2] or [4. 3]
for each object, which may ENTER the system. These subnets are

unsynchronized (i. e. unconnected).

As mentioned earlier, for each class C an unlimited number of objects
may be INSIDE the system at the same time. Thus C must be represented
by an infinite but countable number of subnets of form [4.2] or [4.3].

This will be denoted by the following notation

ACTING =& ENTER

TERMINATE INSIDE

GERMINATED) P REMOVE

[4.5]

62

This notation will be used when we have a finite or infinite set of
identical subnets, The set of objects, tasks or imperatives represen~
ted by the set of subnets will be indicated by a text in uppermost right

corner, e, dg.:

OBJECTS WITH
PRIME TASK

[4.6]

To represent a Delta system the various subnets representing indivi-
dual objects must be synchronized. Recalling the definition of "litter!
and "content! made in chapter 2 (page 17) we formulate the following

synchronization constraints:

SYN1: All objects in a litter ENTER the system togethen

SYN2: A litter can only ENTER the system if the primary

object's encloser is INSIDE.

[4.7] SYN3: An object which is perceived (can be referenced)
directly or indirectly by an ACTING object
cannot be REMOVEAd.

SYN4: When an object TERMINATESs all objects in its
content TERMINATE at the same moment of model~

time.

We now define more elaborated extended Petri nets. These nets
satisfy SYN1, SYN2, and SYN3 but not SYN4. They are constructed

from the unsynchronized nets on page 62 in three steps:

(SYN1!)

[4.8] (SYN2!)

(SYN3')

For each litter all ENTER transitions are mapped
into a single transition (also called ENTER). Each
place being a condition for one of the original
ENTER transitions becomes a condition (of

the same kind) for the new ENTER transition.

For each litter this single ENTER -transition
is given the INSIDE -place for the primary

objectls encloser as testmarked condition,

Each REMOVE. transition gets a new place
REMOVABLE as precondition. These places
will never be marked. Thus REMOVE transitions

never can fire.

63

(SYN1!") and (SYN2!) should be easy to comprehend and need no comments.

At a first glance (SYN3') may seem to be an unnecessarily crude method

to achieve (SYN3). However, by a closer inspection this turns out not

to be the case:

(i) When an object is TERMINATED and not perceived (directly or

indirectly) by any ACTING object it cannot in any way influence

the future behaviour of the system. Thus from a semantical viewpoint

it is completely without Interest, whether the object stays in the
system or is REMOVEd.

(i1) [Delta 75] states that objects which are TERMINATED and not
perceived by any ACTING object may be REMOVEd not that they
must be. We think that [Delta 75] at this point has been influenced

by considerations about how to implement garbage collection in

Simula. As stated above such considerations are irrelevant

for the definition of a Delta semantics.

64

(iii) If someone should insist to model the situation described in
[Delta 75] this can simply be done by adding a surrounding net,
which marks REMOVABLE when the object is not perceived
(directly or indirectly) by any ACTING object. When REMOVABLE
and TERMINATED are marked REMOVE may fire but it is not

obliged to do so.

Using the pictorial notation defined in [Delta '75] the following diagram

o

('\

[4.9] 1 1

G—>

O
()

represents a Delta system where

(1) The system object S, is encloser for a singular object 51 and

0
a class of category defined objects C1 .

(ii) Each object in C1 is encloser for a class of category defined

objects C2

Using extended Petri nets constructed by [4. 8] we get:

65

[4.10]

66

The arrow from C1's ENTER to So's INSIDE indicates that each

ENTER transition in a C1—subnet has So's INSIDE place as testmarked
condition.

Similar remarks apply to all other arrows '"crossing boundaries! in

this and following graphs.

Initially all places are unmarked. The only transition which may fire
is ENTER belonging to So.
In [Delta 75, p. 84] it is said that "two objects C'! and C! having the same
class title A and identical class patterns, but which are directly en-
closed by two different objects D! and D", are to be regarded as be~
longing to two different classes, even if D! and D" belong to the same

class",

In [4. 10] this is reflected by the nesting of C2-subnets with respect

to Cl-subnets .

67

4.3 Synchronization between objects which execute concurrent actions

The subnets [4.2] and [4. 3] defined in section 4.1 and the 4 synchroni-
zationconstraints formulated in section 4.2 constitute a rather rudi-
mentary view on the behaviour of Delta objects: Objects may alternate
between different phases, but imperatives, attributes, and model-time

are not represented,

In this section we will define extended Petri nets, built from nets con-
structed by [4.8], by adding subnets which represent imperatives and
model-time. These nets satisfy SYN1, SYN2, SYN3, and SYN4 (see page 63),

All imperatives and tasks will be represented by a net of the following

IMP/TASK

A transition (place) in a given subnet is a border node iff it has a con-

form

[4.11]

dition (is condition for a transition) outside the subnet.

The notation lf indicates that the transition t will be replaced by a
more elaborated subnet, where all border nodes are transitions (closed

subnet).

Similarly the notation{Us) will be used to indicate that the place s will
be replaced by a more elaborated subnet, where all border nodes are

places (open subnet).

68

ACTING AND OPERATING

For objects with a prime task [Delta 75:[defines two closely related
concepts: The object is ACTING from the moment it ENTERSs the system
until the moment it TERMINATESs, but it is only operating from the
moment it executes an Initiation -event (see p.69 and 77) until the
moment It TERMINATEs. When an object becomes ACTING it also

becomes operating (or TERMINATED) at the same moment of model-time.

It is very easy to confuse "ACTING!" with "operating!. In [Delta 75]

this is done several times (e. g. page 252 and 470).

In chapter 5 we propose changes to the Delta semantics, such that

NACTING! and "operating'' are identified and !Initiation -events" disappear.

Delta imperatives are executed in two different modes.

In concurrent mode each operating object executes a concurrency impe-
rative. This designates a set of property clauses; one for each operating
object, The corresponding predicates are all concurrently imposed upon

the system state.

In event mode only one object executes imperatives. Any other operating
object still designates a property clause, but the corresponding predicates

are not imposed upon the system state.

69

[Delta 75, p. 477 | distinguishes between 4 .different kinds of events:

(1) Initiation (INIT)

A new object ENTERed Into the system has to take

up its actions

(i1) Completion (COMP)

The execution of a concurrency imperative is completed

[4.12]
(i1i) Interruption (INT)

The execution of a concurrency Iimperative is interrupted

(iv) Encloser termination (ENC)

An object has to TERMINATE because the encloser
of the object has TERMINATEd.

The alternation between concurrent mode and event mode is represented
by the net [4.13].

Initially only CONCURRENT is marked.

During execution the system alternates between concurrent mode
(CONCURRENT marked, all EVENT unmarked) and event mode (one
EVENT marked, CONCURRENT and all other EVENT unmarked).

In concurrent mode each operating object executes a concurrency
imperative with a given predicate. (PREDICATE marked for all ope-

rating objects).

70

OBJECTS WITH
PRIME TASK

ENTFZY Iﬁ

/(PREDICATE

e
e S,
g 2
~ <
>
{CONCURRENTD——’ ——@ % EVENT l)
U

b—.

.
i

&l
O i1 0@ el

[4.13]

71

Each ACTING object OB may execute Delta events.. Recalling the
description on page 21 the execution of each event can be divided into

three parts:

(i) The event starts by a firing of OB'!s, INIT, COMP, INT or
ENC transition. If OB is operating the execution of a concurrency

imperative stops.

(OB's PREDICATE becomes unmarked).

(i) A specified sequence of event actions is executed

(OB!'s EVENT marked).

(ii1]) The event finishes by starting the execution of a new concurrency
imperative (firing of OB's ENTRY marks OB's PREDICATE)
or by making OB TERMINATED. In both cases the system returns

to concurrent mode,

In event mode all operating objects except OB still designate a predicate
(PREDICATE marked) but these predicates are not imposed upon the

system state.

From [4.13] it immediately follows that Delta events are executed one
by one. Between each pair of events the system returns o concurrent

mode and a set of predicates is Imposed upon the system state.

From [/4. 13] it also follows that the possible sequences for events

executed by a fixed object can be described by
[INT { COMP | INT }] [ENC]

using the "Wirth—-notation" introduced on page 24.

The net [4. 13] is only a first step towards a model representing

Delta systems executing imperatives in concurrent and event mode.

It is for Instance not modelled under which circumstances a new object

may be generated (firing of an ENTER transition).

72

REGISTRATION OF EVENTS

We now want to introduce registration of Delta events. To model this

we make the following net:

ORJECTS WITH
PRIME TASK

ENTRY }:
/([PREDICATE

d

AN
4
&4

CONCURRENT, IN
—{(concurrenT) g R

(] EVENT l

—AJI [NTLH NO MORE
T-L‘[ENC [~ >0 MORE)

TIHATTANN

y

ADVANCE

— = ¢ — T COMP
i MODEL-TIME
INT

@z

3
| - —F o
3
w w uf
— /R I
L] CONCURRENT g g By W
T i
5 o 3} g
2 b4 2 2
REGISTER
] EVENTS
[4.14]

Initially only COI\!CURREI\}T1 is marked.

73

An initiation, completion, interruption or encloser termination event is
registered iff the corresponding INIT, COMP, INT or ENC place is

marked.

Assume that the system is In concurrent mode (CONCU?RENT1 or
CONCL,IRRENT2 marked). As long as there are no registered evenis
model-time may advance (ADVANCE MODEL-TIME fires).

When one or more events are registered model-time cannot advance
(ADVANCE MODEL~TIME cannot fire since it has a marked testunmark

condition).

The only thing which can be done is to execute one of the registered
events (this is started by a firing of a INIT, COMP, INT or ENC
transition). When the event execution finishes the system returns to con-

current mode (CONCURRENT, or CONCURRENT, marked).

1 2

As long as there are any registered events, model-time cannot advance.
Between each pair of events the system returns to concurrent mode,

a set of predicates is imposed upon the system state and events are
registered (REGISTER EVENTS fires and may mark some INIT, COMP,
INT or ENC places).

We have said nothing about the rules defining the situations in which
Delta events should be registered. Moreover,according to the remarks on
page 67 \REGISTER EVENTS should be replaced by a more elaborated

closed subnet.

This can indeed be done. It is possible to construct a subnet, which
represents event registration as defined in [Delta 75]. Unfortunately
this net is large and clumsy. It adds very little to the understanding
of the verbal definition given in [Delta 75]. Thus the net will not be

given in this paper, and we refer the reader to [Delta 75] p. 477-482.

74

Here we will only mention three things about the rules for event regi-

stration defined in [Delta 75]*

(i) Events can only be registered for ACTING objects;
(i) At any time each object has at most one registered event.
(iii) Using these rules [4. 14] satisfies SYN4 (see page 62).

In chapter 5 we will propose changes to the Delta semantics such that

the rules for event registration are drastically simplified.

A much more difficult and theoretically interesting problem is how to
construct a closed subnet replacing ADVANCE MODEL-~TIME. It is
not possible to represent a continuous increase in model-time by a

finite or countable sequence of transition firing. In chapter & we will

return to this problem.,

In [4. 14] we did not distinguish between the different concurrency
imperatives executed by an object (each object had only one PREDICATE

place).

Now consider the following net, where each concurrency imperative

is represented by its own subnei:

75

CONCURRENCY
IMPERATIVES

CONCLJFZF(ENT2

Y

BEG!NPT)

BEGIN

TNTRY

PREDICATE

/ S,
pd ke

RESLIMPTION

TASKS

TASK

POSTPONEMEN

ADVANCE

MODEL.-TIME

j CONCURRENT,)
—

-

REGISTER
EVENTS

c
:
INIT o
~
(o
comp|
4
'[ENCJ!
)
INIT
— —T— —~{comp)
T T AT
_——— = —— ENC)
w m w
I N
o @ o i
g g
z 2 2 2

— 1

T -

OBJECTS WITH
PRIME TASK

END

NO MORE

O ha@all

[4.15]

76

To understand [4. 15] and the following nets, it is important to remember
that the different subnets representing imperatives executed by an object
are combined (by a syntax directed translation) into a big net, represen-
ting all actions which can be executed by the object.

Let T be a task consisting of a sequence of imperatives IMP1; lMPz; cee 3

lMPn, where each imperative lMFz'i is represented by a net of the form

IMP.

[4.16]

Then T is represented by the following net

[4. 17] ”\/”,::o1 ——’@—D ';Mpz —}@ _..)‘ lMPn

where each place Pi is END place for lMF’i and BEGIN place for IMPH_

1

Thus in [4. 15] the BEGIN place for one concurrency imperative may be

identical to the END place of another,

Similar remarks apply for the composition of subnets representing
postponement clauses,interrupting tasks and resumption clauses., We

will return to this on page 78.
Initially only CONCLJRRENCY1 is marked.

Assume that the system is In concurrent mode. If one or more events are
registered model-time cannot advance. The only thing which can be

done is to execute one of the registered events.

Let OB be a given ACTING object. If OB is operating it is executing

a concurrency imperative, IMP.

The relationship between OB and the event chosen for execution .can be
of five different types, all of which are described below using the three

steps introduced on pages 21 and 71.

1.

Initiation event for OB

Then OB is not operating, and this is the first event executed by OB.

(i)

OB's INIT transition fires. This marks the BEGIN place

| .
for OB's prime task (BEGINPT).

(ii) A sequence of event actions is executed. It starts with the first

(iii)

2.

action in OBis prime task and continues until a concurrency action
or the end of OB!s prime task is reached. If the first imperative
encountered is a concurrency imperative the sequence may be

empty.

The event finishes by firing of the ENTRY -transition for the con-
currency imperative reached or by firing of OB!'s NO MORE
followed by a firing of OB's TERMINATE. Inh both cases the system

returns to concurrent mode.

Completion event for OB

Then OB is operating

(ii)

(ii1)

IMP!'s COMP: -transition fires. This completes the execution
of IMP, and its predicate will no longer be imposed upon the

system state (IMP's PREDICATE place becomes unmarked).

As in 1, except that the sequence starts with the action imme-

diately following IMP.

As in 1,

77

78

3. Interruption event for OB

Then OB is operating.
(i) IMP!s INT ‘transition fires. This postpones the execution of
IMP, and its predicate will no longer be imposed upon the system

state (IMP's PREDICATE place becomes unmarked).

(i1) As in 1, except that the sequence starts with the first action in

IMP!s postponement clause.
(iii) As in 1.

POSTPONEMENT, TASK and RESUMPTION may contain subnets repre-

senting concurrency imperatives and thus already contained in [4. 15].

The subnet

< RESUMPTION

EXIT } POSTPONEMENTY

[4,18]

79

should be understood as merely indicating:

(i)

(if)

(iii)

(iv)

The EXIT place for a given concurrency imperative is identical to

to the BEGIN place for its postponement clause.

The END place for a postponement clause in a given concurrency
imperative is identical to the BEGIN places in subnets representing

all tasks, which may be used to interrupt the imperative.

It should be stressed that each concurrency imperative has its own
subnets representing interrupting tasks. These interrupting tasks may
again be interrupted. This implies that the net representing a given task

may be infinite.

In [4. 15] it is not modelled how to select the subnet representing the
actual interrupting task among the subnets representing all possible

interrupting tasks.

The END places for all interrupting tasks are identical to the
BEGIN place for the resumption clause in the interrupted concurrency

imperative.

The END place of the resumption clause in a given concurrency

Imperative is identical to imperatives BEGIN place.

If a concurrency imperative cannot be interrupted, has no postponement

clauseqor no resumption clause,[4. 18] may be simplified accordingly.

80

4, Encloser termination event for OB

Then OB may be operating or not, and this will be the last event
executed by OB

(i) OB's ENC -transition fires. If OB is operating the execution of

IMP is finished (IMP!'s PREDICATE place becomes unmarked).
(i1) Empty.
(ii1) The event finishes by a firing of OB's TERMINATE. The system

returns to concurrent mode.

5. The event is executed by an object different from OB

Then OB may be operating or not;

If OB is operating IMP!'s PREDICATE place remains marked during the
execution of the event; but the corresponding predicate will not be

imposed upon the system state.

When the event finishes and the system returns to concur*r‘ent mode

IMP'!'s predicaie will again be lmposed upon the system state.

The reader should notice that the description above interprets a marked
PREDICATE place as follows: it indicates that the corresponding pre-
dicate is imposed upon the system state, if and only if the system is in

concurrent mode (CONCURRENT1 or CONCURRENTZ marked).

81

CONCURRENCY IMPERATI

In [4. 15] all concurrency imperatives were modelled by the same form of

subnets. This is not strictly correct.

There are seven different kinds of concurrency imperatives distinguished

by seven different kinds of duration clauses/designational clauses.

"PASSINGL.Y!', "PAUSE!" and "EMPTY!

These imperatives are all modelled by the subnet from [4 15] without

modifications.

The rules defining event registration excludes interruption events for
"PAUSE!" and completion events for HEMPTY!, Thus the places and iran-—
sitions corresponding to such events can be omitted without any change

in the defined semantics.

TADVANCE!N, "CONCLUDE!" and "TERMINATE!

These imperatives are all modelled by the subnet from [4.‘15] with

COMP

[4.19]
END

replaced by

4 20] COMP "'-————’@

82

whetre the place X is the place defined by:

"ADVANCE" : END place for the concurency imperative containing
the "ADVANCE!" imperative in its postponement clause

or resumption clause.

"CONCLUDE!": END place of the activity containing the "CONCLUDE™!

imperative.

"TERMINATE'":END place of the object's prime task.

The rules defining event registration excludes interruption events for
NTADVANCE!Y, "CONCLUDE!" and "TERMINATE!, Thus the places and

transitions corresponding to such events can be omitted without any

change in the defined semantics.

YWHILE!

The imperative "WHIL.E B! where B is a boolean expression is modelled

by the subnet from [4.15] with

RESUMPTION

{ CONCURREN T1

(CONCURRENTDW“-W“} COMP

[4.21]

83

replaced by

BEGIN RESUMPTION

CCONCURRENTDQ————‘ ENTRY[1 BOOL EXP]~~~ SKIP

AN .

4 | ~
<?MHHNCATE:>$~— REENTRY% REENTRY
@ONCURREN TQ—-——-»«-»——-«D COMP

[4.22]

The place BOOL EXP is marked in a system state S iff
a)Bis true inS
b) The object excuting IMP is INSIDE in S

(Property b is requested in order to avoid infinite markings.

see p. 53).

When execution of the WHILE-imperative, IMP, starts it is tested whether
the boolean expression B in the duration clause is true. This test is an event
action. If B is false, the system remains in event mode and the execution of

IMP is SKIPped. If B is true, the concurren.t action defined by IMP!s

property clause is executed. When the execution of IMP is resumed after

an interrupt, B is not tested in an event action.

In this paper it is nhot modelled how the correct marking of BOOL &EXP

is maintained during concurrent execution.

84

We think that the above semantics for "WHILE! is unnecessarily compli-
cated and unfit for verification purposes. Thus we suggest that "WHILE!

should be modelled by the subnet from [4. 15] without modifications.
We will return to this in chapter 5.

EVENT IMPERATIVE

Mini-Delta has two different kinds of event
HNINTERRUPTY,

imperatives: "NEW!" and

HNEWH:

[4.23]

For each class C all "NEW!" imperatives in the system generating objects
of class C share the same GENERATE place. Thus there is exactly one
GENERATE place for each class.

85

TINTERRUPT':

[4.24]

This. looks. t~ivial: The reason isthat when an inter-
rupt is sent the only thing which is done is to indicate that a given
task has been sent to interrupt a given object. This is done merely by

updating a complicated datastructure- the agenda of the interrupted

object. (See page 15).

There are six different kinds of composite imperatives in Mini-Delta:

(*IMP, [IMP, 5.... IMP_ %):
s e, _,@ e[we,

[4.25]

Pi is END place for IMF’i and BEGIN place for IMPi+1 . Similar
remarks apply for [4.26] - [4. 30].

86

"[F BOOL EXP THEN COMP, ELSE COMPZ” :

1

THEN DQ
BEGIN BOOL EXP

!
J

ELSE | y@ »

[4.26]

"[F BOOL EXP THEN COMP !

COMP,

COMP

THEN —-—~>©——)

COMP

BOOL EXP
!

}

[427]

END

87

NHREPEAT COMP'™:

REPEAT

(BEGIN)| comp (EnD

[4.28]

ITWHILE BOOL. EXP REPEAT COMP':

REPEAT——*~’<:>-~"’1 COMP

[4.29]

88

"REPEAT COMP UNTIL BOOL EXP"

REPEAT
i
!
!

& comp || (BOOL. EXP>

END

[4.30]

Each composite imperative with a boolean -expression has g
BOOL. EXP place. These places are analogous to the BOOL EXP place
for the concurrency imperative "WHILE" (See page 83) and the remarks

there also apply for composite imperatives.

TASK_IMPERATIVES

TASK

[4.31]

Task imperatives generate a singular or category defined task. In both
cases a subnet representing the generated task is "copied!" directly into

the spot of the task imperative.

This corresponds to what Is known in compiler theory as an open pro-

cedure call,

89

For category defined recursive tasks this implies that the net repre-

senting the task imperative becomes infinite.

This closes our definition of Miini-Delta with its current semantics.

Once more we want to remind the reader that to get an extended Petri
net representing an entire Delta system, a syntax directed transiation is
used to combine the various subnets represeniing model~time, event
registration, executional modes and the objects with their phases and

imperatives,

In chapter 5 we propose changes to the semantics defined in this chapter.

90

Chapter 5

PROPOSALS FOR CHANGES TO THE DEL TA SEMANTICS

In this chapter we discuss the parts of the semantics (defined in chapter
4 and [Delta 75]) which concerns the concurrency imperatives, creation
and destruction of objects, and registration and execution of events. Ba-
sed on the discussion we propose a number of changes to the semantics.

Syntax is not discussed.

We believe that Delta would gain from a thorough syntactic revision(e. g.
it is confusing to use WHILE as a keyword in two conceptually very dif-
ferent types of imperatives). Such a revision is, however, outside the

scope of this paper, and we find isolated changes confusing and unneces-

sary for our present discussion of the semantics.

5.1 Imperatives

In this section we discuss the semantics of concurrency imperatives. We
change (and simplify) the semantics of "WHILE" in such a way that the other
concurrency imperatives (except for ”ADVANCE", HCONCLUDE!Y and
"TERMINATE" - the so-called "structured jumps!) become syntactically
sugared versions of simple forms of the WHILE - imperative. We argue

that of the structured jumps, "ADVANCE!' can be dispensed with and we
change the other two into event imperatives. The net effect of this is that

now "WHILE" is the only concurrency imperative.

CONCURRENCY IMPERATIVES

[Delta 75] defines two categories of imperatives:

- event imperatives and

- concurrency imperatives.

o1

"An event imperative describes an event action. That is an action
which is event internal [i.e. executed when the system is in event
mode]. This implies that no other object may execute any actions

[5.1] (changing the system state) between the completion of the action
preceding the event action, and the initiation of the action follo-
wing the event action.
A concurrency imperative describes a concurrency action. That is,
an action which is executed in concurrency with actions executed
by other objects [i. e. executed when the system is in concurrent

mode|!". [Delta 75, p. 339].

Both types of imperatives can be composite such as for example the compo-
site event imperative:
WHILE BOO REPEAT (¥ BOO: = f(BOO) *)

and the composite concurrency imperative

WHILE BOO REPEAT
(¥» BOO: = f (BOO),

WHILE TIME < ft (BOO) LET {TRUE} *)

In both these examples all assignments and tests on the value of BOO are
executed in event mode and the composite concurrency imperative in the

last example does thus not describe a concurrency action (cf. [5. 1]).

In order to make the semantics of imperatives correspond to their names

we shall (as we did in connection with Mini-Delta in chapter 2) classify Del-

ta-imperatives as

- event imperatives,
— concurrency imperatives,

- composite imperatives,

task impertives.

Thus all parts of composite and task imperatives which are described by
concurrency imperatives (i.e. by "WHILE" and its syntactically sugared

versions) are executed in concurrency mode and all other imperatives in

event mode.

92

The first step towards achieving this is to change the semantics of
"WHILE", since according to [Delta 75] this imperative is executed in

both event and concurrency mode.

THE WHILE IMPERATIVE

For the sake of simplicity we shall consider only the following simple form
of "WHIL.E":

[5.2] WHILE BOO LET { PRED}

(it follows from the discussion below how the different versions of "WHILE!
are affected). [5.2] is essentially represented by the following subnet of
the net [4.15] (p.75, cf. [4.21] and [4.22] p.82 and p.83):

BEGIN RESUMPTION

QCONCURRENT ENTRY | BOOLEXP ™" SKIP

A4
<PREDICATE)'—— REENTRY # REENTRY

p COMP END

REGISTER

EVENTS INCREASE y COMP

[5.3]

Note that the place CONCURRENT in [5. 3] replaces CONCURRENT

CONCURRENT,, and ADVANCE MODEL -TIME in [4.15],

1’

93

It follows from the net that when the WHILE-imperative begins execu-

ting, BOO is tested in event mode (BEGIN is marked, hence
CONCURRENT is unmarked). Once PREDICATE has been marked BOO is

only tested in concurrent mode (this test is not modelled explicitly. It is

a part of REGISTER EVENTS which only fires when CONCURRENT is

marked).

In accordance with our wish to make "WHILE!" the basic concurrency im-
perative, we now change the semantics by removing the initial test on BOO

in event mode, i.e. we now represent [5.2] by the following net:

BEGIN J€— RESUMPTION
GCONCURRENT Dq—— ENTRY

(F’RED!CATE >

COMP END
REGISTER
EVENTS INCREASE > COMP
[5.4]

To sum up, this means that "WHILE" is now modelled by the subnet from
[4. 15] without modifications, just as "EMPTY!", "PASSINGLY! and

N"PAUSE!",

94

EQUIVALENCE

We close our discussion of the WHILE~imperative by considering the

relation between the old semantics ([5.3]) and the new ([5. 4]).

When the WHILE-imperative [5.2] s partof an entire Delta description,
subnets representing the imperatives and subnets representing the objects
etc, are combined into an extended Petri net, which together with the

initial marking, forms a resultant snapshot which represents the entire

Delta description.

We will show that the two semantics have the same expressive power.

By this we mean that given a Delta description and one of the two seman-—
tics, it is always possible to construct a second Delta description,
which (with respect to the other semantics) has a resultant snapshot
being equivalent (see below) to the resultant snapshot of the first Delta

description (with respect to the first semantics).

We will not consider equivalence of extended shapshots in general. We

will only consider equivalence in connection with resultant snapshots obtained
from Delta descriptions, which have exactly the same object structure.
Moreover in the considered Delta descriptions each object will contain
exactly the same set of attributes (except for auxilliary variables).
Imperatives in the prime task and in the attributes may be different in

the two descriptions, but they must use exactly the same set of predicates

and boolean expressions (except for auxilliary variables).

This means that the resultant snapshots are identical except that some
closed subnets (representing sequences of imperatives) are substituted
by other closed subnets, which then contain exactly the same set of
PREDICATE places and BOOIL. EXP places.

The essential marking of a snapshot ps = (pn, m) is denoted EM (ps) and

defined as the restriction of m to places named by PREDICATE,
BOOL EXP, CONCURRENT,, INIT, COMP, INT, ENC, GENERATE,
ACTING, TERMINATED, INSIDE, REMOVABLE and NO MORE.

95

Intuitively this means that we '"forget! about places which are unnamed

or named by BEGIN, END and REENTRY.

Two resultant snapshots (which have an identical structure in the manner
described above) are equivalent iff for each sequence of extended snap-

shots reachable from one of them

Syp»PSyp> > pS (nh > 0)

1n

there exists a sequence of extended snapshots reachable from the other

resultant snapshot

PSpq 2 PS,o >t 0ttt 5> PS, (m = 0)

such that the two sequences

{"M psh)} 1<i<n and {EM(DSZi)} 1<i<m

contains exactly the same set of essential markings, in the same order

but possibly with different multiplicity.

MODELL ING THE _OLD BY THE NEW

It is possible to model the old semantics of the WHILE-imperative [5. 2]

with the new, simply by prefixing with the deleted test in event mode.

96

Below we indicate how to transform subnets like [5. 3] (i.e. the old se-
mantics) into subnets representing the new semantics (i.e. [5.4]) plus a

test in event mode (i.e. an "IF-THEN") in such a way that the two re-

sultant snapshots are equivalent.

Consider the subnet [5. 3] once more:

< BEGIN) RESUMPTION

GCONCURRENT ENTRY BOOLEXP I~ =1 SKIP

CPREDICATE)’—' REENTRY # REENTRY
¥
COMP END

REGISTER

EVENTS INCREASE y COMP

([5.3])

Next consider the net below

97

BEGIN)
h 4
T BOOLEXP ™~ SKIP

RESUMPTION

QCONCURRENT I ENTRY
v :
<PREDICATE>—' REENTRY {# REENTRY
h. 4
COMP END
REGISTER

INCREASE COMP
| 4

EVENTS

[5.5]

The resultant snapshot of [5. 3] is equivalent to the resultant shapshot
of [5.5].

98

This equivalence relies on the fact that Delta events are mutually exclu-
sive, (cf.[4.15]), thus no other transitions can fire concurrently with or
between the firings of T and ENTRY in [5.5].

By a similar reasoning it follows that the resultant snapshot of [5.5] is

equivalent to the resultant snapshot of [5. 6] below.

BEGIN

BOOLEXP J” 7 77 SKIP

E/B J4———RESUMPTION

QCONCURRENT‘ 44— ENTRY

. 4
PREDICATE)

| ,
oo D

INCREASE COMP
| 4

REGISTER
EVENTS

[5.6]

The subnet [5.6] in turn represents the new semantics of

99

IF BOO THEN

(* WHILE BOO LET { PRED]} *)

(cf. [5.4] and [4.27]).

We are not able to model the new semantics by the old, without introdu-
cing an auxiliary boolean variable. The problem is that we now have to

eliminate the effect of the initial test in event mode, instead of adding it.

The new semantics of the WHILE-imperative [5.2] is equivalent to the

following imperatives in the old semantics

A: = TRUE;
[5.7] WHILE AV BOO LET {PRED A A= FALSE} DEFINE A

Drawing the nets is left as an exercise for the reader.

"EMPTY! i's syntactic sugar for "WHILE TRUE!,

With the new semantics of the WHILE-imperative we may regard the time
concurrency imperatives "EMPTY!" and "PASSINGL Y" and the instant con-

currency imperative "PAUSE! as special cases of "WHILE!,

NEMPTY!! is syntactic sugar for "WHILE TRUE!,

"PAUSE!" is syntactic sugar for "WHILE FALSE!,

Finally "PASSINGL Y!" is syntactic sugar for "WHILE PENETRATING
INTERRUPTY,

PENETRATING INTERRUPT is introduced as a new language defined boo-
lean function; it has the value true, iff the object executing the function has

a penetrating interrupt on its agenda.

100

With the old semantics of the WHILE-imperative there were no such

simple relations between these imperatives.

NEMPTY!" was syntactic sugar for "WHILE TRUE", but "PAUSE!" could only

be modelled by means of an auxillary boolean variable and "PASSINGL.Y!

could not be modelled by means of the WHILLE~imperative or any other

imperative.

VERIFICATION RULES AND STRUCTURED JUMPS

Below we first discuss a rudimentary form of a verification rule for the
WHILE-imperative [5. 2]. Then we discuss how the rule is affected when

we consider forms of the WHILE-imperative which includes EXIT and REEN-
TRY clauses.

With the old semantics of the WHILE-imperative [5. 2] we may formulate

the following rule:

[5.8] When the place END is marked the predicate

PRED or non BOO holds.
The rule is easily deduced from the net [5. 3].
With the new semantics we get the following improved rule (cf. [5. 4]):

[5.9] When the place END is marked the predicate

PRED holds.

Note that the semantics (both the old and the new) is defined in such a way

that PRED is imposed after each interrupt.

Next we consider the situation, when the WHILE-imperative has the follo-

wing form:
WHILE BOO LET {PRED}
[5.10] EXIT (* IMP 1 *)

REENTRY (* IMP 2 *)

101

If IMP1 or IMP2 involves the execution of a structured jump ("ADVANCE",
NCONCLUDE!" or "TERMINATE!") then the predicate PRED is not imposed
after the interruption of the action. Instead a predicate, denoted PREDS,
associated with the siructured jump, is imposed and the execution of [5. 10]
completed. L.et us consider the places which are marked after the imposi-

tion of PREDS in the three different cases:

"ADVANCE!Y: The END place of [5.10] is marked.

NCONCL UDEY: The END place of the activity containing [5. 10] is
marked.

"TERMINATE!!: The END place of the prime task of the object exe-

cuting [5.10] is marked.

Thus in the case of "ADVANCE! [5. 9] is invalidated, whereas in the last
two cases it is not. Based on this and our experience with Delta we pro-
pose simply to dispense with "ADVANCE!", People who want some further

motivation may read the following "excurses!', others may skip them.

EXCURS 1: "ADVANCE!" VERSUS "CONCL UDE" AND "TERMINATE"

The problem [Delta 75] tries to solve by introducing "ADVANCE!" may

be formulated in the following way

"after the return from an interrupt it may not be meaningful
to impose the predicate of the interrupted action, instead
[5.11] we should continue with the execution of the imperative

following the interrupted action!'',

We have not been able to find examples of the kind described by [5.11],
and we do not believe that they exist. Consider for instance the follo-

wing example:

pick up knife and fork;
WHILE hungry LET {FOOD = f (Fo, TlME—TO)}

[5.12] EXIT (* put down knife and fork *)

102

REENTRY (¥ IF meaningless to impose PRED

THEN (* ADVANCE LET { PREDA } *)

ELSE (* pick up knife and fork *)
clean the table;

do the dishes.

If it is "meaningless to impose PRED! due to the fact that the interrupt
from which we returned consisted of the burning down of the house, then
we should certainly not continue with the action '"clean the table!. Rather

the whole activity should be CONCL.UDED.

In fact all the examples we know of on the use of "ADVANCE", in situa-
tions where it is not meaningful to impose the predicate of the interrup-
ted action, are of the same kind as [5.12] above, i.e. they gain from
being rewritten using "CONCLUDE!", (or "TERMINATE!").

EXCURS 2: OTHER USES OF "ADVANCE!,

During our search for an example on a reasonable use of "ADVANCE!
we found that the major part of the examples didn't concern situations

where it was essential to avoid the imposition of the interrupted action
regardles of the value of the boolean expression in its duration clause.

This is illustrated by the following example from [Delta 75, p. 468]:

NLET {TRUE)

REENTRY (¥ ADVANCE *);
[5.13] 11;

I 2,

[which] describes that the object will wait, (doing nothing) until it is in-
terrupted. When the interrupting task has been executed, the execution
will continue with the imperative 1 1", (This is a formal description of

"await" used in chapter 2. p.11).

103

We find it reasonable to keep the "duration information! inside the dura-
tion clause, instead of distributing it throughout three different clauses

as invited to by the ADVANCE-imperative. That is, we propose to re-

write examples that use "ADVANCE!" in the same way as in [5.13] such

that the boolean expression of the duration clause includes information

about whether the action has been interrupted or not.

[5.13] may be rewritten in the following way :

INTERRUPT: = EFALSE,

WHILE NOT INTERRUPT LET { TRUE }

REENTRY (* INTERRUPT: = TRUE*);

(End of excurses).

Except for syntactic sugar we have three different concurrency impera-
tives left: "WHILE"Y, "CONCLUDE!" and "TERMINATE!,

The last two combine the imposition of a predicate, i.e. the establishing

of a concurrent state, with a structured jump.
We propose to separate these two concepts. This is done by changing "CON-
CLUDE" and "TERMINATE" to event imperatives describing structured

jumps. "WHILE" is then the only concurrency imperative.

The new semantics of the event imperative "CONCLUDE" (' TERMINATE!)

CONCLUDE _,,,___m@
(TERMINATE)
[5.14]

is represented by:

104

where X is END place of the activity containing the CONCL UDE~impera-
tive (END place of the object's prime task).

We cannot model the new semantics of "CONCL.UDE!" (' TERMINATE")
with the old since with the old, we have to establish a concurrent state.
Depending on the actual nesting in the activity in question It may or may

not be possible to model the new semantics by means of a "GOTO!,
The old semantics of

[5.15] CONCLUDE (TERMINATE) LET {PRED}

is represented by

< BEGIN)
GCONCURRENT Dﬂ-—— ENTRY

v

<%REJCATE?>
———» CcomP KC:)

REGISTER T
EVENTS |HNCREASE COMP

[5.16]

The new semantics of

PAUSE LET {PRED}

[5.1 7] CONCL UDE (TERMINATE)

is represented by:

BEGIN

QCONCURRENT DQ—— ENTRY

(PREDICATE)

105

COMP
REGISTER
EVENTS ,INCREASE' COMP
[5.18]

CONCLUDE
(TERMINATE)

The resultant snapshot of [5. 16] is equivalent to the resultant snapshot

of [5.18].

106

CHANGES AND ACHIEVEMENTS.

Below we sum up the changes discussed in section 5. 1:

Introduce four categories of imperatives (event, concurren-
cy, composite, and task). This was already done in our in-

troduction to Mini-Delta in chapter 2.

Simplify the semantics of "WHILE!",

Skip one of the imperatives intended for "structured jumps!
("ADVANCE!") and change the other two ("CONCL UDE and

TERMINATE") to event imperatives.

Skip the subdivision of concurrency imperatives (time and

instant).

By these changes we achieve the following:

A consistent classification of imperatives into welldefined

disjoint categories.

A strong simplification of the relations between different
kinds of concurrency imperatives (now all concurrency im-

peratives are syntactically sugered versions of "WHILE").

Improved verification rules (or stated differently,imperatives

which are easier to understand).

107

5.2 Creation and destruction of objects

In this section we discuss a humber of changes related to the part of

the semantics dealing with creation and destruction of objects.

Our primary aim is to treat creation and destruction symmetrically.
It turns out that it is possible to do this and at the same time simplify

the semantics of these concepts considerably.

The main changes consist of

1. The introduction of a LEAVE-imperative

describing explicit destruction of objects.

2. The abolition of initiation and encloser

termination events.

Furthermore we show how to remove the division of the object phase
INSIDE into ACTING and TERMINATED.

A SYSTEM DESCRIPTION EXAMPL.E

Below we present a system description argument in favour of a symme-
trical treatment of creation and destruction of objects by considering

the post office system from [Delta 75, p.39-51].

The post office contains three clerks and a varying number of customers

needing service from the clerks.

A customer is informally described in the following way [Delta 75, p. 47]:

108

Customer,

when entering the post office he behaves as follows :
While he needs more service he repeats these
actions : he consults his list of yet not completed
[5.1 9] tasks, and then he selects a suitable queue, enters
the queue and waits till he is at the front of the
queue, then he participates in the completion of the
desired service, and afterwards he leaves the queue.

Then, the list being empty, he leaves the posti office.

In order to formalize this description in the Delta language it is
reasonable to demand that the language contains constructs which

allow us to describe explicitly :

a) The creation of an object (corresponding
to "when entering the post office!!).

[5.20]
b) The destruction of an object (corresponding

to "Then, ..., he leaves the post office!").

EXPL_ICIT CREATION AND IMPL ICIT DESTRUCTION

In this subsection we discuss the Delta semantics as it is defined
in [Delta 75].

An object is INSIDE a system from the moment it ENTERs and until
it is REMOVEdJ.

An object ENTERs a system when the associated NEW imperative is
executed (or when the system object is generated). This covers
[5.20a].

The destruction of an object cannot be described explicitly in the present

Delta language and thus [5. 20b] is not covered.

109

[Delta 75, p.11 9] contains the following argument against explicit

destruction:

"We want to secure that actions do not become
[5. 21] meaningless during their execution because the

attributes used in their specification cease to exist!!.

This argument then leads to the following 'retention rule" [Delta 75,
p.120]:

"a component is retained as long as it is perceived

[5.22] by at least one actor!!,

This was rephrased to our terminology as SYN 3 in[4.7]:

An object which is perceived (can be referenced)
directly or indirectly by an ACTING object cannot
be REMOVEJ,

[Delta 75] contains a detailed analysis of conditions under which objects
may be removed without violating [5. 22]. As discussed in connection
with the formulation of SYN3! (cf [4.8], p.63) these considerations are
truly within the realm of garbage collection and has no significance for

the semantics.

We do not consider [5. 21] as a valid argument against explicit destruc-
tion of objects. In fact we regard [5. 21] as providing the wrong kind of

security.

Consider the following example:

A customer object A, which has completed all its

tasks is TERMINATED in order to indicate that the
[5.23] simulated ""real-world" customer leaves the post

office (cf [5.1]). Due to an erroneous system des—

cription A is later referenced by the object B.

Obviously [5.23] is a logical error. But [5.21] prohibits it from being

recoghized as a semantical error.

110

THE DISTINCTION BETWEEN ”ACTING“ AND "TERMINATED!"

When an object is INSIDE the system it may, in[Delta 75], be either
ACTING or TERMINATED (cf [4. 4], p. 60).

When an object is ACTING it possesses attributes and performs actions
When the object is TERMINATED it possesses attributes, but it cannot
perform actions (and once an object is TERMINATED it cannot become
ACTING again).

Objects are TERMINATED for two different reasons:

a) When a system reporter wants to destroy an
object, the most he can do is to TERMINATE
it, due to [5.21].

[5 24] b) When a system reporter wants to secure or
emphasize that an object will execute no more
actions, although its attributes may be used

by other objects, then he may TERMINATE it.

A good example of an object TERMINATED as described in [5. 24a]
would be a formalized description of the customer objects described
in[5.19]. The main example of an object TERMINATED as described
in [5. 24b] are objects with no prime task (i.e. '"record-like! objects).
They never become ACTING but are TERMINATED when ENTERed into

the system.

Instead of TERMINATEINng an object a system reporter could let it

execute a neutral action, like LET {TRUE }. However, he must assure

that the object will not accept interrupts. This may be achieved by means

of priorities,

We introduce a new standard priority, TOP, which no interrupts can
penetrate. ([Delta 75] defines only a "bottom-element!' for the set of

priority values; we denote this element by the keyword BOT TOM).

When a system repotrter wants to secure [5. 24b] he should let the object

execute

[5.25] LET{TRUE} PRIORITY TOP .

The execution of [5.36 | will continue as long as the object exists, it

cannot be interrupted and it does not change the state of the system.

We propose that objects with no explicitly described prime task by

default get the prime task described by :

TASK BEGIN
[5.26] LET {TRUE} PRIORITY TOP
END TASK

ENCLOSER TERMINATION

As the last subject, before presenting our proposals concerning crea-
tion and destruction of objects, we consider encloser termination events.,
They are introduced in order to satisfy the following rule [Delta 75,

p. 121]:

[5 27] ta component terminates when a member of its lineage

terminates!'.

This we rephrased to our terminology as SYN4 in [4.’7] (on page 62):

"When an object TERMINATESs all objects in its
content TERMINATE at the same moment of model-

timell,

The reason for introducing [5.27] (SYN4) is that it should be possible
for an object being the bound of a subsystem to "achieve by its own

actions the termination of the subsystem!' [Delta 75, p. 121 1.

We agree with this argument as presented in [Delta 75], and in the derived
rule [5.27] but not in the technical solution reflected in the semantics
defined in [Delta 75]. With that semantics it is in fact possible for an
object to execute an unlimited numbepr of events although it is contained

in a subsystem whose bound is TERMINATED. This is iliustrated by

the following example (which may be skipped, if one is not interested

in the technical details).

EXAMPLE

Consider a system represented by the diagram [5. 28]:

>0

[5.28]

52 S3|

L et us assume that the four singular objecis are operating in the con-

current state, CS, at model-time t, and that there are registered

- a completion event for SO

~ completion or interruption events for Si , 1=1,2,3,

Let the first event executed after CS be the completion event for SO

and assume that it ends by SO being TERMINATED.

As stated in SYN4 this implies that all the objects in the (sub)system
with SO as bound should TERMINATE at this moment of model-time, t.

But S1 has to TERMINATE before encloser termination events can be

registered for S2 and 53. In order to TERMINATE, S1 must at least

execute one event, and before this happens Sz and 53 may execute

an unlimited number of events as illustrated below:

Assume that Sz is executing the compound Imperative

WHILE BOO REPEAT
(* PAUSE LET {TRUE};
INTERRUPT R S3 BY FAST

[5.29]

*)

and that 53 is executing

[5.30] PASSINGLY LET { TRUE}

where R S3 is a reference to 53 and FAST is a not time assuming

task procedure.

The execution of [5.29] ends when BOO becomes false and the exe-
cution of [5.30] when there are no interrupts on the agenda of 53,
or - for both of them —when encloser termination events are registered

and executed due to the fact that 51 is TERMINATED.

OUR PROPOSAL : EXPLICIT CREATION AND EXPLICIT DESTRUCTION

Following the discussion in the previous subsections we propose to
introduce a new event imperative for the description of explicit des~

truction of objects.

This imperative has the syntax, LEAVE, and it replaces the TERMINATE-

imperative.

The LEAVE-imperative covers [5.20b] and it allows [5.23] to be recog-

nized as a semantical error.

We propose to abolish the division of objects INSIDE the system into ACTING
and TERMINATED. When we do this all objects are represented by a

subnet of the form:

114

ENTER

(5317 (INSIDE)

LEAVE

(cf [4.2] and [4.3] on p. 58 and 59).

IL_LEAVE can be seen as the conjunction of the old TERMINATE and
REMOVE transitions.

The phase shifts can now be summarized in the following simplified

diagram (cf [4.4] on p. 60):

PERFORMS ACTIONS

OBJECT
PHASES
NO YES
R R
[5.32]
not
possible

NO

not
possible ‘ INSIDE

POSSESSES ATTRIBUTES
YES

115

We can find no arguments in favour of the slow, step-wise TERMI-~
NATEIion of a subsystem. We propose the following reformulation
of SYN4 :

When an object LEAVESs, as a part of the

[5.33] execution of the imperative, IMP, all objects
in its content LEAVE as a part of the execu-
tion of IMP,

This implies that a whole subsystem is destroyed as a part of the
execution of an event imperative ("LEAVE!') in the same way as a
whole litter is created as a part of the execution of an event impera-
tive ("NEW!), 1, e, we take an important step towards a symmetrical
treatment of creation and destruction of objects, and we avoid the
slow, step-wise TERMINATEIon of a subsystem described in the

example.

INITIATING THE PRIME TASK

In this subsection we consider the situation immediately after the
creation of an object as it is defined in [Delta 75] and discuss how

to simplify it.

When a NEW-imperative is executed as a part of an event, E, a litter
consisting of one or more objects is generated, i.e. one or more

objects ENTER the system.

The objects having prime tasks are from then on INSIDE, but not

operating (cf. p.68).

In the concurrent state, CS, following the execution of E, events are
registered and among these initiation events. Each time an initiation event

is executed one object becomes operating.

We consider this step-wise initiation as unnecessary and difficult to
understand. We can find no arguments in favour of the sub~phase

NINSIDE but not operating' and we propose to abolish it.

116

In order to do this we introduce the following convention :

we will by default insert

[5.34] PAUSE LET {TRUE} PRIORITY TOP ;!

as the first imperative in an object!s prime task.

We are now able to change the creation of an object in such a way
that it immediately begins executing the first imperative in its prime

task.

With this change initiation events are no longer needed. Apart from
avoiding "INSIDE but nof operating' objects, the dismissal of the
initiation events is also one of the changes needed to achieve a sym-

metrical treatment of creation and destruction of objects.

TECHNICAL. NOTE 1

"Default insertions! like the one in [5.34] and those discussed in
[5.36] below should be described using prefixes. However, since we

do not treat this mechanism in chapter 4 we will not use it here.

TECHNICAL NOTE 2

Objects with no prime task should, prior to the application of [5. 34],
be given the prime task described by [5.26] {p. 111).

As a consequence objecis with no explicitly described prime task, will

execute one event (their prime task will be described by

TASK BEGIN
PAUSE LET {TRUE} PRIORITY TOP;
LET {TRUE} PRIORITY TOP

END TASK

cf [5.26] and [5.34]).

117

If one considers this consequence as undesirable, it may be avoided

by changing [5.34] to :

IT an object!s prime task does not begin with a
concurrency imperative, then we will by default

[5.35] insert

PAUSE LET {TRUE} PRIORITY TOP;

as the first imperative.

FINISHING THE PRIME TASK

When the end of an object!s prime task is reached, there are at least
four different possibilities. In all four cases the semantics can be
described by means of existing constructs in the language, i.e. by

{(implicitly) inserting an imperative at the end of the prime task:

1. It may imply that the object is forced to LEAVE
the system. This is described by inserting the
imperative LEAVE.

2. It may constitute an error, i.e. the system reportier
did not want the object to finish its prime task,
This is described by inserting the imperative
LET {FALSE]}.

3. It may imply that the object no longer can change the
state of the system, although its attributes may be
used by other objects. This is described by inser-
ting the imperative LET {TRUE} PRIORITY TOP.

4, It may imply that the object no longer can change the
state of the system, by executing imperatives in its
prime task, but only by executing tasks imposed upon
it by interrupts from other objects. This is described
by inserting the imperative
LET {TRUE} PRIORITY BOTTOM.

118

Possibility 1 and 3 correspond to [5.24a] and [5.24b] respectively
(see p. 110). Possibility 3 resembles the semantic choice made in
[Delta 75].

One may use a security argument as the one presented in connection

with [5.23](p. 109) in favour of possibility 2.

Finally possibility 4 is illustrated by data objects, which, after some

initial actions, are ready to perform operations on themselves,
Irrespectively of the solution chosen, a system reporter may make his
own choice simply by explicitly inserting the appropriate one of the

four alternatives listed in [5.36] as the last imperative in the prime task.

The actual choice is thus of less importance. We prefer the second.

CHANGES AND ACHIEVEMENTS

Below we sum up the changes discussed in section 5. 2 :

1. Introduce a LEAVE imperative describing explicit

destruction.
2. Abolish initiation and encloser termination events.

3. Abolish the division of INSIDE into ACTING and
TERMINATED.

By these changes we achieve the following :

T, A symmetrical and simplified treatment of creation

and destruction of objects.
2. A reduction of the number of different kinds of events.

3. A reduction of the number of different kinds of object

phases.

119

By these changes the four synchronization-constraints defined in

[4.7] must be reformulated as follows:

SYN1* : All objects in a litter ENTER the system together
(old SYN1).

SYN2* : A litter can only ENTER the system if the primary
object's encloser is INSIDE (old SYN2).

SYN3* : When an object LEAVESs, as a part of the execution
of the imperative, IMP, all objects in its content

LEAVE as a part of the execution of IMP ([5. 33]).

In the following subsection we present the modified subnets corre-

sponding to these changes

MODIFIED SUBNETS REPRESENTING "NEW!'", "LEAVE!", EVENT

HNEW !

QDREDICATE |
=

b e e e e 4 NEW,

"

[5.37]

120

PREDICATEF is the PREDICATE place belonging to the first

imperative in the prime task of the generated object.

"LEAVE!

< BEGIN)

LEAVE

_______ LEAVEZmwmmmw$<CONCURRENT1i)

[5.38]

This net must be seen in connection with the modified version of

[4. 15] representing event registration and event execution :

121

BEGIN

CONCURRENT2

y

ADVANCE

MODEL-TIME

Y
CONCURRENT)

REGISTER

ENTRY

3.

IMPERATIVES

EDICATE

/?®
Y

OTFEVYANN

)

V'j[NT

|
I
|
I
1
!
l
I
19

INCREASE
INCREASE

EVENTS

OBJECTS
m—— —
CONCURRENCY I
RESUMPTION I
TASKS I
TASK I
i [
END I
IPOSTPONEMEN ll
PREDICATE
I
|
I INTERNAL
OBJECTS

NO MORE

[5.39]

122

The NO MORE place in [5.38] is identical to the NO MORE place
in [5. 39] belonging to the object executing the LEAVE-imperative.

It should be noticed that a LEAVE~imperative, IMP, executed
by an object, OB1, cannot be finished (firing of IMP!s LEAVEZ)

until all objects in OB, 's subsystem are outside (their INSIDE

1
places unmarked). Thus SYN3* is satisfied.

For the system object, SO [5. 39] contains a technical problem.

S has no encloser and thus So's NO MORE transition has con-
cession whenever SO is INSIDE. This problem can be solved merely
by entirely removing So's NO MORE transition(and all arcs con-
nected to it) from the net representing the considered system. This
works since So only can LEAVE when it executes a LLEAVE~-
imperative itself (and then all So's PREDICATE places are already

unmarked).

5.3 Registration and execution of events.

In this section we first discuss event registration and execution

as defined in [Delta 75]. Then based on the discussion, we propose
to eliminate event registration. Our proposal is strongly influenced
by the nondeterministic firing rules for Petri nets and resembles
the ideas behind guarded commands defined in [Dijkstra 75]. The
proposal constitutes a major simplification of the semantics, it
deals symmetrically with completion and interruption events, and
we obtain a stronger proof rule for the WHILE - imperative. For
the discussion in this section we will assume that the changes pro-

posed in the two preceding sections have been made.

123

In order to describe the solution chosen in [Delta75] we first

introduce the concepts completion state and interruption state.

A concurrent state is a completion state for an object iff the:object

is executing a concurrency imperative with a boolean condition

which is false.

A concurrent state is an interruption state for an object iff the object

is executing a concurrency imperative with a resistance, which

is penetrated by an interrupt on the agenda of the object.

A completion event is registeredfor an object in a given state iff

a) the state is a completion state for the object and

b) the object has no registered events.

An interruption event is registered for an object in a given state i ff

a) the state is an interruption state for the object,
b) the state is not a completion state for the object, and

c) the object has no registered events.

These rules implies that each object may have at most one registered
event in each system state. A registered event is executed before

model ~time advances . If two or more events are registered (for dif-
ferent objects) in the same system state a nondeterministic choice is
made to select one of the registered events for execution. The other

events remain registered.

124

We have several arguments against the way in which events are regi-

stered and chosen for execution in [Delta 75].

First of all the solution in [Delta 75] is complicated, and it is possible
to obtain a stronger proof rule by eliminating event registration (cf. the

following subsection).

Secondly. When several different objects are ready to execute events
a nondeterministic choice is made to select one for execution. When

a state is both a completion state and an interruption state a deter-
ministic rule is used always to register a completion event. In our
opinion it is ad hoc to resolve conflicts between events in different
objects by nondeterminism when conflicts betwen events in the same
object are resolved by determinism. Moreover it is difficult to see
why completion events should be favoured at the experse of inter-
ruption events. Indeed there are system descriptions in which this
would be natural. But there are other system descriptions in which
the opposite would be more natural. Thus such a choice between different
kinds of events should be reflected in the aciual system descriptions
themselves. The semantics of a language should merely specify a non-

deterministic choice.

Thirdly. In[Delta 75] each object may have at most one registered
event in each system state. This is assured by favouring an already
registered "old" event at the expense of "new! events, which could
otherwise be registered for that object.

It seems ad hoc to favour the registration of "new!" completion events
at the expense of '"new!! interruption events, but not at the expense

of Yold!" interruption events. In particular this means that the "deter-
ministic "' choice between completion and interruption events may
depend heavily on the nondetermistic way in which registered events

are chosen for execution, as illustrated by the following example:

125

Consider a system with at least 3 objects: OB1 , OB2 and OBS'

The system is in a concurrent state where events are registered

for OB1 and OBZ’ but not for OB3. The event for 081

the system state in such a way that it becomes a completion state

affects

for OB3. The event for OB2 affects the system state in such a way

that it becomes an interruption state for OB3. Assume that no other
than the four mentioned events can be registered at the considered

moment of model-time.

Dependent on the order in which registered events are chosen for exe-
cution OB3 may now execute either a completion event, an interrup-

tion event, or both.

126

Based on the discussion in the previous subsection we propose the

following:
1) Eliminate event registration.

2) When ‘a state is completion state or interruption state for
more than one object, or when it is completion state and
interruption state for the same object a nondeterministic

choice is made to select one of the corresponding events

for executiion.

This proposal constitutes a major simplification of the semantics.

Moreover we obtain a stronger proof rule for the WHILE-imperative

Consider a concurrent imperative WHILE BOO LET {PRED} and
remember the corresponding proof rule [5. 9] (p. 100), which
read:

When the place END is marked the predicate PRED holds.

Now it is possible to replace this by

[5.40] When the place END is marked the predicate
PRED and non BOO holds.

Earlier this rule could not be achieved, because the execution of
other events might reestablish BOO between the registration of a

completion event and its execution.

127

OBJECTS
— —
CONCURRENCY I
IMPERATIVES
BEGIN RESUMPTION l
] ENTRY| I
PREDICATE) — I
S&» TASK I
C E
L I
y
CONCURRENT) i l
- m
D
COMP END l
N oy I
I INT !
T
i i
}
1
|
|
1
I
i
|
|
|
4
|
|
ADVANCE .
RBOOL EXP)
MODEL-TIME Nabddd NO MORE
S Il SR>
|
! INTERNAL,
1 OBJECTS

[5.41]

128
The place INT (BOOL. EXP) is (un)marked in a concurrent state iff
the state is an interruption (completion) state for the object.

In this paper it is not modelled how the correct marking of these

places is maintained during system execution.

The BOOL. EXP place is analogous to the BOOL EXP places used
on page 83 and 86-88,

129

Chapter 6

CONCL.USION

In chapters 4 and 5 we have used extended Petri nets to describe,

analyse, and design a semantics for Delta.

This kind of approach must be evaluated in at least two different ways :

1. By the value (i. e. readability, exacthess, completeness
etc.) of the semantic description in chapter 4 or a
similar description containing the changes proposed

in chapter 5.

2. By the value of the proposed changes themselves.

With respect to 1. it is primarily up to the users of the semantic

descriptions to evaluate the degree of success or failure.

Our opinion is that Petri nets (with certain extensions) may be a
valuable tool in the future definition of semantics. However, we
certainly do not claim that our approach is optimal, complete or

finally developed.

We think that some of the semantic changes proposed in chapter 5
are major and add considerably to the clarity, exactness and con-

sistency of the Delta language.

This is confirmed by the fact that it always turned out to be possible to
give 'system description arguments!! for the changes which originated

by "net arguments't,

We close this paper by pointing out a number of topics where further

work has to be done.

130

PETRI NETS ARE STATIC

It is not possible to add or remove subnets dynamically. This implies
that all places (transitions) which may be marked (fire) must be

included in the net from the very beginning.

The relationship between static nets, infinite virtual storages, and
open procedure calls has already been indicated (see pages 58 and

88).

[Keller 76 | allows multiple markings and uses the same subnet to
represent all instances of a set of processes belonging to the same
category. Then each subnet may contain tokens belonging to different
processes and each token carries a label identifying the process

"owning' it.

In [Keller‘ 76] transition firings merely copy the labels. This could

be extended such that transition firings may create new labels.

Doing this it would for instance be possible to represent recursive
tasks (see page 89) by finite subnets (label each token with a number
defining the dynamic level of the corresponding call). It would also
be possible to avoid representing each class of objects by an infinite

number of subnets (see page 61).

131

MODELLING THE DATA PAR

We have not modelled quantities explicitly in this paper. This can be

done using the formalisms proposed in [Keller 76 |, and [Mazurkiewicz 77].

As mentioned in chapter 4 (see page 55) machine states can be partitioned
into memory states and control states. Keller uses a set of program
variables to model the memory states and a Petri net to model the con-
trol states (called place variables). Each transition, t, has attached

to it an expression of the form
when P, (§) do § « F_ (2),

where £ is the program variables, Pt a predicate and Ft a function,
If t fires, the memory state is changed by assigning the value of

F, () to €.

The contro! state is the marking of places. It may be changed by

firing of transitions.

Quantities could be represented as program variables and the impe-
ratives of the Delta objects as nets. Changes of the quantities caused
by the usual assignment imperative can now be easily modelled, Predi-
cates of cohcurrency imperatives do not fit into this., In a later sub-
section we consider this. First we consider a difference between the

nets defined in [Keller 76 | and Petri nets.

DISJOINT RESOURCES

In Petri nets transitions may be concurrent. In Keller!s formalism
they fire one by one and concurrent transitions would be a problem
since expressions attached to transitions may refer to the same program

variables,

It would, however, be possible to allow concurrent transitions if the

expressions attached to these transitions use disjoint parts of the

132
program variables. Such a requirement seems to be reasonable since
concurrent transitions in Petri nets require disjoint conditions.

With this requirement it turns out that Keller!s formalism may be viewed

as a concurrent system as defined in [Mazurkiewicz 77 |. A concurrent

system consists of a net and a set of resources (which could be Keller!'s
program variables). Here transitions may be concurrent only if they

use disjoint resources.

Like Keller!s transitions, Delta events are mutually exclusive, We
would like to modify our semantics of Delta such that Delta events
using disjoint parts of the system state can be concurrent. The work

of Mazurkiewicz seems to be a reasonable starting point for this purpose.

PREDICATES ATTACHED TO PLACES

In our nets we have places corresponding to predicates of concurrency
imperatives. When the system is in concurrent mode a marking of such
a place is interpreted to mean that the system state {(which we do not

model explicitly) must satisfy the predicate.

Keller's {and Mazurkiewicz's) formalism could be extended to have
predicates over program variables attached to places in the same way
as expressions are attached to transitions. This should mean that
the predicates attached to marked places are imposed on the program

variables.

The expressions attached io places would have the form
let P, (g) def VL,

where £ is the program variables, Pt a predicate and Vl_t a subset
of the program variables. Vl_t specifies the variables which may be

altered in order to satisfy the predicate.

133

As an example of this consider the following net :

/@“*”t
1 i

Let the transitions (ti , 1 =1, 2, 3) have attached the expressions
when B, (£) do & « F, (5), i=1, 2, 3.

and let the places (si , 1 =1, 2, 3) have attached the expressions
let P, (g) define VL, i=1, 2, 3.

When t1 fires the program variables are assigned the value of F1 (g)
and the predicates P1(§) and Pz(g) are imposed. When t, fires the
program variables are assigned the value of Fz(i) and P2(§) and

F’s(i) are imposed. Etc.

The problem with disjoint resources must be reconsidered. An easy
solution would be to require that concurrent places and transitions
may only refer to disjoint parts of the program variables. In the
above example this means that Pz may not refer to variables mentioned

in P1, Fz, and P3 and vice versa.

Such a solution is, however, not directly useable to model Delta. In
Delta it is important that a number of objects together may influence
the same part of the system state in concurrent mode. Such objects
would then have places whose attached expressions use - non-disjoint

resources.

134

We have not been able to model the TIME concept in a satisfactory way.

In [Petri 76 | the problem of modelling continuous time is discussed and
a net for modelling time is given. This is, however, not useable in our
semantic definition as it corresponds to a model system (or a program
execution) rather than to a system description. However, it gives
rise to an alternative way of describing model systems, by viewing
them as nonsequential processes as defined in [Petri 76]. A discussion

of this approach is outside the scope of this paper.

If we relax on the requirement to model continuous TIME and instead

use discrete TIME it is easy to find a solution. Our nets could be
synchronised by a clock which performs a stepwise increment of

TIME. Using Keller's formalism and referring to the net [4,15],

TIME could be a program variable and the transition ADVANCE MODEL ~

TIME could have attached the expression
do TIME : = TIME +¢/,

where ¢ may be an arbitrarily small stepsize.

In [Kyng 76] the use of discrete TIME is discussed in connection with

obtaining executable programs from DEL TA descriptions.

References

[Delta 75]

[Dijkstra 75]

[Genrich &
Thiagarajan 78]

[Hoare & Lauer 74|

[Holt & Commoner 70]

[Jensen 78 |

[Keller 76]

135

E. Holbaxk-Hanssen, P. Handlykken and K. Nygaard :
System Description and the Delta Language.

Norwegian Computing Center, Oslo, Norway, 1975,

E.W. Dijkstra:
Guarded Commands, Nondeterminacy and Formal

Derivation of Programs.
Comm. ACM 18, 8 (August 1975), 453-457,

H.J. Genrich and P.S. Thiagarajan :
Net Progress.
Computing Surveys Vol 10, No. 1 (March 1978), 84-85,

C.A.R. Hoare and P.E. Lauer:

Consistent and Complementary Formal Theories
of the Semantics of Programming L.anguages.
Acta Informatica, Vol 3, Fasc 2, 1974,
Springer Verlag, 135-153.

A. W, Holt and F, Commoner :

Events and Conditions,

Applied Data Research N.VY. 1970 ; also in Record
Project MAC Conf. Concurrent Systems and
Parallel Computation, ACM, N.Y. 1970, 3-52.

Kurt Jensen :
Extended and Hyper Petri Nets.
DAIMI TR-5, August 1978,

R.M. Keller :
Formal Verification of Parallel Programs.
Comm. ACM 19, 7 (July 1976), 371-384,

136

[Kyng 76 |

[Lauer &
Campbell 75]

[Mazurkiewicz 77]

[Nygaard 73]

[Pear] 78]

[Peterson 77 |

M. Kyng:

Implementation of the Delta L.anguage Interrupt
Concept within the Quasiparalle! Environment of
SIMULA.

DAIMI PB-58, August 1976,

P.E. Lauer and R.H., Campbell :

Formal Semantics of a Class of High-L evel
Primitives for Coordinating Concurrent Processes.
Acta Informatica 6 (1975), 297-332.

A. Mazurkiewicz :
Concurrent Program Schemes and their Interpretation.
DAIMI PB-78, July 1977.

K. Nygaard :
On the Use of an Extended SIMULLA in System
Description.

Norwegian Computing Center, Oslo, Norway, 1973.

E. Wegner and C. Hopmann :

Semantics of a L.anguage for Describing Systems
and Processes,

IST Report 36. Gesellschaft fur Mathematik und
Datenverarbeitung, Bonn, Mai 1977 (revised
January 1978).

J.L.. Peterson:

Petri Nets.

Computing Surveys Vol 9, No. 3, (September 1977),
223-252. (see also [Genrich & Thiagarajan 78]).

137

[Petri 62] C.A. Petri :
Kommunikation mit Automaten,
Schriften des Rheinisch—-Westfalischen Institutes
fUr Instrumentelle Mathematik an der Universitat
Bonn, Heft 2, Bonn W. Germany 1962 ; Translation :
G.F. Greene, Supplement 1 to Tech. Rep. RADC-
TR-65-337, Vol 1, Rome Air Development Center,
Griffiss Air Force Base, N.VY. 1965,

[Petri 73] C.A. Petri :
Concepts of Net Theory.
Proc. Symp. Summer School on Mathematical
Foundations of Computer Science, High Tatras,
Sept. 3-8, 1973, Math. Inst. Slovak Academy of
Science, 1973, 137-146.

[Petri 75] C.A. Petri:
Interpretations of Net Theory.
Interner Bericht 75-07, Gesellschaft fUr Mathematik

und Datenverarbeitung, Bonn, W. Germany, July 1975,

[Petri 76] C.A. Petri :
Nichtsequentielle Prozesse,
Interner Bericht 76-6, Gesellschaft fur Mathematik
und Datenverarbeitung, Bonn, W. Germany, June
1976. (translated into English by P. Krause and
J. Low).

[Simula 70] 0. -J. Dahl, B. Myhrhaug, and K. Nygaard :
Common Base LLanguage.

Norwegian Computing Center, Oslo, 1970,

[Wirth 77] N. Wirth :
What Can We Do about the Unnecessary Diversity
of Notation for Syntactic Definitions.,
Comm. ACM 20, 11 (November 1977), 822-823.

	PB-095_Page_001_Image_0001.tiff
	PB-095_Page_002_Image_0001.tiff
	PB-095_Page_003_Image_0001.tiff
	PB-095_Page_004_Image_0001.tiff
	PB-095_Page_005_Image_0001.tiff
	PB-095_Page_006_Image_0001.tiff
	PB-095_Page_007_Image_0001.tiff
	PB-095_Page_008_Image_0001.tiff
	PB-095_Page_009_Image_0001.tiff
	PB-095_Page_010_Image_0001.tiff
	PB-095_Page_011_Image_0001.tiff
	PB-095_Page_012_Image_0001.tiff
	PB-095_Page_013_Image_0001.tiff
	PB-095_Page_014_Image_0001.tiff
	PB-095_Page_015_Image_0001.tiff
	PB-095_Page_016_Image_0001.tiff
	PB-095_Page_017_Image_0001.tiff
	PB-095_Page_018_Image_0001.tiff
	PB-095_Page_019_Image_0001.tiff
	PB-095_Page_020_Image_0001.tiff
	PB-095_Page_021_Image_0001.tiff
	PB-095_Page_022_Image_0001.tiff
	PB-095_Page_023_Image_0001.tiff
	PB-095_Page_024_Image_0001.tiff
	PB-095_Page_025_Image_0001.tiff
	PB-095_Page_026_Image_0001.tiff
	PB-095_Page_027_Image_0001.tiff
	PB-095_Page_028_Image_0001.tiff
	PB-095_Page_029_Image_0001.tiff
	PB-095_Page_030_Image_0001.tiff
	PB-095_Page_031_Image_0001.tiff
	PB-095_Page_032_Image_0001.tiff
	PB-095_Page_033_Image_0001.tiff
	PB-095_Page_034_Image_0001.tiff
	PB-095_Page_035_Image_0001.tiff
	PB-095_Page_036_Image_0001.tiff
	PB-095_Page_037_Image_0001.tiff
	PB-095_Page_038_Image_0001.tiff
	PB-095_Page_039_Image_0001.tiff
	PB-095_Page_040_Image_0001.tiff
	PB-095_Page_041_Image_0001.tiff
	PB-095_Page_042_Image_0001.tiff
	PB-095_Page_043_Image_0001.tiff
	PB-095_Page_044_Image_0001.tiff
	PB-095_Page_045_Image_0001.tiff
	PB-095_Page_046_Image_0001.tiff
	PB-095_Page_047_Image_0001.tiff
	PB-095_Page_048_Image_0001.tiff
	PB-095_Page_049_Image_0001.tiff
	PB-095_Page_050_Image_0001.tiff
	PB-095_Page_051_Image_0001.tiff
	PB-095_Page_052_Image_0001.tiff
	PB-095_Page_053_Image_0001.tiff
	PB-095_Page_054_Image_0001.tiff
	PB-095_Page_055_Image_0001.tiff
	PB-095_Page_056_Image_0001.tiff
	PB-095_Page_057_Image_0001.tiff
	PB-095_Page_058_Image_0001.tiff
	PB-095_Page_059_Image_0001.tiff
	PB-095_Page_060_Image_0001.tiff
	PB-095_Page_061_Image_0001.tiff
	PB-095_Page_062_Image_0001.tiff
	PB-095_Page_063_Image_0001.tiff
	PB-095_Page_064_Image_0001.tiff
	PB-095_Page_065_Image_0001.tiff
	PB-095_Page_066_Image_0001.tiff
	PB-095_Page_067_Image_0001.tiff
	PB-095_Page_068_Image_0001.tiff
	PB-095_Page_069_Image_0001.tiff
	PB-095_Page_070_Image_0001.tiff
	PB-095_Page_071_Image_0001.tiff
	PB-095_Page_072_Image_0001.tiff
	PB-095_Page_073_Image_0001.tiff
	PB-095_Page_074_Image_0001.tiff
	PB-095_Page_075_Image_0001.tiff
	PB-095_Page_076_Image_0001.tiff
	PB-095_Page_077_Image_0001.tiff
	PB-095_Page_078_Image_0001.tiff
	PB-095_Page_079_Image_0001.tiff
	PB-095_Page_080_Image_0001.tiff
	PB-095_Page_081_Image_0001.tiff
	PB-095_Page_082_Image_0001.tiff
	PB-095_Page_083_Image_0001.tiff
	PB-095_Page_084_Image_0001.tiff
	PB-095_Page_085_Image_0001.tiff
	PB-095_Page_086_Image_0001.tiff
	PB-095_Page_087_Image_0001.tiff
	PB-095_Page_088_Image_0001.tiff
	PB-095_Page_089_Image_0001.tiff
	PB-095_Page_090_Image_0001.tiff
	PB-095_Page_091_Image_0001.tiff
	PB-095_Page_092_Image_0001.tiff
	PB-095_Page_093_Image_0001.tiff
	PB-095_Page_094_Image_0001.tiff
	PB-095_Page_095_Image_0001.tiff
	PB-095_Page_096_Image_0001.tiff
	PB-095_Page_097_Image_0001.tiff
	PB-095_Page_098_Image_0001.tiff
	PB-095_Page_099_Image_0001.tiff
	PB-095_Page_100_Image_0001.tiff
	PB-095_Page_101_Image_0001.tiff
	PB-095_Page_102_Image_0001.tiff
	PB-095_Page_103_Image_0001.tiff
	PB-095_Page_104_Image_0001.tiff
	PB-095_Page_105_Image_0001.tiff
	PB-095_Page_106_Image_0001.tiff
	PB-095_Page_107_Image_0001.tiff
	PB-095_Page_108_Image_0001.tiff
	PB-095_Page_109_Image_0001.tiff
	PB-095_Page_110_Image_0001.tiff
	PB-095_Page_111_Image_0001.tiff
	PB-095_Page_112_Image_0001.tiff
	PB-095_Page_113_Image_0001.tiff
	PB-095_Page_114_Image_0001.tiff
	PB-095_Page_115_Image_0001.tiff
	PB-095_Page_116_Image_0001.tiff
	PB-095_Page_117_Image_0001.tiff
	PB-095_Page_118_Image_0001.tiff
	PB-095_Page_119_Image_0001.tiff
	PB-095_Page_120_Image_0001.tiff
	PB-095_Page_121_Image_0001.tiff
	PB-095_Page_122_Image_0001.tiff
	PB-095_Page_123_Image_0001.tiff
	PB-095_Page_124_Image_0001.tiff
	PB-095_Page_125_Image_0001.tiff
	PB-095_Page_126_Image_0001.tiff
	PB-095_Page_127_Image_0001.tiff
	PB-095_Page_128_Image_0001.tiff
	PB-095_Page_129_Image_0001.tiff
	PB-095_Page_130_Image_0001.tiff
	PB-095_Page_131_Image_0001.tiff
	PB-095_Page_132_Image_0001.tiff
	PB-095_Page_133_Image_0001.tiff
	PB-095_Page_134_Image_0001.tiff
	PB-095_Page_135_Image_0001.tiff
	PB-095_Page_136_Image_0001.tiff
	PB-095_Page_137_Image_0001.tiff
	PB-095_Page_138_Image_0001.tiff
	PB-095_Page_139_Image_0001.tiff
	PB-095_Page_140_Image_0001.tiff
	PB-095_Page_141_Image_0001.tiff
	PB-095_Page_142_Image_0001.tiff

