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Introduction

This paper presents a technique for specifying and verifying concurrent
programs. The emphasis is on developing precise, yet simple and readable
specifications of programs.

The technique is illustrated by a resource scheduler from the Solo
operating system (Brinch Hansen 1976). It is verified that the scheduler
provides fair and mutually exclusive access {o a physical resource. First
an abstract specification of the resource scheduler is given. It is then veri-

fied that the specification has such properties as fairness and mutual exclusion.

When this is done an implementation can be derived. The notation for writing
specifications is a separate language from the implementation language
(programming language). The implementation language is an engineering pro-
duct and hence represents a compromise between many different goals
(efficiency, clarity, etc.). A specification language on the other hand has
one goal: clarity, it is therefore much more suitable for developing programs.

The specification provides an abstract domain close to the problem domain.
Doing the verification of key properties in this domain, hopefully, reduces the
complexity enough that proofs can be constructed, read, and understood by
humans and not require a complex verification system.

It is important to realize that any specification can have errors. Through
bitter experience all programmers have realized that this is true for programs.
But the use of a more absiract or mathematical notation is certainly In itself
no guarantee against errors. Mathematical tools are necessary for a system-
atic and rigorous analysis, but there is no substitute for simplicity in the
specification language and the specifications themselves.

Sections 1-5 introduce and motivate the language for writing specifica-
tions. Each construct of the language is introduced by an example demonstra-
ting its main characieristics. The purpose of these sections is to give the
reader an intuitive feeling of what the specification language looks like, and
why it looks the way it does. The specification language is described in more
detail in Staunstrup (1978).

In section:6 it is demonstrated how properties of a specification are

verified.




1. The Specification of Abstract Data Types

A program in almost any programming language consists of a data
structure (a set of variables) and some statements operating on this data
structure. If, however, one takes a closer look at a program, one fre-
quently finds that the data structure consists of many sub~structures each
of which is manipulated by a small number of operations. This observation

has led to the definition of a concept called an abstract data type: an ab-

stract data type consists of a data structure and a set of operations on the
data structure.

The language SIMUILLA-67 (Dahl 1968) was the first to incorporate an
abstract data type as a programming language concept. More recently ab-
stract data types have been included in a number of new programming lan-
guages: Concurrent Pascal (Brinch Hansen 1975), Alphard (Wulf 1976),
CLU (Liskov 1977), and Euclid (LLampson 1977) to mention a few.

A major part of a typical program written in one of these languages
consists of definitions of abstract data types. The Solo operating system
(Brinch Hansen 1976) is a good example, here approximately three quarters
of the program text is abstract data type declarations. It is therefore natural
to let an abstract data type be the unit of specification.

The operations of an abstract data type define all the possible mani-
pulations of the abstract data type and are the only interface to the user of
the type. After the application of an operation the abstract data type is in
a stable state and stays in this state until another operation is applied. A
specification of an abstract data type, therefore, consists of:

i) a definition of all possible operations on it,

ii) an enumeration of all its possible states,

iii) a definition of an initial state.

A specification language is introduced for writing specifications of

abstract data types. This chapter introduces and motivates the constructs

of the specification language.




2. The Specification of Operations

Each one of a number of concurrent processes needs exclusive access
to a resource. The access to the resource is controlied by a resource
scheduler, The scheduler is always in one of two states: "free' or Hinuse., !
Initially it is free. A process can then request the resource by calling the
operation request, this takes the scheduler to the state inuse. When the
process no longer needs the resource it calls the operation release, which
takes the scheduler back to the state free,

State changes are specified by transitions. A transition from the state

free to the state inuse is written:

free -+ Iinuse

free is called the pre~state and inuse the post-state of the transition. A
transition takes place only when the abstract data type is in the pre-state.
The transitions of an abstract data type take place one at a time and are

always completed within a finite time.

type scheduler
state status js free / inuse

initial free

operation request
when free -+ jnuse end

operation release
if inuse -+ free end

end scheduler.

The specification defines:
- the name of the abstract data type: scheduler,
- the name of the current state: status,
- the two possible distinct states: free and inuse, and

— the possible operations: request and release.



The operations are defined using transition commands (Brinch Hansen

and Staunstrup 1977):

if transition end

when transition end

The transition is performed only if the abstract data type is in the pre-state

for the transition. If a process attempts to perform a "when transition command!
when the abstract data type is not in the pre-state, it is delayed until the
abstract data type is brought into the pre-state by some other process. An
attempt to perform an "if transition command' when the abstract data type is

not in the pre-state is an exception. An exception is a violation of one of

the constraints under which a program is executed and it makes further exe-
cution of the program meaningless. The "if transition command' is similar to
the guarded If statement proposed by Dijksira (1975).

The names '"free! and ""inuse!' can be viewed as predicates (with the
obvious interpretation that free is true in the state free and false in the state
inuse). The transitions are then predicate transformers.

When the transitions are interpreted as predicate transformers, a
correct implementation of a transition is a statement (in some programming
language) having the same predicate transformer, i.e., when the statement
is started in the pre-state, it changes the state to the post-state within a
finite time.

There is a close relationship between transition commands and guarded
commands (Dijkstra 1975). Indeed, one can view a specification with transi-

tions as an abstract program without statements. By doing this, the concern

for what a transition does and how it is done are separated. The former is

determined by the specification, the latter by the implementation.

3. The Enumeration of States

The next example is a first in, first out queue. In any state it must be
possible to distinguish the number and identity of elements In the queue, as
well as their order of arrival. If the capacity of the queue is finite, it is
possible to give every possible combination of elements and their -

order of arrival a distinct name. But this leads to an unmanageably large



number of state names. Instead of introducing a separate name for each state:

the state of an absiract data type is denoted by one of the possible sequences

of operations that leads to it.

For example, the state where the elements b, a, and d have been in-

serted in the queue, in that order, is denoted by:

arrival(b):arrival(a):arrival(d)

Note, this may not be the actual sequence of operations leading to that state.
Since in general there are many ways of gefting to a state, it is simpler to
denote a state by one representative sequence of operations.

The symbol E is used for the empty sequence of operations. For any
sequence x we have the equalities: x:E = E:x = X,

The state of a queue is a finite sequence of arrivals, the state enume~

ration is therefore written as follows:

E(:arrival(processid)) *

where the * indicates zero or more repetitions of the construct within the

parentheses,

type queue

state f is E(:arrival(processid))*

initial E

The initial state of a queue is the state where no operations, the empty
sequence, have been applied.

The purpose of transitions is to define state changes and the conditions
under which they occur, so transitions inherently involve state changes.
However, parts of the state denotation are not changed, for example, when
defining the arrival operation, the sequence of arrivals prior to the current
one is not changed. The specification language, therefore, has means for
naming such parts of a state denotation which are not changed.

The value of T prior to a transition is called f0. The arrival operation

is specified using this notation as follows:



operation arrival(i: processid)

if f0 = f0:arrivall(i) end

In addition, other local names fl, f!', ... can beiintroduced. Consider,
for example, the state denotation f'rtarrival(i), here f' is the sequence pre-
ceding arrival(i). Primed variables are always existentially quantified,
so the state denotation arrival(it):f! should be read: there exists a processid
i and a sequence ' such that: f = arrival(i'):f'; in other words there is at
least one element in the sequence.

Using this notation the queue is specified as follows:

type queue
state f is E(rarrival{processid)}
initial E

operation arrival(i: processid)
if f0 » f0:arrival(i) end

operation departure

if arrival(it):f' + ' end

operation head: processid
if arrival(it):f! » head = i' end

end queue.

The operation arrival(i) takes a queue from any state fO to the state
fO:arrival(i). The operation departure takes any nonempty queue, ar‘r‘iva!(i"}:f',
and removes the first element. The operation head returns the value of the
first element of a queue, but does not change the state of the queue.

The length of a sequence f is denoted |f|, i.e.

|E| =0 and
| flzarrival(i)| = |f'] + 1

Since the specification of operations implicitly defines all the relevant
states the state enumeration (state f is ...) is redundant. In the axiomatic

method (Guttag 1975) and (Goguen 1975) a similar redundancy is not required



but that approach is also based on the observation that a small subset of the

operations can be used to characterize the state space. In the axiomatic

method this observation is sometimes stated in what is called a "mormal form
lemma! (Guttag 1975).

In many programming |anguages the types of variables must be declared,
this makes it easy to detect inconsistencies in the way a variable is used.
The enumeration of all states in a specification plays a similar role to the
type of a variable and therefore makes it easy {o detect if an operation uses

a state which is not included in the state space.

4. Siructuring the State Space

Frequently it is convenient to break the state into a number of com-
ponents and view itas thecartesian product of the components. Consider
again the resource scheduler presented earlier, and assume that a scheduler
keeps additional information about which process has access to the resource.
It would be possible to give a distinci name to every possible combination of
a process and status of the scheduler. But a much simpler specification is
obtained by viewing the state as consisting of two components "holder! and
"status.!! To distinguish between separate components, each is given a name.

For each component its domain must be specified.

type scheduler
state status is free / inuse,
holder is processid

initial status = free
The revised request operation is specified as follows:

operation request{me: processid)

when status = free - status = inuse, holder = me end




In general, a state (or sets of states) is denoted by a list of predi-
cates. The specification of the post-state of request shows an example of
this. The ', " (comma) should be read as and, since the post-state must

satisfy both predicates;

The release operation is written as follows:

operation release

if status = inuse - status = free end

5. Hierarchical Specifications

Frequently, the properties of a data type are too complex to be given
as one specification. The data type should then be decomposed into several
specifications, each describing some aspect of the type. The specification
can then be studied one component at a time.

A hierarchical specification of two components t1 and t2 where the

specification of t1 uses the specification of t2 is written as follows:

type t2

state s is ul /u2 ...

initial ...

operation pl

operation p2 ...
end t2.

In the specification of t1 the declaration

state a is t2

indicates that the name a is used to reference a value of the type t2. The

predicates q0, ql1, and g2 can, for example, use a.




type t1
state a is 12

initial q0

operation r1
when g1 -+ g2 end

end t1.

The following example is taken from the Solo system (Brinch Hansen
1976). The specification of a resource scheduler is decomposed into two
abstract types. One, called resource, specifies that the resource can be
used by at most one process at a time (mutual exclusion). When several
processes want access to the resource at the same time, all but one of them
must wait. The queueing of the delayed processes is specified by the other

abstract data type, called fifo.

5.1 Fiifo

The fifo is a first in, first out queue of process identities (processid),

The capacity of the queue is defined by a constant limit.

type fifo
state f is E(:arrival(processid)) x,
initial f = E

operatjon arrival(i: pr*ocessid)

if |f| < timit =+ f = f0:arrival(i) end

operation departure
if f = arrival(i'):f' 2+ f=1{'end

operation head: processid

if £ =arrival(i'):f' + head =i' end

end fifo .
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5. 2 Resource

A resource scheduler gives processes exclusive access to a computer
resource. [t uses "fifo!! to control the order in which processes get access

to the resource.

All processes using a resource r must perform the following sequence

*)

of operations:

r.request(me);
r.grant(me);
use resource;

r.release

where me is the identity of the calling process.

type resource
state g is fifo,
free is boolean

initial q. initial, free

operation request(i: processid)

if =90 » g =q0.arrival(i) end

operation grant(i: processid)

when g.head = i, free = g = q0.departure not free, end

operation release

if not free - free end
end resource.

The initial state of an abstract data type t is denoted t. Iinitial. This
is used in the specification of the initial state of a resource, where

g. initial is used to denote the initial state of the fifo qg.

*) The resource scheduler in the Solo system combines the two operations
request and grant in one operation. For a further discussion of this point
you are referred to Staunstrup (1978).
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6. Verifying Properties of a Specification

The specification of a program is a precise formulation of the pro-
grammer's requirements to the program. The specification is the formal
model of the programmer's informal understanding of the program. When
writing the specification, the programmer tries to include all the desired
properties of the program; but it is in general impossible to prove that
the specification is correct, i.e., that it captures all the desired proper-
ties,

When the specification is completed he is on firm ground and can
verify whether or not it has a certain property. For example, when the
specification of the resource scheduler is written, it can be verified that
it has such properties as mutual exclusion and fairness.

It is, however, not possible to foresee all the uses of a program (or
an abstract data type) when it is specified. Therefore, it should be possible
to keep the specification and use it for verifying properties also after the
design is finished. This philosophy is illustrated below, where it is shown
that the resource scheduler specified in section 5 provides mutually ex-
clusive and fair access to the resource. L.et r be an instance of the resource
scheduler., Processes using the resource scheduled by r must follow the

pattern:

r.request(me);
r.grant(me);
critical region;

r.release;

Furthermore, assume that all processes are in their critical region

for a finite time only.

6. 1 Mutual Exclusion

The following approach was originally proposed In Brinch Hansen
and Staunstrup (1978).

The resource scheduler provides exclusive access to the resource if
no process is able to complete a grant operation while another process is

in its critical region. Let inside(p) denote the state of the resource where
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process p is In its critical region, and let pre-grant(i) denote the pre-state

for grant(i). Mutual exclusion is guaranteed if:

for all i in processid:(i # p)

(inside(p) = not pre-grant(i))
When not pre-grant(i) holds, process i will not be able to complete the grant
operation and is therefore prohibited from entering the critical region.
When process p is in its critical region, it has completed a grant ope-
ration. At this point a humber of requests can have been made:
inside(p) = grant(p).request(il).request(i2). ... .request(in).
From the specification of grant and request it follows that:

inside(p) = not free,

because grant takes the resource to a state where not free holds and request

does not change free. But since
pre-grant(i) = (qg.head = i) and free
it follows that:
inside(p) = not pre-grant(i).
So the resource scheduler guarantees mutual exclusion.

6.2 Fairness

The scheduler is fair if all processes requesting the resource are
allowed to enter their critical region within a finite time.

The state of the resource just after a request by process p is:
rlrequest(p). The process p will enter its region only if the resource is
in the pre-state for grant(p): (g.head = p) and free. Fairness is therefore

guaranteed if it can be shown that:
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*
r'.request(p) * (g.head = p) and free

that is, a finite humber of transitions will be made which will transfer the

resource from the state r'.request(p) to the state (q.head = p) and free.
(Each transition takes a finite time only, so a finite number of transitions
also take a finite time.)

This property is proved by induction on the length of r! (the length of
the queue when process p joins it).

First, assume that the length of r'! is 0. The queue is then empty so:

gq.f = E. It follows from the specification of request that:

{q.f=E_}

r.request(p);

{q.f =arrival(p)}
and from the specification of head that:

q.f = arrival{p) = g.head =p.
So, when the length of r! is 0, we have:

r'.request(p) - g.head = p.
Another process might be in its critical region, but it was assumed that it
would leave the region within a finite time. From the specification of re-
lease it follows that:

{g.head = p}

r.release,

{(q.head = p) and free}.
This is the base step of the induction.

Next, assume that the property has been shown for all r! with a length

less than k (k> 0), and assume that the length of r'! is k. From the specifi~

cation of request, it is seen that:
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{q.f = arrival(il):arrival(i2): ... .arrival(ik) !
r.request(p);

{q.f = arrival(il):arrival(i2): ... :arrival(ik):arrival(p)}.

From the assumption about the behavior of all processes, we know that
process i1 will complete a grant and therefore a departure within a finite

time:

{q.f = arrival(il):arrival(i2): ... :ar‘r‘ival(ik):ar‘ﬁval(p)}-
r.grant(il);

{q.f=arrival(i2): ... :arrival(ik):arrival(p)}.
From the induction hypothesis we get:

q.f = arrival(i2): ... :arrival{ik):arrival(p)

i *

(g. head = p) and free.
Requests arriving after request(p) can be ighored. This follows from the
following property of-an instance q of fifo,

Leta,al,a2,...,an (n= 0) be arbitrary, possibly empty, sequences
of arrivals, we then have:

{g.f =arrival(il):arrival{i2): ... :ar‘r‘ival(in):arrival(p):a}

q.al, g.departure;

d.a2; q.departure;

g.an; qgq.departure;

{q.head =f}

(It is assumed that the capacity of q is never exceeded.) The proof of this

can be found in Staunstrup (1978). This proves the induction step.
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Conclusion

Traditionally program verification is done by formulating precise

requirements to a program and relating them to the program text, for example,

in the form of assertions merged with the text of the program. The main con-
tribution of this work is to show that there are viable alternatives to that
approach. Instead of writing the requirements concretely in the form of as-
sertions about program variables etc., an abstract specification of the pro-
gram is given. The specification is not as detailed as the program, so it is
more readable. Verifying that it has the desired properties is therefore
simple. Furthermore, different implementations of the same specification

all have these properties, no additional proofs are necessary.

The key features of the specification language are:

-~ the characterization of program states as partial histories of operations
represented as sets, sequences, and cartesian products,

- the structuring of a specification into a hierarchy of simple specifications,
and,

- the non-deterministic transition commands which are used for specifying
both sequential and concurrent programs.

The specification language has been tried on a large number of
examples. These have all yielded simple and readable specifications. Based
on this evidence, | am convinced that the specification language, despite
its simplicity, is a helpful and powerful tool for program construction.
Future experience might, however, reveal extensions of the specification
language.

This paper has only presented some of the constiructs of the
specification language. In Staunstrup (1978) the specification language is
discussed in more detail. In that work techniques for constructing correct
implementations are also presented, and a major part of the Solo operating

system (Brinch Hansen 1976) is specified and implemented.
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