ISSN 0105-8517

THE COPYING POWER OF
ONE-STATE TREE TRANSDUCERS

by

Joost Engelfriet
and
Sven Skyum

DAIMI PB-91
September 1978

Computer Science Department [T
AARHUS UNIVERSITY

Ny Munkegade — DK 8000 Aarhus C — DENMARK |
Telephone: 06 — 12 83 55

LH |

THE COPYING POWER OF ONE-STATE TREE TRANSDUCERS

Joost Engelfriet

Sven Skyum

Revised version: February 1981

Abstract

One-state deterministic top-down tree transducers (or, tree
homomorphisms) cannot handle "prime copying", i.e. their class of output
(string) languages is not closed under the operation L - | $(W$)f(n)]

wéL, f(n)=1 }, where f is any integer function whose range contains
numbers with arbitrary large prime factors (such as a polynomial). The
exact amount of nonclosure under these copying operations is established
for several classes of input (tree) languages.

These results are relevant to the extended definable (or, restricted

parallel level) languages, to the syntax-directed translation of context-free

languages and to the tree transducer hierarchy.

1. Introduction

To measure the copying power of tree transducers we consider
copying operations cg on languages L defined by cf(l_) = i$(w$)f(n) |
weé L, fln) =1} where f is an integer function, such as f(n) = 2, f(n) = n
or f(n) = 2", Such operations were studied before, in relation to parallel
rewriting systems and tree transducers, in[5, 8, 16] among others.
For instance, in[8, 16] it was proved that (nondeterministic) top-down
tree transducer languages are not closed under Cy, and in [5] it was
shown that bounded copying top-down tree transducers cannot do any
infinite copying (i.e. any operation Cs where f has an infinite positive
range). In this paper we investigate the copying power of one-state top~down
tree transducers and (multi-state) bottom~up tree transducers, with respect to
these copying operations. Our main result is that deterministic one-state
top-down tree transducers (or, tree homomorphisms) cannot do "prime
copying', i.e. any operation Ce such that the range of f contains numbers
with arbitrary large prime factors. Although these transducers are clearly
able to handle finite copying (cf’ where f has a finite positive range) and
Ibure exponential! copying (cf’ where f(n) = ab” for positive integers
a,b), it is a consequence of the main result that they can do neither in-
finite polynomial copying (i.e. any operation C¢ such that f is a polynomial
with an infinite positive range) nor exponential copying in general (e.g. not
Ce with f(n) = Zn—I). These.results are also true for arbitrary (multi-state, non-
deterministic) bottom-up tree transducers. To determine the copying power
of hondeterministic one-state top—-down tree transducers we show that
they cannot do finite "coloured!" copying, i.e. the operation ‘E"z(L) =

[ws® | weLl.

These results are made concrete in the following two cases. In
the first part of the paper (Section 3) we consider the class RPLL of
"restricted parallel level' languages, generated by the level grammars
of [15], which are a special type of parallel rewriting systems. In[15]
it is shown that RPLL equals the class of "extended definable!" languages
of [13]. More important, RPLL equals the class of bottom-up tree
transformation languages, i.e. all (string) languages produced by
bottom-up tree transducers (or equivalently, tree homomorphisms), when
applied to derivation trees of context-free grammars. By means of an
intercalation theorem for RPLL we show that no prime copying can be
done in RPLL, in particular no language of the form cp(l_) belongs to
RPLL, where L is any infinite language and p is any polynomial with in-
finite positive range. We note that, as far as tree transducers are con-
cerned, in this part of the paper we only discuss tree homomorphisms.

In the second part of the paper (Sections 4 and 5) we consider the
(top~down) tree transducer hierarchy of [5]. We prove in Section 4
that, at each level of this hierarchy, the class of deterministic one-state
top—-down tree transformation languages is not closed under prime copying
(and in particular not under infinite polynomial copying). This result im-
plies that, for every n, the class of (string) languages obtained as output
from a composition of n bottom-up tree transducers (applied to derivation
trees of context-free grammars) is not closed under infinite polynomial
copying. We also show in Section 4 that every class of deter‘miﬁistic
(multi-state) top—down tree transformation languages is closed under
polynomial copying (under a few conditions on the class of input tree
languages). In Section 5 we refine the top-down tree transducer hier-

archy by showing that, at each of its levels, nondeterministic one-state

top-down tree transducers cannot do coloured copying (clearly multi-

state transducers can do this). In this section we also show the result
from [20] that already one-state top-down tree transducers give rise to

a proper hierarchy (even with respect to the classes of tree transformation
languages).

From all these results together we may conclude that infinite poly-
nomial copying and coloured copying distinguish sharply the multi-states
from the one-state top-down tree transducers, and the top-down from the
bottom~up transducers. For the relevance of (one-state) top-down tree
transducers to the syntax-directed translation of contexi-free languages
we refer to [12, 19].

Sections 2 and 3 of this paper are self-contained, but Sections 4
and 5 are a continuation of the first three sections of [5] and there we
assume familiarity of the reader with the notation and terminology of these

sections of [5].

2. Preliminaries

The reader is assumed to be familiar with the basic concepts of
formal language theory [10, 14]. In this section we discuss some ele-
mentary notation, the concept of tree homomorphism and various copying

operations.

2.1, Eilementary notation

For a string w, |w | denotes its length; |A| = 0. If 0 is a symbol,
then #O_(w') denotes the number of occurrences of o in w., We identify

languages which differ only by X.

Let X19Xgs X3y e be special symbols. Let Xk = fxl g ey xk} . For
strings w,,...,w, and a stringw € (T U Xk)*~, where ¥ is some alphabet,
we denote by w[w1 geeey wk] the result of substituting w; for X; in w.

Z denotes the set of integers and N = {1, 2,3,... } For
A c Z we denote by [IA the subset of Z consisting of all products of
elements of A, i.e. [IA = {k1kz...kn ln=1, k. € Al cZ. For a
partial function f: Z + Z we denote as usual by range(f) the set
fyez | f(x) =y for some x € Z}.

An alphabet T is ranked , if E-‘—‘U{En | n=0}, where the z,
are (not necessarily disjoint) subsets of ¥ such that only finitely many
of them are nonempty. If g € En then we say that ¢ has rank n. A tree
over X is either a symbol of rank 0 or a string of the form cr(t1 .o tn),
where ¢ has rank n and t; is atree over 3, 1 =i =<n. The set of all
trees over T is denoted T We shall use TE[xk] to denote TEUXk’
where the elements of Xk are given rank 0. Since trees are special
strings, t[tl’ ceey tk] denotes the result of substituting the trees t;
for x; in the tree t; this may be called "tree concatenation! (as it
generalizes string concatenation). The yield of a tree t, denoted by
yield(t) or y(t) or even yt, is defined as usual by y(O‘(’tl .o tn)) =
v(t,). .. y(tn) and y(o') = ¢! for g € L, and o' € T,. It is easy to show
that for arbitrary trees t, tiy...,1t: y(t[’c1 s ooy tk])= y(t)] y(’c1 oo k) y(tk)] .
If L is a tree language, then yL = {yt [teL }, and if K is a class of
tree languages, then yK = §yI_ | LeEK } . We also employ the usual
intuitive terminology concerning these labeled ordered trees. We assume

the reader to be familiar with the concepts of node, label, root, leaf,

path and subtree (a node together with all its descendants).

2.2. Tree homomorphisms

In this subsection we recall the definition of a tree homomorphism
and show that it has a property which is basic to the rest of the paper,
viz. that the number of copies of the trans!ation made of a subtree by
the tree homomorphism has only small prime factors.

Let 2 and A be ranked alphabets. A tree homomorphism H from

TZ} to TA is a mapping determined by a family {H of mappings

k} k=0
H 2, TA[Xk] as follows. For ¢ € Z, H(o) = Hylo). For o €T
and ty, ...yt € T, Hlolt;. ..t) = H (@) H(t,), ..., H(t,)].

The class of tree homomorphisms is denoted by HOM. It is easy
to see that HOM is closed under composition. If K is a class of tree
languages, then HOM(K) = {H(L) | H € HOM and L € K}. Clearly the
tree homomorphism is the generalization to trees of the string concept
of homomorphism. Each tree homomorphism H is indeed a homomorphism
with respect to tree concatenation, i.e. ift € TZ{XK] and TPREEP € TE
and H is extended (as we will always assume) to TE[xk] by defining
Holx;) = %y then H(t[ty,...,t, 1) =HE) Hlt), ..., Ht)]. The straight-
forward proof of this elementary fact is left to the reader.

Let s be a subtree of t, and let t = u[s| where u € TEI:X]] and
u contains exactly one occurrence of X (thus u is the part of t "outside!!
s). Then, for a tree homomorphism H, H(t) = H(u) H(s)] and conse-

quently the number of occurrences of H(s) in H(t) is equal to the number

of occurrences of x, in H(u). This number will be called the translation-

number of s with respect to t (and H), denoted by tr‘nH(s, t).
In the following lemma we state the basic property of these

translation-numbers,

Lemma 2.1 For each H € HOM there is a constant N such that
if s is a subtree of t, then trn (s,t) € II{n | 0 <n<N}.
Proof It is easy to see that for t = ()‘(t1 . t,)

1 ifs=1t

trn, (s,t) =

(
H » . .
#xi(Hk(G)) »trn (s, ti) if s is a subtree of t..

Hence tr‘nH(s, t) is a product of numbers #xi(Hk(O))’ kz1, 0€ X,

0 =1 = k. Consequently if N is the maximum of these numbers, then
trnH(s,t)GH{nIOSnSN}. O

As a consequence of this lemma the numbers trn_ (s, t), for fixed

H

H, have only small (i.e. < N) prime factors, viz. the prime factors of

all numbers #xi(Hk(c)).

2.3, Copying operations

Let f be a function from Z into itself. For each language L. over
the alphabet & we define

cf(L_) = {$(w$)f(n) | f(n) = 1Tand w € L}
where $ is not in Z.

If f(n) = k for all n, then we denote c_ by ck; if f is the identity,

f
then we denote C: by Cy . Thus ck(l_) = { 51;(‘w$)k | we L} and c4(L) =
{$(w$)" | nz 1, weé L}. When range(f) N IN is finite (infinite), as in
the case of C\ (cy), we talk about finite (infinite) copying. If f(n) = ab"
for a,b € N, then we talk about pure exponential copying. If f is a
polynomial (with integer coefficients), then we talk about polynomial

copying. Finally, if range(f) N IN contains numbers with arbitrary large

prime factors, then we talk about prime copying.

We also consider finite "coloured!" copying, i.e. copying over a
different alphabet. For each language L over the alphabet 2 we define

S, (L) = {w$Ww | weL}, whereT ={0|c€Z}and$notinZux.

3. An intercalation theorem for level languages

In this section we consider the extended definable languages
of [13], using the (restricted parallel) level grammars of [15] to
generate them. This class of languages will be denoted by RPLL.. We
first show that RPLL can be obtained from the contexi—-free languages
by applying tree homomorphisms to their derivation trees (as shown
also in[12, 18]), and consequently RPLL also equals the class of
bottom-up tree transformation languages (cf. [3]). We consider a few
closure properties of RPLL, in particular finite and pure exponential
copying. Then an intercalation theorem for RPLL is presented and it
is used to show that RPLL is not closed under prime copying, in
particular not under infinite polynomial copying. This result implies
that RPLL is not adequate to express the properties of declarations in’

block-structured languages (as suggested in [13]).

Definition 3.1 A restricted level grammar is a construct

G=(N,Z,P,S) where N is the nonterminal alphabet, I is the terminal
alphabet (TN N = ¢), P is a finite set of productions of the form A - v
with A € N and v € (N U Z)*, and S € N is the start symbol. In other
words, a restricted level grammar is the same as a contexi{-free grammar.
The derivation relation is however defined differently. A sentential form

of G is an element of ((N x IN) U £)¥. We define the derivation relation

= as follows (where w, € ((N x N) U 2)* and (A,n) € N x N):
wo(A, nw, (A, nhw,. . (A, niw_ = woww, ww,...ww_ if and only if
(A, n) does not occur in w, (0 < i <m) and there is a production
A yOA A

A in P with A, € N and y; € ¥ such that

1Y12%2Y2 - MYk
w = yO(A1 , n+1)y1 (AZ’ n+1)yz. .. (Ak’ n+1)yk. The relation % is defined

as usual, and the language generated by G is L(G) = {y € % |(S, 1)5y b

O

The class of languages generated by restricted level grammars
is denoted by RPLL (the restricted parallel level languages). Level
grammars were introduced in [15], in a slightly different way; using
Proposition 3 of [15] it is easy to see that the above definition is
equivalent to the one in [15]. It was shown in [15] that RPLL equals
the class ED of extended definable languages [13].

A restricted level grammar is a context-free grammar with
level-numbers attached to the nonterminals (indicating the depth of the
nonterminal in the derivation tree). The way in which the derivation
relation is defined restricts the set of derivation trees of the context-
free grammar to those that have the following property (let the !'label-
sequence! of a node be the sequence of labels on the path from the root
to the node): if two nodes have the same label-sequence, then they are
at the root of identical subtrees of the derivation tree; in other words,
if two nodes have the same history, then they have the same future. In
particular (and equivalently), if A + uBvBw is a production (with
A,B €N and u,v,w € (XU N)¥), then both occurrences of B have to

derive the same string; it is exactly this property of level grammars

which is formalized in an "Algol-like!! way in the definition of extended
definable language in [13], cf. the discussion at the end of [13]. A

formal proof of these remarks is left to the reader.

Examples 3.2 Consider the restricted level grammar

G=(N,Z,P,S)withN = {S,A}, ©={a,b} and P = {S + bAbAbAb,
A+ aA, A}, It is easy to see that L(G) = {ba"ba"ba'b [n=0 }.
The restricted level grammar ({S}, {a}, P, S), where P consists

n
of the rules S + SS and S -+ a, generates the language {az [n = O} .

In the following lemma we show how to remove A —productions and

single productions from level grammars.

Lemma 3.3 Let G=(N,Z,P,S) be a restricted level grammar.
Then there exists an equivalent restricted level grammar
G' = (N, I, P!, 3S) such that P! contains no productions of the form
A=X or A-Bwith A,BEN,

Proof First we consiruct a grammar without A —productions.
The construction is a straightforward variant of the one for context-
free grammars. Let N, = {AeN| A% X}, Construct G = (N, %, P, S)
such that if A = WOA1W1A2. - Amwm is in P, withwow,...w_ €
(INU) ~ N}\)‘* and Ai € N)\ (1 <i<m), then all productions

A-+w.B,w,B,... Bmwm’ except possibly A »+), are in P, where

0=1"1 72
B. € {A,, A} and B, = B, if A; = Aj. It is left to the reader to show that

L(G) = L(G).

10

1

To obtain from G the required grammar G! without productions
A = B, exactly the same construction as for context-free grammars
can be used: if A B inTand B+ w in P (with w § N), then A -+ w

is in P!, 0
Let DCF denote the class of tree languages which are sets of
derivation trees of a context-free grammar. We now show that the

application of tree homomorphisms to DCF yields RPLL, cf. [12, 18].

Theorem 3.4 [12, 18]. RPLL = yHOM(DCF).

Proof To show that RPLL < yHOM(DCF), let G = (N, I, P, S)
be a restricted level grammar, which has no A-productions. We define
a context-free grammar G' = (N, !, P!, S!) and a tree homomorphism H
as follows. Let A be the ranked alphabet equal to P U {S‘} » such that
a production is in Ak if its right-hand side contains k different non-
terminals (e.g. a production A =+ ABA has rank 2) and S! € Al . Let
) be the ranked alphabet with ‘QO = 2 and Qz = {c} for some new symbol
c. His a tree homomorphism from TAto TQ, and we set N! = A-—AO and
o= AO' If r is a production and the {distinct} nonterminals A1, ven ,Ak (k= 1)
occur in its right-hand side v, then P! contains all rules r - Pyees Pl
where r is a production with left-hand side A., and Hk(r‘) is defined
to be any tree t € TQ[xk] such that yield(t)[Al,. .. ,Ak] = v. Finally,
P! contains all rules S' + r where r has left-hand side S, and
HI(S') = x;. It is left to the reader to prove that L(G) = yH(D), where
D is the set of derivation trees of G!. Intuitively, whenever the restricted

level grammar produces two brother nodes with the same label, the

context-free grammar produces only one of them, and the tree homomor-

12

phism is used to produce its brother together with a copy of its sub-
tree.

To show that yHOM(DCF) c RPLL, let G= (N, %, P,S) be a
context~-free grammar and let H be a tree homomorphism from TA to

T~ wWhere Ais the ranked alphabet such that AO = ¥ and Ak is the

Q
set of all nonterminals which have a production with right-hand side
of length k. We may assume that no nonterminal occurs more than once
in the right-hand side of a production (if A + uBvBw is a production,
then we introduce a new nonterminal B and a new production B -+ B,
change the first production into A = qu§W, and define H1 B)= X).
We now define the restricted level grammar G' = (N, Qo P!, S) such
that if A 2 q,...0 is aproduction in P with o; € NU %, and Hk(A) =

t € TQ[Xk], then P! contains the production A = yield(t)] Wigeons Wk]
where w, = @; if @, € N and w, = yield(H (a;)) if @, € Z. It is again left
to the reader to show that L{(G!) = yH(D) where D is the set of deriva-

tion trees of G. 0

l.et REC denote the class of recognizable tree languages [19]. It
is well known that DCF € REC and that each recognizable tree language
can be obtained as a (deterministic) relabeling of a tree language in
DCF [19]. Since HOM is closed under composition, this shows that
yHOM(DCF) = yHOM(REC). L.et B denote the class of bottom-up iree
transductions; yHOM(REC) equals the class yB(REC) of bottom-up
tree transformation languages [3] Thus we obtain the following
corollary.

Corollary 3.5 RPLL = yHOM(REC) = yB(REC). O

13

It follows from Corollary 3.5 (in particular RPLL = yB(REC))
that RPLL is closed under intersection with regular languages,
cf. [3] (this was not noticed in [13]). Of the other AFL operations,
it was shown in [13] that RPL.L is closed under union, concatenation,
Kleene star and homomorphisms, but not under inverse homomorphisms
(or finite substitutions). RPLL is clearly closed under finite copying
[13] and pure exponential copying: if L is generated by the restricted
level grammar G = (N,%,P,S), then the grammar with new start

symbol S' and additional production S' ? SS$ generates c (L),

ol
and the grammar with additional productions S!' =+ TTTS,

T2T$T and T + S (where T is also new) generates c_ (L) with

#
f(n) = 30 2" (and similarly for constants other than 2 and 3).
To show that RPLL is not closed under prime copying we now

prove an intercalation theorem for RPLL..

Theorem 3.6 LetL be arestricted parallel level language,

i.e. L € RPLL, over the alphabet Z. Then there exist positive integers

VW . VW ..« VW

M and N such that if w € L and |w| > M, thenw =w
o172 r

(with r =2 1 and W,V € 2*) and the following holds:

(1) relip| 1<p<N};

(2) 0< |v| =M

(3) V= vouvauv,
(a) 0< |u| < |v] and

UV (with s = 1 and Viyu € %) such that

(b) if Y is defined for all n= 0 by Yo = u and
Y1 = VoYnVi1YnVar* s Y Vs? then for all n= 0

WOan1an2’ ceY W € L.

14

Proof Intuitively, the theorem says that in each sufficiently large
string of L. one can find r nonoverlapping occurrences of a small sub-
string, such that r has only small prime factors and the substring can
be "pumped" (in a special way) without leaving the language. Note that
it follows from (3. a) that |yn+1| > ‘yn| for all n= 0.

By Theorem 3. 4 there exist a context-free grammar G = (N,Z,P,S)
and a tree homomorphism H such that L = yH(D), where D is the set of
derivation trees of G. Moreover, by L.emma 3. 3 and the construction
used in Theorem 3. 4 to show that RPLL ¢ yHOM(DCF), we may assume
that H is nondeleting and expanding, i.e. Hk(o) contains at least one
occurrence of each x. (1= i<k)and yH (o) # X413 consequently
]ka(o)I 2z 2. We will now apply H to the usual pumping lemma for con-
text-free languages.

Let M be the maximum of all [yH(t)] where t is any subtree of a tree
in D and t has no path on which there are more than two occurrences
of the same nonterminal. Consider a string w € L with |w| > M. Then
w = yH(t) for some tree t € D which has a path with a repetition of a
nonterminal, Consider a lowest pair of nodes (on the same path) with
the same label. Then (using x for x1) there are trees 4 € TA and
v,w € TA[{ x} 1, where A is the ranked alphabet of D, such that
t =W[v[u]], W and v contain exactly one occurrence of x, and the roots
of v[u] and U constitute the above pair of nodes. Thus |yH(V[T])| <M,

and W[V"[T]] € D where V°[G] =G and "V '[G] = I[T"[T]]. Let

yH(W) = WOXW XW o0 e o XW yH(v) = VXV (XVge e XV, yH(u) = u and
yH(V[U]) = v. Then v = yH(V)[yH(u)] = VUV quv,e . uv_and w =
yH(W)[yH(V[u])] = WOUW VW ou s W Since H is nondeleting, both r

and s are =z 1. LLet N be the number associated with H by Lemma 2. 1.

15

Then, by Lemma 2.1, r = tr‘nH(V[G], t) € Ofp | 0<p <N} and so
r€Mip | 1<p<N}. Clearly |v] <M and both u and v are nonempty.
From the fact that H is nondeleting and expanding it follows that
yH(V) # x and hence |u| < |v|. Finally yH(_/n[G]) - yH(_/)n[yH(G)] =y,
for all n = 0, and so yH(W[V"[G]]) = yH(v_G)[yn] = WOY WY Woe e ¥V W

is in L for all n= 0. This proves the theorem. d

We now show that RPL.L. cannot handle prime copying of infinite

languages.

Theorem 3.7 Let !_0 c c (L) where L is an infinite language. If
for each z € L. and k € N there exists $(z$)n € LO such that n has a
prime factor > k, then I_O¢ RPLL.

Proof Assume that Lo € RPLL and let M and N be the constants
of the intercalation theorem for L.O. Consider a string w = $(z$)m € I_0
with z € L, such that | z| 2 M2+M and m has a prime factor > max{N,Mz} .
We will use Theorem 3.6 to derive a contradiction. By Theorem 3. 6,
$(z$)™ = w vw. vw... .vw_ such that (1)-(3) hold. In particular

0" 1" 2

V = Vguv,uv,...uv_ with 0 < |ul < |v] =M. Since |v| =M and | z| > M,

v contains either zero or one $. Let w! = WY oW (Y oWoe e s YW, = Si;(z'$)ml
€ I_O for some z!' and m', where Yo = VQVVqVWVgpe .. VV_. Note that ‘v] <
]yzl < M2, We now consider two cases.

(_D_a;s_e_li #$(y2) = #$(v). Then m!' = m. Compute the difference in
length between w' and w: |w!| - |w| = P(]yzl -lv]) = m(|z'| - |z|).
Since [yzl -|v] = M2 and m has a prime factor larger than both M2
and N, it follows from the last equality that r has a prime factor larger

than N, which contradicts (1) of Theorem 3. 6.

16

. 2
#$(yz) > 2. Since #$(y2) =2, |z'] < \yzl < M“. Hence z'# z and so
#$(Wi)s 1 for alli, 0 i<r. If #$(wo) = #$(Wr‘) = 0, then Wo =w =)\
and so v = $, which contradicts (3.a) of Theorem 3.6. Hence either
#$(wo) =1 or :ﬁ:$(Wr‘) = 1. Assume that #$(wo) = 1 (and the other case
2

is symmeiric). Then W, begins with $. Since |z| 2 MM, |v| =M

and WV contains two occurrences of $, we have that |w
2

o| = |W0V| -

|v] = |z|+2 = M = M“+2. Consideration of w' then shows that |z'| =

2 2

| w z M™+1, which contradicts | z'| < M“,

ol =1
This proves the theorem.
The intuitively most obvious case is in fact the subcase of Case 1
that :H=$(v) = 0. In that situation it is clear that v has to occur the same
number of times, say k, in each occurrence of z in w, Hence r = km and

so r would have a large prime factor. The case #$(v) = 1 has been handled

above by length arguments. O

This theorem implies that cf(l_) is not in RPLL. for every infinite
language and every function f such that range(f) N IN contains numbers
with arbitrary large prime factors. Obvious examples of such functions
are f(n) = n, f(n) is the n-th prime, and f(n) is the n-th nonprime. A more
surprising example is f(n) = 2"_1: by Fermat'!s theorem p is a factor of
2P=1_1 for each prime p, see e.g. [2]. This example shows that RPLL
can handle only pure exponential copying (e.g. f(n) = Zn), but not ex-—
ponential copying in general. We now consider a large class of functions

having the !"prime property'", viz. all infinite polynomials.

17

Lemma 3.8 L.et f be a polynomial with integer coefficients. If the
set range(f) N N is infinite, then it contains numbers with arbitrary large
prime factors.

Proof For some k € Z and some polynomial g with integer coefficients,
f(n) =n « g(n) + k. If k =0, the result is clearly true. If k is positive, then
consider the polynomial f'(n) = n « g(kn) + 1. If range(f') NIN contains numbers
with arbitrary large prime factors, then so does range(f) N N (because
f(kn) = kng(kn) + k = k{ng(kn) + 1) =k « f'(n) and hence
{k+ fY(n) | fi(n) € N} < range(f) N IN). If k is negative, then the same
statement is true for fi(n) = n -+ g(-kn) = 1: f(~kn) = =k « f'(n).

From the above argument it follows that it suffices to prove the lemma
for polynomials of the form f(n) = n+ g(n) £ 1. Assume now that Pre--sPg
are all the prime factors of numbers in range(f) N IN. For any m € 2,
taken=m-+ p,« p, ***p_ and consider f(n) = n e« g(ny+ 1. Then, if f(n) €MN,
the assumption implies that there is some P; which divides both f(n) and
ne+ g(n). This is a contradiction. Note that, depending on the sign of the
leading coefficient of f, lim f(n) =+ « or lim f(n) = + . Hence taking m

n=tco N=r—co
sufficiently large (positive or negative, respectively) will result in a positive

f(n). O

This shows that RPLL cannot handle infinite polynomial copying.

Corollary 3.9 Let L be an infinite language. If p is a polynomial

with integer coefficients such that range(p) N N is infinite, then
Cp(l_)$ RPLL. In particular c4(L) ¢ RPLL.

Proof Direct from Theorem 3.7 and LLemma 3. 8. 0O

18

2ntl | m=1, n= 0} is not in RPLL.

Thus e.g. the language {$(am$)
From this it follows that the properties of declarations in a block~
structured Algol-like language cannot be expressed in RPLL. Suppose

that such a language is in RPLL. Then the intersection of this language

with the regular language begin integer a*(; a* :=a¥* + 1)* end is also

in RPLL. But this is the language {begin integer am(; ami=am+ 1)n end|

m=> 1, n> 0} because all identifiers have to be declared. Now application
of the homomorphism h with h(begin) =X, h(integer) = $, h(;) = $, h(:=) = §,
h(+) =X, h(1) =X and h(end) = $ yields the language {$(am$)2n+1 l
m=1, nz0} = Cp(a+) with p(n) = 2n+1. By Corollary 3.9 this language
is not in RPLL. This is a contradiction.

We finally note that the infinity requirement on L. in Corollary 3.9

is essential: if L is finite then c 4 (L) is regular and hence in RPLL.

4. Polynomial copying in the tree transducer hierarchy

In this section and the next the reader is assumed to be familiar
with the notation and terminology of the first three sections of [5]. With
respect to the previous sections we wish to remark the following. In [5]
there is a special symbol e of rank 0 with yield(e) =)X; although we do not
have such a symbol here, addition of it would make no difference with respect
to all classes of languages discussed. We will use Cexp to denote c_ with

f
f(n) = 2", The operations Cos Cx and Cexp are slightly different in [5], but
that has no influence on our results. A tree homomorphism is the same as a
one-state deterministic top~down tree transducer. The translation-number

of a subtree (with respect to some tree homomorphism) is the length of its

19

derivation-sequence. The intercalation theorem of Section 3 may be
viewed as the one-state case of the intercalation theorem for deter-—
ministic top~down tree transducers of [11] as expressed in Theorem
3.2.4 of [6], with the additional statement concerning the prime factors
of the number of occurrences of the substring to be pumped (using a
finite state relabeling it is easy to see that yDT(])(REC) = yHOM(REC),
in the notation of [6]). We recall that a tree trio is a class of tree
languages closed under finite state relabeling (i.e. finite tree automata
which relabel the nodes of the tree) and regular insertion (i.e. the in-

sertion of a regular monadic language above each node of the tree).

In this section we investigate the class yHOM(K) for classes K
of input tree languages other than REC. For a tree trio K, yHOM(K)
is closed under finite and pure exponential copying (lLemma 2.6 of [5]),
Our main result in this section is that if K = T(K!) for some K! and
YDT(K') & yT(K!), then yHOM(K) is not closed under prime copying,
and hence not closed under infinite polynomial copying, (whereas
yDT(K) is). This holds in particular for yHOM(Tn(REC)) = an-H(REC),
Where B is the class of bottom-up tree transductions [1, 3], and con-
sequently bottom-up tree transducers cannot do infinite polynomial
copying (note that the case n = 0 was treated in Section 3).

The main result of this section is stated in the next theorem.

20

Theorem 4.1 et K be a tree trio and L a language. Let

L_O c c y(L) have the property that for each w € LL and k € IN there exists
$(ws$)" e Lo such that n has a prime factor > k. If Lo € yYHOM(T(K)),
then L € yDT(K).

Proof The proof is similar to that of Theorem 3.9 of [5].
LetlL = yH(M(L_I)) with L, € K, M€ T and H € HOM. We will construct
M! € T such that yH(M:m([_l)) contains some $(w$)" for each w € L.
Recall that "un" means that only uniform derivations are considered
(see the definition of ""uniform!, just before Lemma 3.5 of [5]). By
Lemma 3.5 of [5] and the closure of DT(K) under HOM [4] this implies
that yH(M:m(l_I)) € yDT(K) and hence, since yDT(K) is closed under deter—
ministic gsm mappings [4] , L € yDT(K) which completes the proof.

As in the proofs of Theorems 3.9 and 3. 16 of [5], M! is equivalent
to M but keeps the following information in its finite control.When arriving
at the root of an input subtree s in state q, M! will predict whether, for
the tree's! such that Q(S)f\% s', yH(s') contains 0, 1 or = 2 occurrences of $.
Since this property of s! is recognizable, M! can do this by simulating a
top~down finite tree automaton on its output tree (L.emma 2.2 of [5]). It
is left to the reader to provide the details. The states of M! are of the
form <q,d> where g is a state of Mand d =0, 1 or 2 with the above
meaning. Thus Lo = yI—I(M'(l_1)). We now want to show that yH(M:m(!_1))

contains some $(w$)"” for each w € L.

21

Consider $(w$)" in Lo such that n has a prime factor larger
than N, where N is the number associated with H by Lemma 2. 1.
Let qO(tl) ; ty be a derivation in M! such that yH(tz) = $(w$)n. We
want to change this derivation into a uniform derivation qo(ti) —: t'2

such that yH(t)) = $(W$)n1 for some Ny L.et s be an arbitrary subtree

h)
of 1:1 and let <q,d> occur in the state-sequence of s. L_et us try to
make the derivation uniform (at the root of s) with respect to this state
<qg,d> (i.e. we want all rules starting with <qg,d> in the rule-sequence
of s to have the same right-hand side). Let <q,d>(s) ; s, and
<q,d>(s) 5) s, occur in the derivation-sequence of s, We want to
replace one of these derivations by the other. Note that if either

yH(s1) or yH(sz) does not occur in yH(tZ), i.e. tr‘nH(sl, tz) =0 or

trn = 0, then this replacement can easily be done. Assuming

Hi{sgsto)

that this is not so, we consider three cases.

of yH(si) in $(w.‘]§)n can be replaced by yH(sz) without leaving the language
Lo. Assume that yH(s1) # yH(sz). Then yH(Si) has te occur the same .
number of times, say k, in each occurrence of w. Hence yH(s,) occurs

kn times in yH(tz). By Lemma 2.1, kn € IT{p | 0<p<N}. This con-
tradicts the fact that n has a prime factor > N. Hence yH(s1) = yH(sz).
Consequently the derivation <q,d>(s) :; s, can be replaced by

*
<q,d>(s) = s, without changing yH(tz) = $(ws$)".

22

Case 2:d =1, i.e. yH(s1) and yH(sz) contain exactly one occurrence of $.
Replacement of yH(s1) by yH(sz) results in a string with the same number
of occurrences of $ but a possibly different w. Suppose that there is an
occurrence of w which does not overlap with the occurrences of
yH(SI). Then the resulting string is again $(W$)n, and hence yH(s1) =
yH(sz). Similarly for yH(sz). Now suppose that yH(sl) overlaps with

all occurrences of w, and similarly for yH(sz). Then yH(s1) contains
the first $ in $(w$)" and yH(sz) the second (or vice versa). Thus

yH(s1) € $T * (where T is the alphabet of L) and so also yH(Sz) € $T *.
But then clearly yH('s1) = yH(sz). Hence in this case we also have
yH(sl) = yH(sz) and <q,d>(s)—j-§ s, can be replaced by <q,d>(s):> s

2
without changing yH(tz) = $(w$)".

rences of $. Then yH(sz) contains an occurrence of w and hence
replacement of yH(s1) by yH(sz) in $(w$)"” yields a string $(vv_$)n1 for

some n,.

We now know how to make the derivation uniform (at a node) with
respect to one state., L.et us try to make the whole derivation uniform.
We cannot do this by making the derivation uniform at the root and then
at its sons, etcetera (as discussed in the proof of Theorem 3.9 of [5]),
because in Case 3 we change n, whereas Case 1 depends on the fact that n
has a large prime factor. Instead we proceed as follows, First we make
the derivation uniform with respect to all states <q,d> withd =0 or 1
by processing all nodes of t1 in the usual top—-down fashion. This does
not change $(w$)n, cf. Cases 1 and 2. Then we make the resulting

derivation uniform with respect to all states <q, 2>, also in the usual

top-down fashion (note that Case 3 does not depend on n having a large

23.

prime factor). This changes $(w$)" into some $(ws)™. Although this
process also changes rule-sequences of nodes below the one processed,
it is easy to see that such a change to a rule-sequence does not intro-
duce new rules, it only replaces certain subderivations by others.
Hence the final derivation is still uniform with respect to states <q, 0>

and <q, 1>, and consequently it is uniform. O

Corollary 4.2 Let K be a tree trio such that yDT(K) ¢ yT(K).

If p is a polynomial with integer coefficients such that range(p) A IN
is infinite, then yHOM(T(K)) is not closed under cp (in particular, not
under c).

Proof LetlL € yT(K) - yDT(K). Clearly L € yHOM(T(K)). By

Lemma 3.8, L, = cp(L_) satisfies the conditions of Theorem 4. 1. Hence,

0
by Theorem 4.1, cp(|_)¢ yHOM(T(K)). 0

By Theorems 3. 12 and 3. 14 of [5] this corollary holds in particular

for yHOM(T(REC)) = yB8"

REC), n= 1, and hence (including the re-
sults of Section 3) for n= 1 an(REC) is not closed under infinite poly-
nomial copying.

We now show that deterministic top-down tree transducers can do
polynomial copying. Consequently infinite polynomial copying distinguishes
multi-state from one-state (deterministic) top-down tree transducers.

We need a lemma. Let EDTOL denote yDT(REG), where REG is

viewed as a class of monadic iree languages, cf. Section 4 of [5]

Lemma 4.3 If p is a polynomial with integer coefficients, then

{ap(”) | p(n) = 1} € EDTOL.

24

Proof It is shown in [17] that any polynomial f(n) (with integer
coefficients) which is positive and nondecreasing for n= 0, is the
growth function of some DOL. system (see Section 15.3 of [9]), and
hence {af(n) ! n= 0} € EDTOL. It is easy to see that, for an arbi-
trary polynomial p with integer coefficients, | ap(n) | p(n) = 1} is the
union of (at most) two such sets and a finite set, and consequently it

is in EDTOL., O

Theorem 4.4 | et K be a tree trio. If p is a polynomial with in-

teger coefficients, then yDT(K) is closed under cp.

Proof LetlL = yM(L_1) with l_1 € Kand M€ DT. We have to show
that cp(l_) € yDT(K). It is easy to see, using Lemma 4. 3, that
{ $(a$)p(n) | p(n) =1 } € EDTOL and hence it is yN(Lz) for some re-
gular monadic tree language L.2 and some N € DT. We may assume that
20 n 21 = @ for the alphabet T of I_2 and that the alphabets of I_l and
L_2 are disjoint. Let I_3 be the result of inserting the regular language

l_z above the roots of the trees of L et M! be the deterministic

1
top-down tree transducer which contains the rules of M, and also con-
tains the rules of N modified as follows: left-hand sides q{o) are changed
into q(c(x1)); each occurrence of a symbol a in any right-hand side is
changed into qO(x1), where dg is the initial state of M. Finally M! has

all rules q,(o(x,)) » q.(x,) for symbols ¢ in the alphabet of L,. The
0 1 01

9
initial state of M! is the one of N.

Then yMI(L_3) = cp(l_). Intuitively, a monadic tree vx, withv € L,

is translated by M! into a tree with yield .$(qo(><l)$)p(n) for some n; and

hence a tree v(t) with v € L, andt € L, is translated into $(w$)p(n),

where w = yM(t). O

25

We conclude this section by summarizing the results on infinite
polynomial copying for the tree transducer hierarchy, cf. Theorems

3.12 and 3.14 of [5].

Corollary 4.5 Let p be a polynomial with integer coefficients

such that range(p) N N is infinite. Let K, denote Tn(KO) for some tree
trio KO, n=z=1t.
IfL€yK - yDT(Kn_1), then cp(l_) € yDT(K), but cp(l_‘)¢ yHOM(K)
and cp(l_) ¢ yDch(Kn).

Proof Direct from Theorem 4 4, the proof of Corollary 4, 2,
and Theorem 3.9 of [5]. O

Note that, by Theorem 3.12 of [5], languages in yKn - yDT(Kn)

-1
exist if yDT, (K,) & yT(Ky), in particular if K, = REC.
Corollary 4.5 also holds if cp is replaced by Cf where f(n) is

the n-th nonprime, or g where g(n) = 271 (cf. the comments following

Theorem 3.7).

5. Coloured copying in the tree transducer hierarchy

In this section we want to determine the place of the (hondeter-
ministic) one-state top-down tree transducers in the tree transducer
hierarchy, and to show that they form a proper hierarchy themselves.
For related work see section 4 of [20]. Let NHOM (for !"nondeterministic
tree homomorphisms!') denote the class of nondeterministic one-state
top-down tree transducers. These transducers generalize the finite

substitutions on strings.

26

Throughout this section let Ko be a tree trio such that
yDTfC(KO) o yT(KO), for instance K, = REC. Let K_ denote Tn(Ko)
and let L be a language in yT(Kn_1) - yDT(Kn-—I)’ cf. Theorem 3.12
of [5]; recall that we may assume that Lo = r‘ub(cexp(l_n)) or also

that L _,, = rub(c, (I_n)). We want to show the correctness of the
following diagram for n = 1 (for n = 0 and KO = REC correctnhess was

established in [6]):

The correctness of this diagram with yNHOM(Kn) omitted was shown in
Theorem 3.12 of [5]. It remains to show that yNHOM(K) - yDT(K) # @ and

yDT,. (K) = yNHOM(Kn")% @. These facts will be stated in Corolla-

fc'' 'n
ries 5.2 and 5. 5 respectively.

We need a technical lemma on closure properties of yHOM(K)
and yNHOM(K) for certain classes K. Recall the notion of regular in-
sertion from Section 2.3 of [5]. We say that K is closed under regular
insertion "at roots!" if a regular monadic tree language can be inserted
above the root of a tree (and nothing is inserted at nodes other than the

root). We say that K is closed under insertion of #* Ubelow leaves",

if each leaf o (of a tree in some tree language in K) may be replaced

27

by the monadic tree language o#%* (where # is not in the alphabet of the
language). It is straightforward to show that every tree trio is closed

under regular insertion at roots and insertion of #¥* below leaves.

Lemma 5.1 Let K be a class of tree languages closed under
regular insertion at roots and insertion of #* below leaves.

(1) iIf L € yHOM(K), then Coxpll) € YHOM(K) and c, (L) € yNHOM(K).
(2) yNHOM(K) is closed under rub.

Proof The proof of (1) is similar to that of Lemma 2.6 of [5].
Let L = yH(L,) with H € HOM and L; € K. Insert ¢#* at the roots of
the input trees. Extend H by H, (¢) = 4:($x1 $) and H, (#) = #(xl $><l).

T hen yH($ #*)Ll)) = Cexp(yH(L‘l)= cexp(L). Define a top-down tree
transducer M with one state q and the following rules: q(cl:(xl)) -

4:($q(><1)$), C](‘*’F(x1)) = 44*'»(<:|(><1)$<:1(><1), q(#(x])) = q(x1), and (to simulate
H) all rules q(cr(x1 - xk)) -+ Hk(o)[q(x1)y enny q(xk')] . Then yM(¢#% (L=
ey (YHIL) = ¢, (L),

To prove that yYNHOM(K) is closed under rub, let L = yM(L_I)
with M € NHOM and L_] € K. Let L_2 be the result of inserting #* below
leaves of trees in I_1 . We now define M! € NHOM such that M! simulates
M and uses the tails of #!s to produce arbitrary sequences of $'s in
the output of M. M! has the following rules. First it has all rules of M.
Secondly, if glg) +t is a rule of M (g has rank 0), then q(or(x1) =t is
a rule of M! where t! is the result of replacing in t each leaf § by
qE(q(x1) (‘Sq(x1) or ¢ (b q(x1)). Finally M! has the rules q(3# (><1)) »
#($q(x1)), al3# (x1)) - q(xl) and q(#) -+ $. Then yM‘(L_z) = r‘ub(yM(l_1)) =

rub(L). O

28

Note that, by this lemma, NHOM has some infinite polynomial

copying power, viz. c, on input languages from yHOM(K).

Corollary 5.2 yNHOM(K) - yDT(K) # &.

Proof Since L, €vK_ - yDT(Kn_]) and I_n 1= rub(c (L_n)),

+
Lemma 5.1 implies that L g € yNHOM(Kn). Hence L4 € yNHOM(Kn) -

exp

yDT(Kn). The same holds in case Loey = r*ub(c*(l_n)). O

+1

We now show that the one-state top-down tree transducers form a
proper hierarchy of classes of tree transformation languages. In [20:[it

is shown that {NHOM™(REC)} is a proper hierarchy.

Theorem 5. 3 {yNHOMn(REC)} is a proper hierarchy.

n=0

Proof Since yNHOM(REC) < yTn(REC), it suffices to prove that
L € yNHOMn(REC), for n =2 0, where we can take Lo~ fa} and Ln+1 =

r‘ub(cexp(Ln)), cf. the proofs of Theorems 3.12 and 3.14 in [5]. This
follows from Lemma 5.1, if NHOM"(REC) satisfies the closure properties
mentioned there. For REC this is obvious. Moreover, NHOM preserves
these closure properties: for regular insertion at roots this is easy to
prove and for insertion of #* below leaves the proof is similar to that
of Lemma 5.1 (2).

We note here that the closure properties in Lemma 5.1 were

chosen such that they would be preserved under NHOM (preservation

of regular insertion in general is not clear). O

The incomparability of yHOM(Kn) with yDT(Kn) was proved in
[5] as a consequence of the fact that yHOM(K,,) is not closed under rub.

Thus, by Lemma 5.1 (2), the same argument cannot be used to show that

29

yDT (K) = yNHOM(K) # @. To prove this we will show that yNHOM(K)

is hot closed under coloured copying (see Section 2. 3).
A "relabeling" is a one-state top~down tree transducer such that
each rule has the form q(o(x1 ce. xk)) -+ 'r(q(xi). q(xk‘)) where T is an

output symbol.

Theorem 5.4 Let K be a class of tree languages closed under

relabeling and let L. be a language. If Ez(l_) € yNHOM(T(K)), then
EZ(L_) € yHOM(DT(K)). In particular, if c,{L) € yYNHOM(NHOM(K)), then
c,(L) € yHOM(K).

Proof Clearly, if K is closed under relabeling, then so are
T(K) and NHOM(K).

Let L € ¥ and c,(L) € yNHOM(T(K)). It is easy to see that
Lemma 3.5 of [5] also holds for classes closed under relabeling and
that the construction preserves the number of states. Hence (the proof
of) Theorem 3.6 of [5], which also applies to EZ’ yields that c_:z(l_) €
yHOM(T(K)). Let EZ(L_) = yH(M(L)) with L, €K, M=(Q, T, 4 g R) in
T and H € HOM. By Lemma 3.5 of [5] it suffices to show that cy(l) =
yH(MLm(L_1 })). Consider a derivation qo(t)i t! of M such that yiel d{H(t'))
= w$w with w € L., and let s be a subtree of t with derivation-sequence
<d (s)é Syreees qn(s)g S,>- Suppose that q, = g with i # j. Then all
occurrences of yH(Si) in w$w may be replaced by yH(sj), and vice versa
without leaving the language EZ(L). Now if yH(si) € ¥, then yH(sj) must
also be in Z* and so yH(si‘) = yH(sj). Similarly for the case that
yH(si) €T*, If yH(si) contains $, then yH(sj) cannot occur in yH(t!).

In all cases the derivation qJ.(s‘) 5 s; may be replaced by qi(S) Y s.

without changing yH(t!) = w$w. Hence qo(t)g t! can be changed into a

3

30

uniform derivation qo(t)g t" such that yH(t") = w$w, in the way indi-
cated in the proof of Theorem 3.6 of [5].

For the second statement of the theorem we note that HOM is

closed under composition. |

Corollary 5.5 yDT, (K_) - yNHOM(K) # @.

Proof Let L_n be in yKn - yDT(Kn_'). Clearly c2(L_n) € yDch(Kn)'
But c,(L) § yYNHOM(K). Indeed, c, (L)€ yNHOM(T(K__;)) implies
Ez(l_7 € yHOM(DT(K _;)) = yDT(K__;), by Theorem 5.4 and closure of
DT(Kn_1) under HOM [4]. But then Ln € yDT(Kn_I) because this class

is obviously closed under (string) homomorphisms. J

This shows the correctness of the diagram.

The proof of Corollary 5.5 shows that yHOM(Kn) is not closed
under coloured copying. Since it is easy to see that yDT(Kn) is closed
under coloured copying, this property distinguishes again the multi-
state from the one-state (deterministic) top-down tree transducers.

We now show how to obtain lanhguages outside the one-state hierarchy

{ yNHOM(REC)} .

- - : n
Corollary 5.6 If ¢,(L) ¢ RPLL, then S,(L) ¢ Ln)yNHOM (REC).
Proof Assume that c—:z(l_) € UyNHOMn(REC). Iterated application
n
of Theorem 5. 4 (in particular its last statement) yields that EZ(I_) €

yHOM(REC), i.e. EZ(I_) € RPLL by Corollary 3.5. O

It was shown in Theorem 6 of [16] that if L is not regular then

coll) § RPLL.

31

Corollary 5.7 yDT

n
s(REC) - Lﬁl yNHOM (REC) # @.
Proof It follows from Theorem 6 of [16] that L = {ambm$cmdm]
m= 1} ¢ RPLL. Hence, by Corollary 5.6, L ¢ UyNHOMn(REC).
n

Clearly LL € yDT,. (REC).

fc

This corollary and Theorem 5.3 together show that yNHOMn(REC)
is a "small hierarchy' in yTn(REC), in the sense that languages which
can be used to prove properness of %yTn(REC)} can already be found in
{yNHOMn(REC)} , and the smallest class of {yTn(REC)} already contains

an element not in U yNHOM(REC).
n

32

References

[1]

[2]

[3]

[4]

(5]

[6]

[7]

[&]

[9]

B.S. Baker: Tree transductions and families of tree languages;
Ph.D. Thesis, Harvard University, Report TR-9-73,
1973 (see also Proc. 5th ACM Symp. on Theory of Computing,
pp. 200-206).

L.. E. Dickson: "Introduction to the theory of numbers!'; Dover
Publications, New York, 1957,

J. Engelfriet: Bottom-up and top-down tree transformations -
a comparison; Math. Syst. Th. 9 (1 975), 198-231.

J. Engelfriet: Top-down tree transducers with regular look-
ahead; Math. Syst. Th. 10 (1977), 289-303,.

J. Engelfriet: Three hierarchies of transducers; to appear

in Math. Syst. Theory; see also [7].

J. Engelfriet, G. Rozenberg, G. Slutzki: Tree transducers,

L. systems, and two-way machines; JCSS 20 (1980), 150-202.

J. Engelfriet, G. Rozenberg, G. Slutzki: Tree transducers,
L systems and two-way machines; Proc. 10th Ann. ACM
Symp. on Theory of Computing, San Diego, California,
May 1978, pp. 66-74.

J. Engelfriet, S. Skyum: Copying theorems; Inf. Proc. Letters 4
(1976), 157-161.

G.T. Herman, G. Rozenberg: "Developmental Systems and
Languages", North-Holland, Amsterdam, 1975.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

33

J. E. Hopcroft, J.D. Ullman: "Formal languages and their relation

to automata''; Addison-Wesley, Reading, Mass., 1969.

C.R. Perrault: Intercalation lemmas for tree transducer
languages; JCSS 13 (1976), 246-277.

L. Petrone: Syntax directed mappings of contexi-free languages;
IEEE Conf. Record of 9th Ann. Symp. on Switching and
Automata Theory, 1968, pp. 160-175.

G.F. Rose: An extension of AL GOL -like languages; CACM 7
(1964), 52-61.

A. Salomaa: "Formal LLanguages', Academic Press, New York,
1973.

S. Skyum: On extensions of ALGOL -like languages; Inf. and
Control 26 (1974), 82-97.

S. Skyum: Decomposition theorems for various kinds of languages
parallel in nature; SIAM J. Comp. 5 (1976), 284-296 .

A.L. Szilard: Growth functions of Lindenmayer systems,
Technical Report No. 4, University of Western Ontario,
1971.

K. Taniguchi, T. Kasami: Macro expansions of contexi-free
languages; Electronics and Communications in Japan,
Vol. 53-C, No. 7, 1970, pp. 120-127.

J. W. Thatcher: Tree automata: an informal survey; in "Currents
in the Theory of Computing' (ed. A.V. Aho), Prentice-Hall,
1973.

B.S. Baker: Composition of top-down and bottom-up tree

transductions; Inf. and Control 41(1979), 186-213.

