A NOTE ON THE COMPLEXITY OF GENERAL DOL MEMBERSHIP

Ву

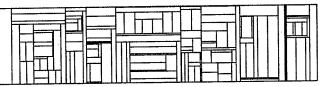
Neil D. Jones and Sven Skyum

Daimi PB-93 January 1979

Computer Science Department

AARHUS UNIVERSITY

Ny Munkegade – DK 8000 Aarhus C – DENMARK Telephone: 06 – 12 83 55



A NOTE ON THE COMPLEXITY OF GENERAL DOL MEMBERSHIP

Neil D. Jones *
Computer Science Department
University of Kansas
Lawrence, Kansas 66045
U.S.A.

Sven Skyum
Department of Computer Science
University of Aarhus
8000 Aarhus C
Denmark

Abstract

In [3] a number of upper and lower bounds were obtained for various problems concerning L systems. In most cases the bounds were rather close; however, for the general membership problem the upper bound was \mathbb{P} , and the lower was deterministic log space. In this note we show that membership can be decided deterministically in \log^2 n space, which makes it very unlikely that the problem is complete for \mathbb{P} . We also show that non-membership is as hard as any problem solvable in nondeterministic log n space. Thus both bounds are improved.

^{*} This research was partially supported by National Science Foundation Research Grant, MCS76-80269.

Introduction

Let $G = (V, \delta, a)$ be a DOL system (see Herman and Rozenberg [1]) so V is an alphabet, $a \in V$ a letter from V, and $\delta : V \rightarrow V^*$ a mapping. Extending δ to a homomorphism $\delta : V^* \rightarrow V^*$, we define

$$L(G) = \{\delta^{r}(a) \mid r = 0, 1, 2, ...\},\$$

where $\delta^{\mathbf{r}}$ denotes the r-fold composition of δ with itself.

In Sudborough [4] it was shown that for each G, L(G) is in DSPACE(log n) (our notation is from Jones and Skyum [3].) Each set L(G) is a specific membership problem. The general membership problem (MEMBER DOL) is: Given a DOL system G and a word $v \in V^*$, to determine whether $v \in L(G)$. This problem was first addressed by Vitanyi [5].

In Jones and Skyum [3] it was shown that this problem is in \mathbb{P} , and cannot be solved in less than deterministic log space. These two bounds are not particularly close (unless $\mathbb{P} = \mathsf{DSPACE}(\mathsf{log}\,\mathsf{n})$ which seems very unlikely.) The purpose of this note is to show that they can be improved. We shall prove:

Theorem MEMBER DOL is in DSPACE(log²n); and the non-membership problem is hard for NSPACE(log n).

This is nearly the best possible complexity result - it could only be strengthened (aside from a major breakthrough in complexity theory) by showing completeness at one of the bounds. At the lower bound it would be necessary to show that non-membership could be decided nondeterministically in logarithmic space, which seems rather unlikely; and a proof of

completeness for DSPACE($\log^2 n$) would require new techniques in complexity theory, as no natural complete problems are presently known for this class.

Proof of the Lower Bound

Define

AGAP =
$$\{\overline{\Gamma} \mid \Gamma \text{ is a digraph with node set } \{1,2,\ldots,n\} \text{ for some } n,$$

$$\Gamma \text{ has a path from 1 to } n, \text{ and } i \leq j \text{ for each}$$

$$\text{arc } (i,j) \text{ of } \Gamma\}$$

This problem was shown complete for NSPACE(log n) in Jones [2]. We now show how to construct from such digraph Γ a DOL system $G = (\{1, \ldots, n\}, \delta, 1)$ such that $\chi \notin L(G)$ if and only of $\overline{\Gamma}$ is in AGAP. Thus AGAP is reducible to non-membership. Consequently MEMBER DOL is in DSPACE(log n) if and only if DSPACE(log n) = NSPACE(log n).

To build G, first add the single arc (n,n) to Γ , obtaining Γ' . Now define $\delta(i)=j_1\cdots j_k \ \text{to hold just in case } \{j_1,\ldots,j_k\}=\{j\mid (i,j) \text{ is an arc of } \Gamma'\}$ and $j_1\leq j_2\leq \ldots \leq j_k$.

Letting Alph(w) equal the smallest alphabet $A \subseteq V$ such that $w \in A^*$, we see that for $r=1,2,\ldots$ Alph($\delta^r(1)$) is the set of nodes reachable from 1 by path of length exactly r. Now $\overline{\Gamma} \in AGAP$ if and only if Γ' has paths from 1 of arbitrary length if and only if $Alph(\delta^r(1)) \neq \emptyset$ for all r if and only if $\lambda \notin L(G)$.

Proof of the Upper Bound

For this we give an algorithm which operates in DSPACE($\log^2 n$). Our algorithm is similar to that of Jones and Skyum [3] (which in turn is based on Vitanyi's algorithm [5]), but has several refinements to make it operate in $\log^2 n$ space. Our notation is similar to that of Vitanyi.

Define $b \in V$ to be <u>mortal</u> $(b \in M)$ iff $\delta^{S}(b) = \lambda$ for some s, and <u>monorecursive</u> $(b \in MR)$ iff $\delta^{S}(b) \in M^{*}$ bM* for some s > 0. The <u>cycle</u> of a monorecursive letter is the least s > 0 such that $\delta^{S}(b) \in M^{*}$ bM*. Let p be the number of letters in V, and n the number of symbols required to write G and v.

It is easy to see that L(G) is finite iff $\delta^p(a)$ contains only letters in $M \cup MR$, and that if L(G) is infinite, then $v \in L(G)$ iff $v = \delta^r(a)$ for some $r \le p \mid v \mid$. Our algorithm will have the form "if L(G) infinite then test $v = \delta^r(a)$ for $r = 0, 1, \ldots, p \mid v \mid$ else test $v \in L(G)$ by another method". Thus we first show that membership in M and MR, and " $v = \delta^r(a)$ " for $r \le p \mid v \mid$ can be determined in DSPACE($\log^2 n$).

Now define the function NUMBER(b, c, s) for $b, c \in V$ and $s \ge 0$ as follows:

NUMBER(b, c, s) =
$$\begin{cases} m & \text{if } \delta^{S}(b) \text{ contains } m \text{ occurrences} \\ & \text{of c and } m \leq n \\ & & \text{otherwise} \end{cases}$$

Clearly $b \in M$ iff NUMBER(b, c, p) = 0 for all $c \in V$, and $b \in MR$ iff there is a $0 < i \le p$ such that NUMBER(b, b, i) = 1 and if NUMBER(b, c, i) > 0 then $c \in M \cup \{b\}$.

Setting any partial results greater than n to ∞ and using $0 \cdot \infty = \infty \cdot 0 = 0$ NUMBER can be computed by the following \log^2 (max(n, s)) algorithm:

Thus we can compute M, MR, and CYCLE(b) for all $b \in V$ in $\log^2 n$ space. Further L(G) is infinite iff NUMBER(a, b, p) > 0 for some $b \notin M \cup MR$.

In order to test " $V = \delta^{\Gamma}(a)$ " define the functions SYMBOL(b, s, i) for $b \in V$, $0 \le s$, $0 \le i \le n$, and $|w|^{I}$ for $w \in V^{*}$ as follows:

 \mid_{δ}^{s} (b) \mid can easily be computed in $\log^{2}(n)$ space using NUMBER if s is bounded by a polynomial in n.

Now suppose c = SYMBOL(b, s, i) for some $i \le n$, s > 0, and $\delta (b) = b_1 b_2 \cdots b_k. \text{ Then } \delta^S(b) = \delta^{s-1}(b_1) \delta^{s-1}(b_2) \cdots \delta^{s-1}(b_k) ,$ so c = SYMBOL(b_r, s-1, j) where

$$\begin{array}{c|c} r-1 \\ \Sigma \\ m=1 \end{array} \mid \delta^{s-1}(b_m) \mid^{1} < i \leq \sum_{m=1}^{r} \mid \delta^{s-1}(b_m) \mid^{1}$$

and

$$j = i - \sum_{m=1}^{r-1} |\delta^{s-1}(b_m)|^{\prime}.$$

Repeating, the path leading from a to b = SYMBOL(a, s, i), $i \le |\delta^{S}(a)|$ $\delta^{S}(a)$ may be traversed by the following algorithm:

$$\begin{array}{l} b := a\,; \\ \underline{for} \; h := s, \; s-1, \; \ldots, \; 2 \; \underline{do} \\ \underline{begin} \\ \\ \text{let } \delta(b) = b_1 \; b_2 \; \ldots \; b_k \;; \\ \text{find r such that} \\ \\ \begin{array}{l} r-1 \\ \Sigma \\ m=1 \end{array} \mid \delta^{h-1}(b_m) \mid ' \; < \; 1 \; \leq \; \sum_{m=1}^r \mid \delta^{h-1}(b_m) \mid ' \;; \\ b := b_r \;; \\ \underline{i} := \underline{i} \; - \; \sum_{m=1}^r \mid \delta^{h-1}(b_m) \mid ' \;; \\ \underline{end} \end{array}$$

Using SYMBOL it is easy to test " $v = \delta^r(a)$ for some $r \le p \cdot |v|$ " in DSPACE(log^2n), which finishes the test if L(G) is infinite.

However, in case L(G) is finite the smallest r such that $v = \delta^{r}(a)$ may be exponential in n. A different method is needed and the key to this is the following observation, due to Vitanyi [5]:

Observation If L(G) is finite, we can write $\delta^{p}(a) = v_1 a_1 v_2 a_2 \cdots a_m v_{m+1}$ where each $a_i \in MR$ and $v_i \in M^*$. If $v = \delta^{r}(a)$ for some $r \ge 2p$, then there exist $\alpha_1, \ldots, \alpha_m \in V^*$ such that

- a) $v = \alpha_1 \alpha_2 \cdots \alpha_m$
- b) for each j = 1, 2, ..., m there is an r_j such that $p \le r_j \le 2p \text{ and } \delta^{r_j}(a_j) = \alpha_j$
- c) $r_j \equiv r_j! \mod gcd (Cycle(a_j), Cycle(a_{j'}))$ for each pair j, j! with $1 \le j! < j \le m$.

Conversely, a), b) and c) together imply $v = \delta^{r}(a)$ for some r. In addition $t \not\equiv t' \mod Cycle(a_j)$ implies $\delta^{t}(a_j) \not\in V^* \delta^{t'}(a_j) V^*$; thus α_j is the <u>only</u> prefix of $\alpha_j \cdots \alpha_m$ which is derivable from a_j.

The algorithm testing a, b, and c uses a procedure $\label{eq:finding} \text{FIND(i, q, k, r), } 0 \leq i, q, k, t \leq n \text{:}$

procedure FIND(i, q, k, r);
$$[v = a_1 a_2 \dots a_{|v|}]$$

begin

b:= "the i-th monorecursive letter in $\delta^{p}(a)$ " if it exists, otherwise reject;

k: = CYCLE(b);

r:= "the smallest p \leq t < 2p such that δ^{t} (b) is a prefix of $a_{q+1} a_{q+2} \cdots a_{|v|}$ if it exists, otherwise reject; $q:=q+|\delta^{r}(b)|$; reject if q>|v|;

<u>end</u>

Before giving the complete algorithm we will see that FIND can be performed in $\log^2 n$ space.

First to find the i-th monorecursive letter in $\delta^p(a)$ in $\log^2 n$ space, we can simply modify NUMBER and SYMBOL to give the number of non-mortal letters or the j-th nonmortal symbol. Note that $|\delta^p(a)|$ may be exponential in n. r can be found by computing $\delta^t(b)$ for $t=p,2,\ldots,2p-1$ one letter at a time and comparing it with \vee .

The final algorithm for MEMBER DOL verifies condition a and b of the observation by calling FIND for $i=1,2,\ldots,m$, and verifies condition c by calling FIND for $i!=1,2,\ldots,i-1$ in an inner loop for each value of i. The input is a DOL system $G=(V,\ \delta,\ a)$ and a word $v\in V^*$.

begin

```
\begin{array}{l} \underline{\text{if}} \ \delta^{p}(a) \notin (\text{MUMR})^{*} & \left[ L(G) \text{ is infinite} \right] \\ \underline{\text{then}} \ \ \text{accept if } \ v = \delta^{r}(a) \text{ for some } \ r \leq p \cdot \left| \ v \right| \text{ and reject if not} \\ \underline{\text{else}} \\ \underline{\text{begin}} \ \left[ L(G) \text{ is finite} \right] \\ \text{accept if } \ v = \delta^{r}(a) \text{ for some } \ r \leq 2p \text{;} \\ \text{q} := 0 \text{;} \\ m := \text{"the number of monorecursive letters in $v''$;} \\ \left[ \text{if } \ v = \delta^{r}(a) \text{ for some } \ r > 2p \text{ then this equals the number} \\ \text{of monorecursive letters in $\delta^{p}(a)$} \right] \end{array}
```

```
for i := 1, 2, ..., m do
begin

FIND(i, q, k, r);
    q' := 0;
    for i' := 1, 2, ..., i-1 do
    begin

FIND(i', q', k', r');
    reject if r # r' mod GCD(k, k')
    end
end;
if q = |v| then accept else reject;
```

There should be no difficulty in seeing that the algorithm is in DSPACE($\log^2 n$).

REFERENCES

- Herman, G., Rozenberg, G. <u>Developmental Systems and Languages</u>, North Holland, Amsterdam, 1975.
- Jones, N.D. Space-bounded reducibility among combinatorial problems. <u>Journal of Computer and System Sciences</u> 11, pp. 68-75, 1975.
- Jones, N.D., Skyum, S. Complexity of some problems concerning
 L systems. Submitted for publication. Preliminary
 version in <u>Automata</u>, <u>Languages and Programming</u>,
 Lecture Notes in Computer Science, v. 52, G. Goos,
 J. Hartmanis eds., pp. 301-308, Springer-Verlag, 1977.
- Sudborough, I.H. The Complexity of the membership problem for some extensions of context-free languages, Technical Report, Northwestern University, Computer Science Department, Evanston, III. 1976.
- Vitanyi, P.M.B. On the size of DOL languages, in Rozenberg, G., Salomaa, A. (Ed.) <u>L Systems</u>, Lecture Notes in Computer Science, v. 15, G. Goos, J. Hartmanis eds., pp. 78-92, Springer-Verlag, 1974.