ISSN 0105-8517

A COMPARISON OF
MONITORS AND MESSAGE PASSING

by

Jérgen Staunsirup

DAIMI PB- 92
December 1978

Computer Science Department []
AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55

]
=5l




A COMPARISON OF MONITORS AND MESSAGE PASSING

Jorgen Staunstrup
Department of Computer Science
University of Aarhus
Ny Munkegade
DK-8000 Aarhus C, Denmark

Abstract

One of the issues which receives much attention in the field of concurrent
programming is the communication and synchronization primitives. Many
primitives have been proposed but two main philosophies have evolved:
monitors and message passing. The two programming languages Concurrent
Pascal and Platon represent these two different approaches. By looking at
a few algorithms written in the two languages, the two approaches are

analyzed and compared.

Keywords
Concurrent programming, message passing, monitors, synchronization

primitives.

December 1978




A COMPARISON OF MONITORS AND MESSAGE PASSING

Abstract

One of the issues which receives much attention in the field of concurrent
programming is the communication and synchronization primitives. Many
primitives have been proposed but two main philosophies have evolved:
monitors and message passing. The two programming languages Concurrent
Pascal and Platon represent these two different approaches. By looking at
a few algorithms written in the two languages, the two approaches are

analyzed and compared.




1. INTRODUCTION

A concurrent program describes several computations which take place
simultaneously. Each independent computation is called a process. One of
the issues that has received much attention is the communication and syn-
chronization of processes. Although the processes are independent they
are forced to interact every now and then. If, for example, two processes
cooperate on a common task, they need to exchange partial resulis every
now and then. An almost endless list of proposals on how to make pro-
cesses interact has been made, but two main philosophies have evolved:
monitors and message passing. Below these two approaches are analyzed

and compared.

In this paper, | will be concerned with concurrent programs written in high
fevel languages only. A particular philosophy for process interaction is
realized in a high level language as a set of language primitives. These
primitives are then used for expressing all process interaction. A pro-
gramming language should consist of a small set of primitives which all fit
together like building blocks. It is, however, difficult to make such a
building block out of a proposed language construct. The construct must

be adapted to fit with other constructs of the language. | will therefore not
compare monitors and message passing on their own detached from any
programming language. Instead, | will compare the two concepts as they
are realized in the two languages Concurrent Pascal [Brinch Hansen 1975]
and Platon [Staunstrup and Sgrensen 1976 ]. ~ Both of these languages
are derived from Pascal [Jensen and Wirth 1974], and both are intended
for concurrent programming. Furthermore both languages have now been

in active use for several vears.

A complete comparison of Concurrent Pascal and Platon would, however, be
meaningless. Concurrent Pascal has a very general scope of application.
Whereas Platon was designed for a very special application (see section 3).
Therefore, only the synchronization and communication aspects of the two
languages are discussed. This paper contains several examples of programs
written in the two languages. In these examples small deviations from the
syntax of the two languages have been made to make all unessential parts

of the examples look alike. The reader is assumed to be familiar with Pascal.



2. CONCURRENT PASCAL

Concurrent Pascal is designhed for constructing a wide range of concurrent
programs. So far, two operating systems and a real time process controlier
have been published [Brinch Hansen 1977]. The main difference from Pas-

cal Is the introduction of the system types: process, class, and monitor.

A process is a logically independent component which performs its compu-
tations concurrently with other processes. A monitor is a class where the
execution of all routines exclude each other. Monitors are the only means for

sharing data structures between concurrent processes. The mutual exclusion of

monitor routines does only provide short term scheduling of the access to

shared data. Medium term scheduling is provided by variables of type (pro-

cess) gueue. Two operations delay and continue are defined on queues,

Concurrent Pascal is illustrated by the following example.

Example 1: Resource Allocation

A number of concurrent processes share a common resource, e.d.
an external device. Each process needs exclusive access to the resource.
The access to the resource is controlled by a resource scheduler. The

resource scheduler is a monitor with the two routines request and release.

Before a process uses the resource it must be reserved by calling the
monitor routine request. When the process has finished using the resource,

it calls release. A user process therefore looks as follows:

user =

process(r: resource);

begin
r.request,
use_resource,
r.release;

end,




An abstract data type schedqueue is used to implement the queue of waiting
processes, It is important to realize that it is the programmer who chooses
the scheduling algorithm. This is always necessary when the built-in short

term scheduling algorithm is inappropriate.

The resource monitor looks as follows:

resource =
monitor
var
free: boolean;
q: schedqueue;

procedure entry request;

if free
then free:= false
else delay(q. enter);
end;

procedure entry release;

begin
if g.empty
then free:= true
else continue(q. remove);
end;
begin

free:= true;
init q;

end;

The details of the type schedqueue are irrelevant for our purposes. A
complete program for the resource scheduler can be found in Brinch Han-
sen 1977.



3. PLATON

Platon is designed for programming dedicated systems like terminal con-
centrators, drivers for external devices, and controllers. In all these
applications it is necessary to transmit large amounts of data between the
processes., Platon is derived from Pascal by introducing processes, shared
variables, and queue semaphores. A process is a logically independent '
component which performs its computations concurrently with other proces-
ses. Variables can be shared by several processes, but only one process
at a time can have access to them. Processes exchange access to shared

variables by means of queue semaphores [I_auesen 1975]. A queue sema-

phore combines the synchronizing effect of the binary semaphore [Dijkstra
1968] with the exchange of data. A queue semaphore is a mailbox through
which all communication between processes must take place. Following this
analogy, shared variables are envelopes in which messages are transmitted.

A message is put in an envelope by assigning a value to the shared variable.
A pool of n shared variables of type t is declared as follows:

var

s: shared set n of t;

Shared variables cannot be manipulated directly but only through variables

of type reference.

var

b: reference;
The operation

alioc b from s;

binds the reference variable b to a shared variable of type t. This shared
variable can now be manipulated like any other variable of type t. The two

predefined operations wait and signal are used to exchange access to shared

variables. At most one process can have access to a shared variable at any
time. The following example demonstrates how these constructs are used in

a Platon program.



Example 2: Process Communication

Two processes, a producer and a consumer, communicate by sending

blocks of data from one process to the other,

producer = consumer =
process(line: semaphore), process(line: semaphore);
var var
b: reference; b: reference;

s: shared set 1 of block;

begin begin
alloc b from s; wait b from line;
bi=...% use_b;
signal b to line; N

end; end;

Y

The solution is slightly asymmetric because the producer allocates the

message buffers.




4. THE EXAMPLES REVERSED

The two examples are repeated below, But this time the resource allocator

is written in Platon and the process communication in Concurrent Pascal.
The examples reveal some fundamental differences between the two languages.
It is, however, not fair to base one's judgement on these two examples only,

since each language is tailored to one of the examples.

Example 1: Resource Allocation

First note, that the following well known solution is insufficient:

user =
process(res: semaphore);
var
r: reference;
begin
wait r from res;
use_resource;

sighal r to res;

LI

end;

This Is not a correct solution because the scheduling is not controlled by
the programmer but by the short term scheduling algorithms used to imple~

ment wajit and signal. If this solution is used a fixed scheduling discipline

is enforced on all resources. That is clearly not acceptable.

In Platon the resource scheduler has to be a process which can handle two
kinds of messages: requests and releases. |n each cycle of the scheduler

it acceptis a message and takes the necessary actions prompted by that
message. Again, a variable of type schedqueue is used to handle the pending

requesis,

An inherent problem in any message passing system is the administration of

message buffers, old message buffers must somehow be regained. In Platon



the programmer must explicitly return a message buffer when the message

has been processed. Any shared variable has a so-called owner semaphore.

The predefined operation return is semantically equivalent to a signal to
this owner semaphore. In this example, the owner semaphore of a message
is used to return the envelope to its sender. Obviously, a different queue
semaphore must be used for returning envelopes. By using the owner se—

maphore the resource scheduler need not explicitly know all its users.

resource =
process(mes: semaphore);
var
free: boolean;
qg: schedqueue;
r: reference;
begin
Init q;
free:= true;
cycle
wait r from mes;
case r of
request: if free
then begin
free:= false;

return r; "allows the requesting process
to proceed!

end
else qg. enter(r),
release: begin
return r; "allows the releasing process to proceed!
if not q. empty
then begin
r:= g.remove;
return r; '"allows a pending request
to be completed!
end

else free:= true;

end,

end 'case!ly
it e
end "cycle';

end;



user =
process(mes: semaphore);
var
r: reference;
s: shared set 1 of (request, release);
answer: semaphore,
begin

alloc r from s with answer;

r:= request;

sighal r to mes;

wait r from answer;

use_resource;

r:=release;

signal r to mes,

wait r from answer;

end;

The owner semaphore (return address of message) is defined by the alloc

operation.

alloc r from s with answer,

The shared variable now has answer as the owner semaphore.

Although the solution is rather complex the communication follows a very
regular pattern., A user process ''calls! the scheduler by sending a message

and immediately walit for an answer, This can be interpreted as a procedure

call:
r:= request; "'set up parameterst!
signal r to mes; !''procedure entry, parameters passed in r!

wait r from answer; !"procedure return, results passed in r'

Finally, the return jump from the procedure is the call of return.



There are several problems with the Platon version. The first is the
branching (the case statement) caused by the different kinds of messages
received on the same queue semaphore. This gives an unnecessarily com-
plicated control structure, but it is also the source of more serious
problems which are discussed below. The second problem with the Platon
version is its complexity. This is caused by an inherent problem in a
message passing system. The scope of a message is not indicated by the
block structure of the program, as it is the case with other variables. The
points in the program where the message buffer appears and disappears

are therefore identified explicitly (by alloc, send, wait, and return).

The Tollowing inefficiency in the Platon version was pointed out to me by
Nigel Derrett:in a uniprocessor system there is some overhead in
switching from one process to another. In the Platon version there are

four such switches for each process requesting and releasing the resource.

Example 2: Process Communication

The process communication example written in Concurrent Pascal

looks as follows:

producer = consumer =
process(line: buffer); process(line: buffer);
var var
b: block; b: block;
begin begin
bi= ...} line. get(b);
line. put(b); use_b;

end,; end,




10

A monitor is needed to connect the two processes.

buffer =
monitor
var
buf: block;
empty: boolean;
sender, receiver: queue;

procedure entry put(b: block);

begin
if not empty then delay(sender);
buf:= b;

empty:= false;
continue(receiver);
end,

procedure entry get(var b: block);

begin
if empty then delay(receiver),
b:= buf,

empty:= true;
continue(sender),
end;
begin
empty:= true,
end;
It is not very surprising that the Platon program is more elegant, since
Platon was designed for message passing, whereas Concurrent Pascal has
more general goals. It is, however, noteworthy that the greater generality

was obtained at an exira cost of:

- extra space: three variables of type block in the Concurrent

Pascal version compared to one in the Platon version,

- slower execution: the contents of the buffer is copied twice in the
Concurrent Pascal program. No copying takes place in the Platon
program. One could argue that the copying could be avoided by intro-
ducing references in Concurrent Pascal. But this would be contrary

to the philosophy behind Concurrent Pascal [Brinch Hansen 1977].




11

5. EXTERNAL SELECTION

Consider the situation where a number of processes share an instance of

an abstract data type, and let this instance be an output device. The
abstract data type has two operations writetext and resupply. Every time

a text is written one piece of paper is used. There is only a limited supply
of paper, so when the paper is finished, the device cannot be used until it is
resupplied. In Platon this is programmed in a way very similar to the re-

source scheduler:

device =

process(mes: semaphore);

cycle

wait r from mes,
case r.type of

writetext: ...
resupply: ...

end; ''‘casel!
end,;
end

There are, however, several problems with this solution.

It is desirable to design a concurrent programming language in such a way
that the compiler can check the process interaction. In Platon this can be
achieved by associating a type with a queue semaphore and then only per-
mitting messages of that type to be transmitied via the semaphore. On the
other hand a process can only wait on one semaphore at a time. These

two things together make it hard to program an algorithm where a process
must wait for the first of two messages of different types and take different

actions in the two cases. This concept is called external selection because

the flow of control is determined by the order in which external events take

place. In the above example, the problem was evaded by using a union type.



12

All messages transmitted via the queue semaphore mes are of this union type.
Furthermore the message carries information(r. type) about its type. This of
course defeats the goal of having the compiler check the process interaction.
Note, that the problem is very elegantly solved by a monitor waiting for the

first of many possible routine calls, In Platon what is needed is a construct like:

casewait r from

seml: sl

sema: s2;

semn: sn;

end;

A construct like this was considered when Platon was designed, but it was
omitted because:

-The right syntax was never found. In the above proposal semaphores
appear as case labels. This is a new concept that we hesitated to introduce.
All other proposals had similar peculiarities.

- It was difficult to find an efficient implementation.

~ The importance of the external selection was not realized. In re—

trospect it is obvious that it was a wrong decision to omit such a construct.

The above example reveals another serious weakness in Platon. The program
as it stands does not work. Consider what happens when the printer runs out
of paper. From then on the process can accept messages of type resupply
only. But all messages arrive on the same queue semaphore, and it is not
possible to lock out the writetext-messages. To solve this in Platon, a local
queue semaphore must be introduced. All messages that cannot be handled
immediately are then signalled to this local semaphore. When more paper is

supplied, all the pending messages are handled first.

In the RC 4000 system [Brinch Hansen 1970] which is also based on message
passing, this problem is solved by introducing two new standard routines
called waitevent and getevent. This routine allows a process to select other
messages than the first from a given queue. In this example, waitevent could

be used to filter out all messages of type writetext.



13

In Concurrent Pascal the same problem is solved by distinguishing between
short and medium term scheduling. Short term scheduling is concerned
with implementing the indivisible access to the shared variables. Medium
term scheduling is concerned with the delays caused by the logic of the al-=
gorithm used. In this case medium term scheduling takes care of delaying

writetext-operations when there is no paper.

In Concurrent Pascal one would therefore write (ignoring the problem that

only one process can be delayed in each queue-variable):

device =

monitor

procedure entry writetext(...);

begin
if paper =0

then delay(morepaper);
paper:= paper-1;
end;
end,
Concurrent Pascal does, however, have a similar probiem on the medium:
term level. Processes are always delayed in a single queue even if they
wait for the first of several events. Let B1 and B2 be two boolean expressions,
and assume that a process has to be delayed until either of the two conditions
is satisfied. Different actions S1 and S2 are to be taken depending on which

condition becomes true. This is "solved" by collapsing the two conditions into

one:

if not(B1 or B2)
then delay(q);
HE 1 O_I" lel
if B1
then S1

eise S2;




14

So Concurrent Pascal does not have means for expressing external selec—

tion on the medium term level. A construct called the guarded region has

been proposed to capture this [Brinch Hansen and Staunstrup 1978]:

when
Bl: S1;
B2: 52

end,

The process is delayed until the first of the two guards (B1, B2) becomes
true. It then executes the corresponding statement. If both guards become

true only one of the statements are executed, which one is unknown.




15

6. CONCLUSION

This paper has analyzed and compared two concurrent programming concepts:
monitors and message passing. The concepts are compared on the basis of
their realization in two programming languages which are in active use:
Concurrent Pascal and Platon. No claim is made that the paper contains an
exhaustive list of assets or weaknesses of the two languages. Only examples
where some insight can be gained from the differences have been included.

Problems which are common to the two approaches have been omitted.

The examples presented in this paper point out the following fundamental

problems with the two languages.

Platon:

1) no direct means for expressing external selection,

2) no distinction between short and medium term scheduling,

3) complex program structure,

4) unnecessary mixing of data and conirol flow because messages

carry type information in addition to the transmitted data,
5) inefficiency caused by the frequent switching of the processor

from one process to another.

Concurrent Pascal:

a) no direct means for expressing external selection on the medium term
level,
b) somewhat inefficient for transmitting large amounts of data.

| believe that 1), 2), and 4) are problems that could be removed in a future
language based on message passing. Whereas 3) is an inherent problem caused
by the fact that the scope of shared variables is dynamically controlled,

and the scope of other variables is statically determined. 5) is of course

mainly a problem in a uniprocessor system.

Problem a) with Concurrent Pascal is solved by introducing guarded regions
which are hard to implement efficiently however. Problem b) only exists in a
uniprocessor system without explicit pointers. In a multiprocessor implemen-

tation the data has to be copied (transmitted) anyway.



16

Acknowledgements

The ideas presented in this paper emerged through many interesting dis-
cussions with Sven Meiborg S¢rensen and others at Aarhus University,
Ole Caprani and Anders P. Ravn from Copenhagen University, and Per

Brinch Hansen at University of Southern California.

References
Brinch Hansen, P., The nucleus of a multiprogramming system.

Comm. ACM 13, 4 (April 1970), 238-250.

Brinch Hansen, P., The programming language Concurrent Pascal.

IEEE Transactions on Software Engineering 1, 2 (June 1975), 199-207.

Brinch Hansen, P., The architecture of concurrent programs.

Prentice-Hall, Inc., Englevvood Cliffs, N.J., July 1977,

Brinch Hansen, P., and Staunstrup, J., Specification and implementation
of mutual exclusion. IEEE Transactions on Software Engineering 4,

(September 1978).

Dijkstra, E.W., Cooperating sequential processes. In Programming

Languages, F. Genuys (ed.), Academic Press, New York, N.Y. 1968,

Jensen, K., and Wirth, N., PASCAL user manual and report. L_ecture

Notes in Computier Science, No. 18, Springer Verlag 1974,

Lauesen, S., A large semaphore based operating system. Comm, ACM 18,
7 (July 1975), 377-389.

Staunstrup, J., and Sgrensen, S.M., Platon. A high level language for
systems programming. In Minicomputer Software, J.R. Bell (ed.),

North Holland 1976.




	20051004091106_Page_01_Image_0001.tiff
	20051004091106_Page_02_Image_0001.tiff
	20051004091106_Page_03_Image_0001.tiff
	20051004091106_Page_04_Image_0001.tiff
	20051004091106_Page_05_Image_0001.tiff
	20051004091106_Page_06_Image_0001.tiff
	20051004091106_Page_07_Image_0001.tiff
	20051004091106_Page_08_Image_0001.tiff
	20051004091106_Page_09_Image_0001.tiff
	20051004091106_Page_10_Image_0001.tiff
	20051004091106_Page_11_Image_0001.tiff
	20051004091106_Page_12_Image_0001.tiff
	20051004091106_Page_13_Image_0001.tiff
	20051004091106_Page_14_Image_0001.tiff
	20051004091106_Page_15_Image_0001.tiff
	20051004091106_Page_16_Image_0001.tiff
	20051004091106_Page_17_Image_0001.tiff
	20051004091106_Page_18_Image_0001.tiff
	20051004091106_Page_19_Image_0001.tiff

