ISSN 0105-8517

ATTRIBUTE GRAMMARS
AND

MATHEMATICAL SEMANTICS

by

Brian H. Mayoh

DAIMI PB-20
August 1978

Computer Science Department [T
AARHUS UNIVERSITY
Ny Munkegade ~ DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55

THE [|
| |
=

Attribute Grammars and Mathematical Semantics

Brian H., Mayoh
Department of Computer Science
University of Aarhus

Aarhus, Denmark

Keyword: mathematical semantics, attribute grammars, compiler

properties.

Abstract

Attribute grammars and mathematical semantics are rival language
definition methods. We show that any attribute grammar G has a refor-
mulation MS(G) within mathematical semantics. Most attribute grammars
have properties that discipline the sets of equations the grammar gives to
derivation trees. We list six such properties, and show that for a
grammar G with one of these properties both MS(G) and the compiler
for G can be simplified. Because these compiler friendly properties are
of independent interest, the paper is written in such a way that the first

and last sections do not depend on the other sections.,

Keywords: mathematical semantics, attribute grammars, compiler pro-

perties.

1. Introduction

Attribute grammars [9] give a systematic way of expressing such
restrictions on a programming language as:
variables must be declared before use, the types of the two sides of
an assignment statement must agree. In this paper we show that any
attribute grammar can be given an equivalent and elegant formulation
within the mathematical semantics of D. Scott and C. Strachey, [16, 1'7].
This reformulation is of interest because of the widespread acceptance of
the advantages of mathematical semantics for the description of real
programming languages [1, 2, 5, 12; 13; 18, 19];.

Before looking at the details of the reformulation let us look at

Knuth's simple example of an attribute grammar BIN for binary notation:

B 4+ 0 v[B] = 0

B -+ 1 viB] = ZC[B]

L » B viL] = v[B], ¢[B] =c[L], I[L] =1

Ly» LB, vitgl= viL 1+viB,], c[B,], c[L,]
cllgl= clgl+1, 1L d=1[L T+1

N » L v[N] = v[L], ¢[L]=0

N L,-L, VINT = v[L,] +V[L2J, c[,]l=o0,

c[!_2]= —I[L2]

As explained in [9, p. 131] one can deduce from the grammar that
the number 13. 25 Is the meaning of the expression 1101.'01, because
the equations given by the grammar can be ordered suitably.. This
difficulty with the ordering of equations does not arise when the

grammar is reformulated within mathematical semantics:

bvol(c) = 0

bv[1]{c) = 2°

v[B{c) = bv[B](c) npej] = 1
IviLB](c) = Iv[L [{c+1) +bv[B]c HLe]=nfL] +1
nv[L] = Iv[L](0)

nv[L_1.I_2:|= Iv[L,](0) + !v[l_z](cz) where ¢, = -li[L,]

Here we have the definition of four functions : bv for the synthesized atiri-
bute v of the symbol B, Iv for the synthesized attribute v of the symbol L,

Il for the synthesized atiribute | of the symbol L,and nv for the synthesized
attribute v of the symbol N, The first two functions have an argument in

round brackets for an inherited attribute. All four functions have an argu-
ment in square bracketis for derivation trees. In all our examples we will have
an unambiguous grammar so we cah use strings instead of trees for square
bracket arguments. The deduction that the number 13. 25 is the meaning of

the string 1101. 01 now becomes :

nv[1101.01] Iv[1101]0 + Iv[01]cz where ¢, = =11[01]

2

Iv[1101]0 + Iv[01](~2)

(tv[110]1 + 1) + (Iv[0](=1) + 0. 25)

(12 + 1) +(0 +0.25) = 13.25

This example is too small to justify the claim - the reformulation of an

attribute grammar within mathematical semantics is easier to understand
because it only uses functions, whereas an attribute grammar uses attri-

butes, functions and equations. The example in section 4 better illustrates

the advantages of a reformulation MS(G) within mathematical semantics of

an attribute grammar G. There is always an MS(G), equivalent to G (theorem 1) ;
if G is well defined, then MS(G) does not use recursion (theorem 2). Some
attribute grammars have properties, that discipline the set of equations

the grammar gives to derivation trees. If a grammar G has one of these

properties then the following table shows that both MS(G) and the com-

piler for G can be simplified.

Property Compiler Simplification MS(G) Simplification
unordered subtrees in arbitrary order as compiler
ordered subtrees from left to right as compiler
reordered subtrees in fixed order as compiler
tangled one pass no splitting
benign attributes in fixed order determinate
well defined - no recursion

Because these compiler friendly properties are of independent interest
this paper has been written in such a way that those unconcerned with
mathematical semantics can omit all but the last section, and scan the

earlier sections when they meet undefined notation,

2. Reformulation of an arbitrary attribute grammar.

An attribute structure consists of:

(1) disjoint sets G, A, A,
(2) for each X in G, subsets X C A, and X cA H

(3) for each a in AU A, a set Ve .

The elements of G are called symbols, the elements of A are called

synthesized attributes, and the elements of A are called inherited attributes.

For each X in G we define

SYNe [X], the Cartesian product of V2 for a in X

INHO[X], the Cartesian product of V2 for a in X

By convention SYNO° [X] (INH° [X]) has precisely one element if X(X) is empty.

An attribute grammar consists of:

(1) a context free grammar (3, N, S,P) ; where the start symbol

S does not occur on the right side of a production;

(2) an attribute structure such thatG =3 y h,

S is empty, and X is empty for X in J;

?

3 for ever roduction X -+ X eee X
(3) yp b, 0 o, 1 o

1 in P we have a

2

partial function : L% + (R° + RO)
p p P P

0 O 0]
L INH (><p o) X SYN°(X -1

H

X SYNC° (X X oo X SYNO(X
(X,) X SYN® (X

p,i)
INH° (X INHO (X
) x (b 1) % (b

? ?

-1

RO SYNP (X X v X INHC (X
P (P, 0) ,2) x (P,

Here and later we avoid a sea of subscripts by using a convention due to B.

Rosen in which Xp —1? rather than X T is the last symbol of production
?

P,
P
p. In practice we usually have a function q% : L;oo -» R(p)) such that
’r‘;’)(l)(r) = q‘;)(l) for all | in Lg and r in ‘R‘;, and we say that an attribute

grammar is in normal form if we have such a function for each production.

Example

For the attribute grammar BIN we have :

B = {v} _B-={c} L= {v,1} E={C} N={v} N={]}

SYNC(B) = Vi’/ SYNC (L) = Vi’/ X V‘I’ SYN°(N) = Vi’/
INH (B) = Ve INHO(L) = w2 INHO(N) = {1,
Syntactic rule Semantic rule
B+ 0 O 1 VO 4 (VO \P)
a c v v
o (c[BINv[B]) =0
B ~» 1 f;:vga(vfﬁvf/)

® (c[BDW[B]) = 2¢LB]

1
 (c[L], v[BIVIL]D, I[1], c[B]) = (v[B], 1, ¢[L])

L » B OO0 VO X VO 4 (V0 X V9 XVO 29 W X\ x\W°)
c c c \Y c \% | C

(O (¢] (¢] (o] (0] o] (o] (0]
Lo -+ L1Bz fd : VC ><VV ><vI ><VV —'(VV ><\/|o ch ><Vc -+ v\‘/’ ><\/lO ><VCO>< Vg)
fO
d (C[LOJ,V[L—l :I’ l[‘—1],b[BZJ)(v[LO],|[|_0],C[L1 :|7C[Bz])
= (v[l_lj + V[sz, L, l+1, c[1_0] +1, c[l_O])
N - L O VO X VO o (VO x VO 4 VO x\/O)
e \% | \V, c \V, c

£ L], L] WINT, e[l = L], o)

. {O I Q Q (0] (0] O (o] O (o} 6] O
N-»I_1 1_2 ff’VvXVI ><VV><\/I —»(vv><vc><vC ~»VV><VC ><VC)

2 (v,], 1'[1_1 Lvit, I [L, Dv[NT e[y Ty e[t , 1)

= (V[L1J + V[‘—z]’ 0, "I[L-zj)

Note that our reformulation of BIN borrows notation like v[B] for attribute
values from the original formulation, and it shows that the attribute grammar
is in normal form. The differences between our definition of attribute gram-
mar and that in [9] are minor and inessential, but they pave the way to the
lattices and functions of mathematical semantics. For each symbol X in

N U 3 the productions of the grammar give DOM?(X), the set of derivation

t rees that can be generated from X. As described in [16, 17] one can convert
the sets Vg, SYNC(X), INHO(X) DOM(X) by adding a bottom element | and

a top element T, to lattices V_, SYN(X), INH(X), DOM(X), and one can form

a lattice of continuous functions
CONT(X) = DCOM(X) + (INH(X) » SYN(X)).
A reformulation of a grammar in mathematical semantics will define precisely
one element of CONT(S).
Convention
When specifying a function x over DOM(X), we may do so by a set of equations
x[X

...x = ’ o 0 8
P, 1 p,-1]

with one equation for each production p with Xp 0" X.
?

We use x[xp 10 X,p __1] as a convenient way of writing: the value of x on
? H

a derivation tree of the form

/ "
J e J
P, 1 P, 2 P, =1
where J cee I are derivation trees with X cee X at their
p, 1 p, -1 p, 1 p, =1

?
roots. Because DOM(X) is the lattice sum of DOM(Xp 1) X eeo X DOM(Xp 1)
B ’

for p such that Xp 0" X, our sets of equations do determine functions over

?
DOM(X). The equation pairs for bv, H, lv, nv in section 1 determine
functions
bv : DOM(B) + V_ 4+ V
c v
1 : DOM(L) »'v'
v : DOM(L) - Vo
nv : DOM(N) + vV,

When specifying these functions we used the convention: parentheses can
be omitted if this does not lead to confusion. This convention usually allows

us to omit parentheses around empty sets of arguments,

Definition 1 Let G=(3,n, s, P) be an attribute grammar.

An assignment to a derivation tree 11 of G is a pair of functions (sy, in) from

nodes of 7 to attribute values such that:

sy(u) € SYN(XU) & in(u) ¢ lNH(xu)
where Xu is the symbol at node u. The assignment is said to be complete
if for all nodes u we have

sy(u) € SYNO(xu) & in (u) € INHO(xu).
For every complete assignment (sy, in) we can define Next (sy, in) as the
assignment (sy!, in') given by

! int int =
(%) (sy (uo), in (u1) ees In (u_1))

= f% (in(uo), sy(u,). .. sy(u_1)) (sy(ug), in(ui). .. in(u

for each application Ug = Uq eee U_, of the production

X X eee X in the tree .
p,O—9 P, 1 p, -1

The assignment (sy, in) fits m if (sy, in) = Next(sy, in). The grammar G

assigns wton if w = sy (root of) for every complete assignment

(sy, in) that fits m.

Example The derivation tree

L L
l-/ \B 1_/ \\B
N L |
II—/ \B O O
S
for the gr‘amm;r* BIN fits the assignment
sy = 13. 2 in= 0
/1N RN
13,4 » ,25,2 /0\ . /—-2
12, 3/ \ 0/1 \ 25 1 0 -1 \—2
/ O\, g /N
12,2 2 -1 ’

—_—— W

Def. 1 Cid.

An assignment T to a derivation tree T gives a value T{u,q) to each

attribute @ of each node u. We say 1 has a computétibn sequence if

there is a sequence (u1;a1) (un,cxn) such that

(1) each u; is a node of ,
(2) each Otj is an attribute of the symbol at the node uj 3

(3) the pair (u,q) occurs in the sequence for each attribute a of each

node u ;

(4) if 1 and 7! are compliete assginments such that

"r(u1,oc1) = T'(u1,oc1) T(u._1,0L 1) = rr'(uj__1,ogj_1)

j_

then Next(T)(uJ.,OLj) = Next(r') (u s)£ | .

Lemma If the derivation tree 7 has a computation sequence, then there

is precisely one complete assignment that fits m.

Proof We define an assignment T by :

if 7is any complete assignment such that

Tug,a) =71 (u,,0,) ... T(uj_1,aj_1) = Tw(uj_1,o¢j_1)

then TW(uJ.,OLJ.) = Next(T)(uj,OLj).

A simple induction argument using requirement (4) in the definition

of computation sequence gives

T (u OL) # | does not depend on the choice of T
This implies that T is a complete assignment.

If we take 1, as T in the definition of 17 (u.,ocj), we get

TW(UJ,OLJ) = Next(’r (uJ oc) so the complete assignment 1, fits

the tree 1. Suppose T is a complete assignment that fits m. If

we have 7 Uy, @) = Tlugoq) een T lug gy)= m(uy_ghag)
requirement (4) gives Next(TW)(uj,Otj) = Next(’f1)(uj,onj) and

= T = = a
TW(uj,onj) 1(uj,onj) follows from r Next(TW)&* g Next(T1)

We infer that Tw = T

Theorem 1 For any attribute grammar G with start symbol S we can
define a function s in CONT(S) such that for any derivation tree 1

we have
(a) ifs[m]=wEe€SYNO(s), then G assigns w toT ;

(b) if mhas a computation sequence and G assigns w to 11,

then s[m] = w.

Proof

(a) If we extend the functions f;’) to continuous functions

fp : L_p - (Rp »Rp), and we use fp instead of fg in the equations (*)
in the definition, our function Next becomes a continuous function
from assignments to assignments‘.‘ For any derivation tree mm there
is a least assignment T satisfying 7= Next(r). If (sy, in) is this
least assignment and we take sy(root) as the value of s[m], then
"(sy, in) is less than every assignment that fits !' gives part (a)

of our theorem.

(b) Let us agree on the following continuous extension of ff) :
fp(l)(r‘) = greatest lower bound of fS(I')(r") forlcl!, prcr!

and look at the definition of T in the proof of the lemma. Because

of the way we have extended f% we have

Tw(uj,@j) = Next(T)(uj,yocJ.)

for every assignment satisfying

).

) = 7(u,

TW(U1,OL1) = fr(u1,oc1) eee T (U, J—]’aj-—1

wihj—10 %1

Suppose we define = Next (Tj-i) and take T, as the assignment

0
that gives _L to all attributes of all nodes in a derivation tree.
If we have

(u1,a1) =T, (u.,ocj) Tw(uj_1,aj_1) = Tj-1(uj—1’aj—1)

Tw -1

we also have u,,®.,) = Next (T, u.vOt. = T (u.,a.).
TW(P J) (TJ_1)(P J) J(i J)
Since Next is continuous we aiso have

’rW(u1,0L1) = Tj(u1,OL1) Tw(uj-1’@j—1) = "r.(uj__1,oc._1)

10

and induction gives

Tw(u1,oc1) = fr1(u1,@1) eee T (U

o)= a
w' ! r‘) Tr‘(ur" r‘)

so T, agrees with the least assignment To U i U oo

If the grammar G assigns w to m, then the lemma ensures that w
is the value of the synthesized atiributes in the complete assignment
Tw* BY definition s[m] is the value of these attributes in the least

assignment. These iwo values must be the same.

Comment So far we have only considered assignments to derivation trees
with the start symbol of an attribute grammar at their roots. For any deri-
vation tree T with root symbol X € N J § we can extend definition 1 and
the proof of theorem 1 to give a function x[m] in INH(X) » SYN(X). These

functions are defined by the equations

sV, = ><p,0[><p,1 Xp,_1] ing

il

sy, xp,j[xp,ljlnl cee SY_y =><’O’_1[><p’_1]|n_1

(syo,lno, m_1)= 1’p(mo,sy1 sy_1)(sy0,m1 ln_l)

This was proved in an earlier version of this paper but the details are so
similar to those for the independent result in [4] that they are omitted

here. In a suitable specification language, the unique function x given

P, 0
by equations is :

(%) x O[x

o, 0l %p, 1 o xp,_ljmo = YH {1

1 ® e @ In—1

=fp(|no,xp’1[xp’1]|n1, vee, X

)

where H(syo, in

p,_1[xp’_1]ln_I) (syo, in, ... m_1)

Here Y is the fix point operator, | 1 selects the first component of a list,
and we include the trivial functions x_ . for terminal symbols X e

) | P,
In practice such trivial functions can be omitted.

T

Note that x is a member of CONT(><p) and s in theorem 1 is the

P, 0 , 0 ,

least upper bound in CONT(S) of the functions xp 0 for the productions
. b

with S = X .

P, 0

Applying our construction to the grammar BIN gives the somewhat obscure

b[0]c = YH | 1 whereH(v) =0
b[1]c = YH | 1 where H(v) = 2°
I[B]c = YH | 1 _vv_hg_r*_eH((v,l),in1) = ((b[B]inl,l),c)
LB]c = YH |1 _V\m_er_gH((v,l),inl,inz)
= ((:[L.]in1 V1 +b[B]in2, I[L]in1 V 2+1,c+1,c)
n[L] = YH ! 1 whereH(v,in,) = (|[|_]in1 L1, 0)

n[Ly.L,] = YH I 1 where Hlv, in,,in,)
= (|[1_1]in1 b1+ 1[1_2] i1, 0, -|[t_z]in2 i 2)

Straightforward fixed point elimination gives :

b[0o]c =0

b[1]c = 2

1[B]c = (b[B]c, 1)

I[LB]c = (v1+b[B]c, |1+1)M(v1,|1)=|[1_](c+1)
n[L] = 1[L]o 1

n[L'VLZ] = v, +v, where (v,,1,)= I[L_1]O

and (v,,1,) = I[L,](=1,)

Replacing the last line by :

and (v) = YH where H{v, 1) = I[LZJ(—l)

2"2

makes the recursion explicit.

12

3 Reformulation of a well defined attribute grammar

In this section we show that recursion is not needed when a well defined

attribute grammar is reformulated within mathematical semantics.

Definition 2 An attribute grammar G =(h, g, S, P) is well defined, if

the test in [9] shows G is not circular.

Theorem 2 For any well defined attribute grammar G with start symbol S
we can define a function s in CONT(S) such that for any derivation

tree m we have

(a) the specification of s does not use recursion or the fix point

operator Y ;
(b) Gassignswtom & s[n]=w;

(c) s[ml# L.

Proof

The algorithm for testing whether an attribute grammar is well
defined [9, cor'r‘ection] generates a finite set of directed graphs.
These graphs are of three kinds. For each element X inn (y J

we have a set of symbol graphs SYM(X) showing how the synthesized

attributes may depend on the inherited attributes of X. For each

production X =+ X eee X we have!
P, 0 P, 1 P, -1

(1) a production graph Dp with arrows to the synthesized attri-
butes of X and the Inherited attributes of X eee X
P, 0 P, 1 p, =1

from the zero, one or more attributes they_ depend upon;

(2) a set COMP(p) of composite graphs of the form Dp[Q(ﬂ ce. Q(-1)]
where Q1) ¢ SYM(Xp) ... Q(-1) € SYM(Xp).

1 -1
? ?
Knuth's test for circularity generates the composite graphs and
SYM(X) for X inn from the production graphs and SYM(X) for
X Ind . If any composite graph contains a cycle, then our

attribute grammar G is not well defined; otherwise these graphs

13

tell us how to replace (% x) in the proof of theorem 1 by a
specification with no implicit or explicit recursion. As we shall
see in the next section this reformulation is particularly simple

if for every p the union of the graphs in COMP(p) contains no
cycle. Even although this simplification is advocated in [4]

and almost always possible in practice, we have to treat the
general case If we are to prove the theorem. The non-determinism
that plagues very general attribute grammars then enters in the
form of joins in function lattices. For each symbol X inh UJ ,

for each graph I' in SYM(X), and each synthesized attribute

o Tn X, we introduce a function

symbol (T, o) : DOM(X) » W(T, o) = V
(04

where W(T, o) is the subset of INH(X) given by the arrows going
to the node for @ in I, If Qg oeee a, are all the attributes of the start

symbol S, this gives functions

symbol (T, &) DOM(S) - Voc ces symbol(T,an) : DOM(S) -~ VOL
1 n

for each T in SYM(S). The product of these functions is a member of
CONT(S) and the least upper bound (= join) of these products will be

the function s of theorem 1. For each production Xp 0~ X e, X
?

p’1,“ p, =1
there are a finite number of ways of choosing graphs

Q(0) (1) ... Q(-1) such that : Q(j) is In SYM(xp J.) for j=0,1,...,-1;

2
(¥ x %) there is an arc from g to ¢' In Q(0) If and only if there
is a directed path from (X) to (X) in
01 Parat
=R (a1, ..., a(-1)].

For each synthesized attribute o In >< ,0 and each such choice

of Q = (Q(0), (1), ..., Q(~1)) we mtr‘oduce a function

ruie (Q,y) : DOM(X)+ w(Q(0),q) » V .
Po a

14

Because the graph Dp[QU), ..., Q(-1) contains no cycle, it
gives a function, rule(Q,a), that does not require recursion
or the fix point operator Y. Using these functions we complete

the definition of s by
symbol(T, @) = the join of rule(Q,) such that Q(0) = T

We have now proved (a) ; if we can show that every derivation
tree in a well defined grammar has a computation sequence,

theorem 1 and the lemma will give (b) and (c).

There is one and only one way of assigning symbol graphs and composite
graphs to nodes of a derivation tree 1 so that (¥ **) is satisfied -

there is a unique choice of symbol graph for each terminal, and, working
up the tree, one and only one choice of Q for each application of a pro~
duction. The composite graphs partially order the attributes at the nodes

of the tree, because no composite graph contains a cycle. Let
a lvt L] Cx’
(u1 ? 1) (un’ n)

be an embedding of this partially ordered set in a liniar order. If 7 is

a complete assignment to the derivation tree, the value of Next(fr)(uj,onj)
is given by rule (Q, onj) for the Q at node uj and this only depends on

T
fr(u1,0t1) (uj_1,onj_1) .

Our linearly ordered set (u],on1) oo (un,an) is a computation sequence.

Comment In a well defined grammar we have :

(a) every derivation tree has a computation sequence ;

(b) for each derivation tree 1 there is precisely one complete assign-

ment that fits m.Our lemma shows (a) implies (b) ; the grammar
S -9 f(syo,c,d) = (c, if d even then 1 else d, c-1)

shows (b) does not imply (a) because it is circular but there is pre-

cisely one complete assignment that fits its only derivation tree :

15

SYy = 1, c¢=1, d=0. There are grammars satisfying (a) that

are not well defined, but they must have useless productions [9]

Example ctd.

The circularity test for our grammar BIN generates

SYM(B) = (T, Ty) whereTy= c v , T, =c + v

SYM(L) = (1‘2, 1“3) whereT', = ¢ v |, T

i
0
<
<

3

We see that we must Introduce functions

symbol (1‘0, v) : DOM(B) - Vv, symbol (T1, v) : DOM(B) -+ Vc »V,,
symbol (rz, v) i DOM(L) » V symbol (r3, v) : DOM(L) ~+ VoV,

symbol (rz, 1) : DOM(L) >V, symbol (1“3, 1) : DOM(L) »V,

The test also generates four graphs in COMFJ'(L..0 » L, Bz), the composite

graphs given by including or excluding broken arrows in the graph

c(l_o) v(l_o) I(LO)
I

cl,) == v(L)) c(B.) —— vi(B,)
1 1 1 2 2 2

For the production LO - Lle there are four ways of choosing graphs

Q(0) Q(1) Q(2) that satisfy (** %)

Q, Q, Q, Q,
(o) T, Ty Ty Ty
Q1) Ty T, Ty Iy
Q(2) Ty T, To I

16

Since L has two synthesized attributes, we have eight rule-functions

and four symbol functions

It

rule (Q1, V)[LIBZJ
rule (Q,, v)[l_1|32] c =
rule (Q3, v)[l_,le] c =

r‘ule(Q4, v)[l_1Bz] c =

symbol (I‘z, v)[I_1I32] =

symbol (T, v)[l_182] c

rule (Q,, 1)[1_152] =

rule (Qz, I)[l_]Bz] =

il

rule (Q3, I)[l_]Bz:[

rule (Q,, 1)[1_152] =

symbol (T, I)[L182]

i

symbol (P3, I)[I_1|32]

symbol (FZ, v) [L_1:| + symbol (1“0, v)[82]
symbol (1“2, v)[L1] + symbol (T, v)[82] c
symbol (1“3,v) [L1 Hc+1) + symbol (I‘O,v)[Bz:l

symbol (T3,v) [1_1 Hc+1) + symbol (Pl,v)[BZJ c

r‘ule(QT, v)[l_le]
rule (Q,, v)[I_1Bz:| c U rule(@,, V)[LIBZJ c

U rule (Q4, v)[Lle]c

symbol (rz, 1)[1_1] + 1

symbol (1“2, I)[L.1:| + 1

symbol (F3, I)[L1] +1

symbol (1“3, I)[L.1] + 1

rule (Q,, I)[L1Bz]

rule (Q,, |)[|_152] U rule (@, I)[L1BZ]

U rule (Q, |)[1_1|32]

In the next section we show that the above twelve equations can be

replaced by:

symbol (I‘3, v)[L1I32]c = symbol (1‘3, v)[L1] (c +1)

symbol (r3, |)[L1Bz]

+ symbol (Fl’ \/)[82] (c)

Il

symbol (T3, |)[|_1] +1

clearly these are unsugared versions of our original equations:

fl

iv[LB]c
InLe]

It

Iv[LHc+1) +Iv[B]c
L] + 1.

17

4, Other desirable properties

Well defined attribute grammars can have other desirable properties
that simplify the task of making a compiier for the language they
generate. In this section we Iintroduce six such properties and show
how the reformulation within mathematical semantics of an attribute

grammar G becomes simpler when G has one of these properties.

Definition 3

X

Let Dp be the graph introduced in [9] for a production p : Xp 1000 X5, -1
?

O—’xp

in an attribute grammar. Let Wp be the subgraph of Dp formed by

deleting every arrow from an inherited attribute of X and every arrow

PO
to a synthesized atiribute from an attribute of Xp R Xp -1° We say
H H

that the production p is:

unordered if Wp is empty;
ordered if each arrow in Wp from an attribute of X ., to an

attribute of Xp K satisfies 0 < j < k ’

?

reordered if there is a permutation f of 1,2,...,n(p)-1 such that each

arrow in Wp from an attribute of X ., to an attribute

of Xp | Satisfies] #0 A f(j) < flk);

2
tangled if there are no cycles in the graph Dp(AL_L(Xp 1). . .AL_L(><p _1))
? H

where ALL(X) is the graph with an arrow from every

inherited attribute of X to every synthesized atiribute of X;j

benign if there are no cycles In the graph
D (SOME(X ... SOME(X)
p((Py 1) (P, =1
where SOME(X) is the union of the graphs in SYM(X);

well defined if there are no cycles in any of the graphs
Dp(Q(l), eo. Q(=-1)) forQl)e SYM(Xp

’ PeeeQl=Ne SYM(Xp’__1)

18

Remark

A grammar is not circular if all its productions are well defined.

If a production has one of the other properties we have defined, then

the order of evaluating the attributes of the symbols on the right side

of the production (right symbols) is simpliﬁed; For a benign production
this order does not depend on the productions used to expand the right
symbols. For a tangled production this order can be such that all the
inherited attributes of a right symbol occur before any of its synthesized
attributes. For an ordered (reordered, unordered) production this order
can be such that one can evaluate all attributes of a right symbol Xp,‘
before evaluating any attribute of the next right symbol (the symbol
following ><p’i in some permuiation of the right side of the production, any
other right symbol). Clearly these distinctions are significant when

designing a compiler for the language given by an attribute grammar,.

New example

Consider the attribute grammar CONTRIVED

It

R

u O = {o}
s} U= {ul,u2} O = {0}

o 7l

- i
1
[
lm ol
It
lo i

= {r
= {r

name production
a S - U
b Uu->5
c u-7
d S+0
e O -»X
f O+ RT
g R~ TO
h T+ BX
k B -» X

| X9

semantic rule

f_(ul, u2l(s, ut, u2)

= (ul+u2, u2,ul)

£, (U7, u2)(ul, u2)

= (23xul, 5)

f_(uT,u2)(u1, u2)

= (7, 29xu2)

fylo) (s, o)

=(3x0, 2)

t (5, x1,x2)(0,xT,x2)

= (x1/x2, o, o)

ff((—).’ £, _E)(_o_, F; -t_)

= (19xt , 31xo, 37xr)

f(r,t,olr,t, o)
g

= (11xt, 13x0, 17Xr)

f, (b7,b2, x1, x2)(b, xT, x2)

= (EZ-—ZQ, —b—f’ ﬁl)

(<7, x2)(x1,x2)

=(x1, x2)

19

production graph

10>

ol
lo
A

o)

X

N
Z(_.—~>
[<%

20

The broken arrows in a production graph Dp are those that are not
n Wp. We see that the productions U+ 5, U+ 7, S0, O+ X X +9

are unordered, the production O + RT Is ordered, and the production

R+ TO iIs r‘eor‘der‘ed..

Theorem 3

(a)
(b)

(c)

(a)

(b)

unordered + ordered -+ reordered -+ tangled -+ benign + well defined.
the chain of implications in (a) is proper.

a production X —+ X eee X is tangled if and only If the
P P, 0 Py 1 P, -1 ° Y

attributes of X s X ese X can be ordered in such a way
P, 0 P, 1 p, =1

that every inherited attribute of Xp ; can be evaluated before a
b

synthesized atiribuie of Xp i Is evaluated.
?

Proof

The first, second, fourth and fifth implications follow directly
from the definitions. For the third implication assume that
production Xp, 0 -» Xp, EEE ><p7 -1 is reordered and -
Dp(Al_l_(Xp, 1) .o AL.I_(Xp’ _1)) has a cycle. This cycle cannot
pass through an inherited attribute of Xp’ 0 because there are no
arrows to these attributes; it cannot pass through a synthesized
attribute of Xp, 0 because there are no arrows from these attri-
butes In a reordered production; it cannot use an arrow of Wp
because T ihcreases along such an arrow and f is constant on the
arrows of ALL(X). Since ALL.(X) has no cycle, our assumption is

absurd.

Consider the grammar CONTRIVED. The production O + RT Is
ordered, but not unordered; the production R+ TO is reordered,
but not ordered; the production T -+ BX iIs tangled, but not reordered;

the production B + X is not tangled.

As the production graph DI is the only symbol graph in SYM(X) it is
also the graph SOME(X). Since Dk[DI] has nho cycles, the production

B -+ X is benign. Now consider the attribute grammar given by the

21

first three productions of CONTRIVED. The production S -+ U
is well defined because there are no cycles in Da[Db] and Da[DC],
but it is not benign because there is a cycle in Da[Db U DC].
(c#) If the composite graph Dp(ALL(Xp’ 1) . AI_L(Xp’ _1)) has no cycles,
it is the graph of a partial order on the attributes of
X X see X

P, 0’ P, 1 p,~1°
in a linear order we can evaluate attributes in an order satisfying:

Because any partial order can be embedded

(1) if attribute B depends on attribute q.

(2) if g is an inherited attribute of ><p and 8 is a synthesized

2
attribute of Xp L then o is evaluated before g.
?

(ce) Assume the attributes of Xp’ 0’ X RIERE Xp’ -1 can be evaluated in
some order satisfying (1) and (2). Consider an edge from attri-
bute o to attribute g In Dp(ALL(Xp’ 1) een ALL(Xp, _1). If the edge
is In Dp, o is evaluated before g by (1); if the edge is in ALL(Xp,J_),

o s evaluated before g by (2). Since !is evaluated before! is a
linear order, D _(ALL(X) ... ALL(X)) has no cycles.
p P, 1 P, -1

Comment An attribute grammar with only ordered productions allows
levaluation in one pass from left to right! |3, 8]. One applies the

following recursive algorithm for each application of a production

X -+ X ees X in a derivation tree:
p, 0 P, 1 P, ~1
Ir evaluate : begin Tfetch inherited attributes of xp O;
?
for X : =X to X
- p, 1 — p, =1

do begin_ Use fp to evaluate inherited attributes of X;
Call {r evaluate to calculate synthesized
attributes of X;
end

Use fp to calculate synthesized attributes of ><p O;
?

22

A similar argument shows that one can evaluate an attribute grammar
with only tangled productions in one pass, if we allow a pre-evaluation
phase in which we either rearrange the derivation tree or add a next
sibling pointer to each node in the tree. One applies the following
recursive algorithm for each application of a production
X + X eee X in the tree

p, 0 P, 1 p, =1

t~evaluate ¢! begin fetch inherited atiributes of X

D, 0 ’

for . = attribute of X X ees X
— a P, 0 "p, 1 P, 1

in order given by theorem 3 ¢

do if o is inherited attribute of Xp j for j#0

?
or g is synthesized attribute of Xp 0
?
then Use fp to calculate g
else if o not already calculated

then Call t—evaluate to calculate

all synthesized attributes of the

X . to which g belongs
P,

end.

An algorithm for finding the finite number of passes required to evaluate

a well defined attribute grammar is given in [15].

23

Definition 4

An attribute grammar is in normal form if for every production the

function
f :L9 R 4 R?
P p p P

satisfies
fp(l)(r) = fp(l)(r')

for any | in I_CF’) and any r,r! in Rop.

Comment For well defined attribute grammars in normal form, many

tiresome distinctions disappear,

Theorem 4 (Hanne RIis) If an attribute grammar is in normal form

then the production p is reordered production p is tangled.

Proof

Suppose X + X eee X is a tangled production of an
p,0 p, 1 P, =1
attribute grammar G. If G is in normal form, we can evaluate
all attributes of a right symbol xp i "at the same timel!', because
)
we can wait until a synthesized attribute is required before
evaluating the Inherited attributes. To make this argument precise

we introduce the relation R by:

J Rk & there is an arrow in Dp from a synthesized attribute

of X . to an inherited attribute of X
J p, K

P

The reflexive transitive closure R* of this relation is a partial
order because JR* k, kR* j, j # k implies a chain of arrows in D

that becomes a cycle in Dp[ALL(Xp P e Al_l_(xp _1)]; and this
’

cannot happen when p is a tangled pl’*‘oduction.

Embed the partial order R* in a total order and define f(j) as
the position of xp,j in this total order. Clearly f is a permu-
tation and j R k implies f(j) < f(k). Because G is in normal form
there are no arrows in Wp from either synthesized atiributes of

X or Inherited attributes of X .o ><p If there is an

P, 0 P, 1 :_1.

24

arrow in Wp from an attribute of Xp j to an attribute of Xp K
2 ?

we must have | # 0 and jRk. The tangled production p

must be reordered ; the converse implication is given by

theorem 3.

New example ctd.

As an illustration of the simplifications possible when productions
have our '"compiler friendly" properties we reformulate our grammar

CONTRIVED within mathematical semantics.

Syntactic Rule Semantic function

S~ u s[U] =ul +u2 where (u1,u2) = u[U](u2,ul)

Uu-5 u[5](ut,u2) = (23 x ut, 5)

Uu-7 u[7(uT,u2) = (7, 29 x u2)

S0 s[O] =3x o[0O]2

O~ X o[x](o) = x1/x2 where (x1,x2) = x[%x](c, o)

O+ RT o[RT](o) =19 x twhere r=r[R](31 x o)
and t=t[TH37 xr)

R - TO r[TO](r) =11 xt where o=0[0](17 x 1)
and t=t[T](13 x o)

T =+ BX t[BX](t) =b +x2 whereb =b[B](T,)
and (x1,x2) = x[x](t,©)

B+ X b[X](b1,b2) = b2-x2 where (x1,x2) = x[x](61, x1)

X 9 x[X](x1,x2) = (X1, x2)

The only productions which are not tangled are S+ U and B -+ X.
For these two productions and no others we have recursion in the
correspond semantic function. Since our grammar is well defined,
this recursion can be eliminated by theorem 2. For the non-benign
production S =+ U, the proof of the theorem suggests replacing the

semantic functions for the first three productions by

25

s[U] =sb[U] U sc[U]

sb[U] = ul + u2 where uz = u2b[U]
and ul = ulb[u](u2)

sc[U] =ul +u2 whereul = ulc[U]
and w2z = uzc[U]wi)

ulb[5](u1) =23 xul u2b[5]=5

u2c[7](u2) = 29 xu2

1l
Q

ulcl[7]

The proof of our next theorem shows why the join operator U Is not
needed when removing the recursion in the semantic function for the

benign production B -+ X:

b[x](b1,b2) = b2 ~x2 wherexl = bl
and x2 = x1

Convention We use MS[G] as an abbreviation for : a specification in
mathematical semantics of the function s in the proof of theorem 1 for

an attribute grammar G.

Determinacy Theorem If all productions in an atiribute grammar G are

benign, then the join operator U need not appear in any of the
functions specified by MS[G |.

Proof

For each X the set of symbol graphs SYM(X) can be replaced by
their union SOME(X). If we make this replacement in the proof
of theorem 2 there Is one and only one Q satisfying requirement
(% % %) for a production Xp, 0~ Xp’ g Xp’ _1

The functions rule (Q,) that are joined in the definition of
symbol (T',q) come from different productions with the same left
side. Such joins do not appear in an MS[G] specification

because of the convention in section 2.

26

Comment Because our grammar MS(G) works on derivation trees, the
implicit joins In the section 2 convention do not destroy determinacy.

The convention that MS(G) semantic functions may be specified in terms
of one another seems just as harmless.In our statement of theorem 2 we

avoided the fix point operator Y used to unravel this mutual recursion.

Splitting Theorem If all productions in an attribute grammar G are

tangled, then we can construct an MS(G) such that
(a) no function specified in MS(G) uses the operators Y and U

(b) every function specified in MS(G) is in CONT(X) for some
XinNUT.

Proof
(a) : Combine theorem 2 and the Determinacy theorem.

(b) : Consider the MS(G) formulation given by part (a).

It consists of specifications of the functions Symbol (SOME(X), «)
for each X in NU T and each synthesized attribute o n X .

For a tangled production Xp’ 0 -+ Xp, IR Xp’ —17 all inherited
atiributes of xp,i can be evaluated before any synthesized
attributes of X i Thus each function Symbol (SOME(X), «)

can be extended from DOM(X) + W(SOME(X),y) - \, to

DOM(X) =+ INH(X) + V, . Our theorem now follows from the fact that
the lattice product of DOM(X) + INH(X) » \/ for o in X is Isomorphic

to the lattice CONT(X) = DOM(X) + INH(X) + SYN(X).

Comment When we removed recursion from the semantic function for
the benign production B -+ X in our grammar, the required splitting of

SYN(X) was implicit. The general construction would give

b[X](61,62) = b2-x2 where x1 =x1[X]b1
and x2 = x2[X]x1

x1[9]{x71) = 31

x2[9](x2) = x2

and minor changes in the specifications for productions O -+ X and

T+ BX,

27

Concluding remarks

The converse of the problem in this paper - forming an attribute grammar
from a specification in mathematical semantics - is the subject of [8, 11].
Is there any good reason for basing a compiler generator on attribute
grammars, rather than mathematical semantics [14] ? If there is, should
one allow for attribute grammars that are well defined but not benign ?
Any algorithm for checking that an attribute grammar is well defined is
computationally intractable [6, ‘7] Chircia and Martin [4] give a pragmatic
reason for preferring benign grammars for particular Ianguages§ our
determinacy theorem gives a theoretical reason for this preferrence.

The author would like to thank Ole LLehrmann Madsen, Hanne Riis, and
Erik Meineche Schmidt for many fruitful discussions on this and the other

topics discussed in this paper.

28

References

[1] L. Aiello, M Aiello, R;.W.‘ Weyrauch, The semantics of
PASCAL in LCF, STAN-74-447, Stanford University
1974,

[2] D. Bjdrner, c.B. Jones, Vienna Development Method :

The meta language, Springer Lecture Notes, 1978,

[3] L..M, Chirica, D.F. Martin, An order-algebraic definition of
Knuthian semantics, Math. Sys. Th 13(1979) 1-27.

[4] L.M. Chirica, D.'F-'..v Martin, An algebraic formulation of
Knuthian semantics, Symposium Found. Comp. Sci.
17(1976), 127-136,

[5] J.B. Dennis, On storage management for advanced programming
languages, Project MAC Computation Structures Group,
memo 109-1, MIT 1974,

[6] M. Jazayeri, W.F. Ogden, W.C. Rounds, The intrinsically
exponential complexity of the circularity problem for
attribute grammars, Comm. ACM 12 (1975) 697-721.

[7] N. Jones, Circularity testing of attribute grammars requires
exponential time : a simpler proof, DAIMI PB-107, Aarhus
1980.

[8] H. Ganzinger, Some principles for the development of compiler
descriptions from denotational language definitions,

Tech. Univ. M&'nchen; Preprint, 1980.

[9] D.E. Knuth, Semantics of Context free languages, Math. Sys.
Theory 2 (1968) 127-145; correction, ibid 5 (1971) 95.

[10] P.M. Lewis, P.J. Rosenkrantz, R.E. Stearns, Attributed
translations, J. Comp. Sys. Sci. 9 (1974) 279-307.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

29

O.'L_.‘ Madsen, On defining semantics by means of extended
attribute grammars, DAIMI PB-90, Aarhus 1978,

R.E. Milne, The formal semantics of computer language and their

implementations, Ph.D. thesis, Cambridge University 1974,

P.D. Mosses, The mathematical semantics of Algol 60,

Program Research Group PRG-12, Oxford 1974,

P. D. Mosses, Mathematical Semantics and Compiler Generation,
Ph. D. thesis, Oxford University 1975.

H. Riis, S. Skyum, K-visit attribute grammars, DAIMI PB-121,
Aarhus 1980,

D. Scott, Mathematical concepts in programming language
semantics, AFIPS proceedings 40 (STCC 1972) 225-242.

D. Scott, C. Strachey, Towards a Mathematical Semantics for
Computer Languages, Proc. Symp. Computers and Automata,
Brooklyn Polytechnic 1971.

R.D. Tennent, Mathematical Semantics and the design of
programming languages, Ph.D. thesis, Toronto University
1973.

R.D. Tennent, The denotational semantics of programming languages,
Comm. ACM 8 (1976) 437-453.

	20051003095156_Page_01_Image_0001.tiff
	20051003095156_Page_02_Image_0001.tiff
	20051003095156_Page_03_Image_0001.tiff
	20051003095156_Page_04_Image_0001.tiff
	20051003095156_Page_05_Image_0001.tiff
	20051003095156_Page_06_Image_0001.tiff
	20051003095156_Page_07_Image_0001.tiff
	20051003095156_Page_08_Image_0001.tiff
	20051003095156_Page_09_Image_0001.tiff
	20051003095156_Page_10_Image_0001.tiff
	20051003095156_Page_11_Image_0001.tiff
	20051003095156_Page_12_Image_0001.tiff
	20051003095156_Page_13_Image_0001.tiff
	20051003095156_Page_14_Image_0001.tiff
	20051003095156_Page_15_Image_0001.tiff
	20051003095156_Page_16_Image_0001.tiff
	20051003095156_Page_17_Image_0001.tiff
	20051003095156_Page_18_Image_0001.tiff
	20051003095156_Page_19_Image_0001.tiff
	20051003095156_Page_20_Image_0001.tiff
	20051003095156_Page_21_Image_0001.tiff
	20051003095156_Page_22_Image_0001.tiff
	20051003095156_Page_23_Image_0001.tiff
	20051003095156_Page_24_Image_0001.tiff
	20051003095156_Page_25_Image_0001.tiff
	20051003095156_Page_26_Image_0001.tiff
	20051003095156_Page_27_Image_0001.tiff
	20051003095156_Page_28_Image_0001.tiff
	20051003095156_Page_29_Image_0001.tiff
	20051003095156_Page_30_Image_0001.tiff
	20051003095156_Page_31_Image_0001.tiff

