ISSN 0105-8517

A NOTE ON THE COMPLEXITY OF

GENERAL DOL MEMBERSHIP

By

Neil D, Jones
and
Sven Skyum

Daimi PB-93
January 1979

Telephone: 06 — 12 83 55 I

Computer Science Department [_l_l
AARHUS UNIVERSITY 11 '

Ny Munkegade — DK 8000 Aarhus C — DENMARK | T Tq;—r-‘:‘"]:

A NOTE ON THE COMPLEXITY OF GENERAL DOL MEMBERSHIP

Neil D. Jones *

Computer Science Department
University of Kansas
L.awrence, Kansas 66045

U S, A,

Sven Skyum

Department of Computer Science
University of Aarhus

8000 Aarhus C

Denmark

Abstract

In [3] a humber of upper and lower bounds were obtained for various
problems concerning LL systems. In most cases the bounds were rather
close ; however, for the general membership problem the upﬂper‘ bound
was I, and the lower was deterministic log space. In this note we show
that membership can be decided deterministically in Iog2 N space, which
makes it very unlikely that the problem is complete for >, We also show
that non-membership is as hard as any problem solvable in nondetermi-

nistic log n space. Thus both bounds are improved.

* This research was partially supported by National Science Foundation

Research Grant, MCS76-80269.

Introduction

Let G =(V, 6§, a) be a DOL system (see Herman and Rozenberg [1])
so V is an alphabet, a € V a letter from V, and § : V = V¥ a mapping.

Extending § to a homomorphism § : V¥ =+ V¥, we define
LG ={s%a) | r=0, 1,2, ...},

where 8" denotes the r-fold composition of § with itself.

In Sudborough [4] it was shown that for each G, L(G) is in DSPACE(log n)
(our notation is from Jones and Skyum [3].) Each set L(G) is a specific

DOL., .
)} is:

membership problem. The general membership problem (MEMBER
Given a DOL. system G and a word v ¢ \VAl , to determine whether v ¢ L(G).

This problem was first addressed by Vitanyi [5].

In Jones and Skyum [3] it was shown that this problem is in P, and cannot
be solved in less than deterministic log space. These two bounds are not
particularly close (unless P = DSPACE(log n) which seems very unlikely.)
The purpose of this note is to show that they can be improved. We shall
prove:

Theorem MEMBERDOL is in DSPACE(Iogzn); and the

non-membership problem is hard for NSPACE(log n).

This is nearly the best possible complexity result - it could only be
strengthened (aside from a major breakthrough in complexity theory) by
showing completeness at one of the bounds. At the lower bound it would be
necessary to show that non-membership could be decided nhondeterministi-

cally in logarithmic space, which seems rather unlikely ; and a proof of

completeness for DSPACI:__(Iog2 n) would require new techniques in
complexity theory, as no natural complete problems are presently known

for this class.

Proof of the Lower Bound

Define
AGAP = {f‘ | T is a digraph with node set {1,2,...,n} for somen,
I’ has a path from 1 ton, and i < | for each

arc (i, j) of I}

This problem was shown complete for NSPACE(log n) in Jones [2].
We now show how to construct from such digraph I" a DOL system
G=({1,...,n}, &, 1) such that } § L(G) if and only of T is in AGAP.
Thus AGA P is reducible to non-membership. Consequently MEMBERDOL‘

is in DSPACE(log n) if and only if DSPACE(log n) = NSPACE(log n).

To build G, first add the single arc (n,n) to I, obtaining I''. Now define
5(1) = j1 “e jk to hold just in case {j1, cees jk} ={j | (1,j) is an arc of I}

and j1 < jz< eee < jk.

Letting Alph(w) equal the smallest alphabet A c V such that w € A%,

we see that for r=1,2,... Alph(s (1)) is the set of nodes reachable from
1 by path of length exactly r. Now TEAGAP If and only if I' has paths
from 1 of arbitrary length if and only if Alph(ép(1)) £ @ for all r if and only

if A € L(G).

Proof of the Upper Bound

For this we give an algorithm which operates in DSPACE(Iog2 n).

Our algorithm is similar to that of Jones and Skyum [3] (which in turn
is based on Vitanyi's algorithm [5]), but has several refinements to
make it operate in Iogzn space. Our notation is similar to that of

Vitanyl.

Define b€ V to be mortal (b € M) iff 6°(b) =) for some s, and mono-
recursive (b € MR) iff 8°(b) € M* bM* for some s > 0. The cycle of a
monorecursive letter is the least s > 0 such that 5°(b) € M* bM*,
Let p be the number of letters inV, and n the number of symbols re~

quired to write G and v.

It is easy to see that L(G) is finite Iff 5P(a) contains only letters in

M U MR, and that if L(G) is infinite, then v € L(G) iff v = 5" (a) for some
r <p | v |.Our algorithm will have the form ""If L(G) infinite then test
v=s6(a)for r=0,1,...,p |v| else test v € L(G) by another method!,
Thus we first show that membership in M and MR, and '"v = ép(a)" for

r < p|v| can be determined in DSF’ACE(Iog2 n).

Now define the function NUMBER (b, c, s) for b,c €V and s =z 0 as

follows:

m if §°(b) contains m occurrences
NUMBER(b, c, s) = of cand m< n

© otherwise

Clearly b € M iff NUMBER(b, ¢, p) = 0 for all c € V, and b € MR
iff there is a 0 < | < p such that NUMBER(b, b, i) = 1 and if

NUMBER(b, c, i) > 0 then c € M U {b}.

Setting any partial results greater than n to « and
using 0« @ =% . 0 =0 NUMBER can be computed by the following
Iog2 (max(n, s)) algorithm:
NUMBERI(b, c, s) =
if s = 1 then the number of c's in §(b)

else ¥ NUMBER(b, d, 5/27) * NUMBERI(d, c, .s/2_).
dev

Thus we can compute M, MR, and CYCL.E(b) for all b € V in Iogzn space.

Further L(G) is infinite Iff NUMBER(a, b, p) > 0 for some b § M U MR.

In order to test !'v

s"(a)"" define the functions SYMBOL.(b, s, i) for

A

beV, 0<s, 0<ix<n, and |w]|' for w e V* as follows:

c if c is the i-th letter in §°(b)
SYMBOL(b, s, i)

\# ifi=0 or 1> [6°(b)]

[w] if [w]=n
lWl' =

o0 if not

l 55 (b) |' can easily be computed in Iogz(n) space using NUMBER if

s is bounded by a polynomial in n.

Now suppose c = SYMBOL(b, s, i) for some i<n, s> 0, and

5 (b) = bybye..by. Then 6%(b) = 657 '(b)) 67 (by) ... 557 (b

2' LN] k.
soc = SYMBOL(bP, s-1, j) where

1 2 k)’

=1 s=1 r s—i
A I B L O T R CYR R
m=1 m=1 m
and
r-1
i=1-13x]65_1(bm)|'.
m=1

Repeating, the path leading from a to b = SYMBOL(a, s, i), 1<]6S(a)}

5%(a) may be traversed by the following algorithm:

b:=a;

forh:=s, s=-1, ..., 2do

begin
let 6(b)=b1b2.... b, 3
find r such that
P=1 e AN
D R e L LR (b)|";
m=1 m=1
b:=b; .
R T i W]
m=1

end

Using SYMBOL it is easy to test ''v = §' (a) for some pr < D |v‘ "

in DSPACE(Iogzn), which finishes the test if L(G) is infinite.

However, In case L.(G) is finite the smallest r such that v = s"(a) may
be exponential Tn n. A different method is needed and the key to this Is

the following observation, due to Vitanyi [5]:

. . c . P =
Observation If L(G) is finite, we can write § (a) Vi34V 8,eee @ Vo

where each ai € MR and VT EM*, Ifv= 6P(a) for some r = 2p, then

there exist o, «oey o € V* such that
a) V=a1 G’z e e e am

b) foreachj=1,2,..., m there is an o such that

p=r; < 2p and "3 (aj) = qj

c) rE e mod gcd (Cycle(aj) , Cycle(aj,)

for each pair j, J' with 1 < jl<j <m.

Conversely, a), b) and c) together imply v = 5'(a) for some r. In addition
]
t % t! mod Cycle(aj) implies 6t(aj) ¢ V¥ 5t (aj)V* ; thus aj 1s the only prefix
of ajeee O which is derivable from aj
The algorithm testing a, b, and c uses a procedure

FIND(i, g,k,r), 0<i,q,k,t < n:

procedure FIND(i, g, k, r) ; [v = @y .. @)y]

begin
b : = ,the i-th monorecursive letter in sP(a)! if it exists,
otherwise reject;
k : = CYCLE(b);
r:=,the smallest p <t < 2p such that 6t'(b) Is a prefix of
aq+1 aq+2 cees @ lV | " if it exists, otherwise reject;
g:=q+ lér‘(b)j ; reject if > |v]|;

end

Before giving the complete algorithm we will see that FIND can be

performed in Iogzn space.

First to find the i-th monorecursive letter in 5P(a) in Iogzn space, we
can simply modify NUMBER and SYMBOL to give the number of non-
mortal letters or the j-th nonmortal symbol. Note that [6p(a) | may be
exponential in n. rcan be found by computing 6t(b) for t=p,2,...,2p-1

one letter at a time and comparing it with v.

The final algorithm for MEMBERDOL verifies condition a and b of the
observation by calling FIND for i=1,2,...,m, and verifies condition ¢
by calling FIND for i'=1,2,...,1i=1 in an inner loop for each value

of i. The input is a DOL system G = (V, &, a) and a word v € V¥,

begin
if 5P(a) ¢ (MUMR)* [L(G) is infinite]

then accept if v = s"(a) for some r<p-* |v | and reject If not

else

begin [L(G) is finite]
accept if v = 5 (a) for some r < 2p}
q:=0;
m : = ,the number of monorecursive letters in v
[if v= 5" (a) for some r > 2p then this equals the number

of monorecursive letters in 57(a)]

fori:=1,2,...,mdo

begin
FIND(i, g, k, r) ;

forit:=1,2,...,i=-1 do

FIND (i, o', k', rf) ;
reject if r# r! mod GCD (k, k')
end
end;

if g= |v| then accept else reject;

There should be no difficulty in seeing that the algorithm is Iin

DSPACE (log? n).

10

REFERENCES

1 Herman, G.,Rozenberg, G. Developmental Systems and Languages,
North Holland, Amsterdam, 1975,

2 Jones, N.D. Space-bounded reducibility among combinatorial
problems., Journal of Computer and System Sciences 11,
pp- 68""75, 19750

3 Jones, N.D., Skyum, S, Complexity of some problems concerning
L. systems, Submitted for publication. Preliminary

version in Automata, Languages and Programming,

L ecture Notes in Computer Science, v. 52, G. Goos,

J. Hartmanis eds., pp. 301-308, Springer-Verlag,1977.

4 Sudborough, [LH. The Complexity of the membership problem for
some extensions of context-free languages, Technical
Report, Northwestern University, Computer Science

Department, Evanston, lil. 1976,

5 Vitanyi, P.M.B. On the size of DOL languages, in Rozenberg, G.,
Salomaa, A. (Ed.) L Systems, Lecture Notes in
Computer Science, v. 15, G. Goos, J. Hartmanis eds.,

pp. 78-92, Springer-Verlag, 1974,

	20051004091145_Page_01_Image_0001.tiff
	20051004091145_Page_02_Image_0001.tiff
	20051004091145_Page_03_Image_0001.tiff
	20051004091145_Page_04_Image_0001.tiff
	20051004091145_Page_05_Image_0001.tiff
	20051004091145_Page_06_Image_0001.tiff
	20051004091145_Page_07_Image_0001.tiff
	20051004091145_Page_08_Image_0001.tiff
	20051004091145_Page_09_Image_0001.tiff
	20051004091145_Page_10_Image_0001.tiff
	20051004091145_Page_11_Image_0001.tiff

