DATA TYPES AS FUNCTIONS

by

Brian H. Mayoh

DAIMI PB-89
July 1978

ISSN 0105-8517

Computer Science Department
AARHUS UNIVERSITY
Ny Munkegade — DK 8000 Aarhus C — DENMARK
Telephone: 06 — 12 83 55

=)

=n

e 5 o) ' | | pj | | Mw
s P Mo 4) N (y (
, f=e S e A (& A At Ay

o 7 /

: o N ///’ -
Ly, / ~-~-'éft/l.»7 (j‘(.;(./’f’(,«q/L,»L/LLtf‘ oS ‘ft‘/’ oty
d

: 4 e . _
Repratstaat YA, 5 P

A - 5 '
/{,7/1, L Lt o &ML‘)M{‘»LA{M})

: T
A Sy £y D9 R | /£

fors. e T C/f««{m

Lot PP, Sl

J B VR S ,-.(7
%

(A AR, o, o

; .
j,jt' S S i»"’(/"\j”" .y /
.

L«’}/M/;?O./{{ér*’v"lrwbé— - "wty,({i Nz {K

DATA TYPES AS FUNCTIONS

This preprint is an extended version of [12]. The data types associated
with equational and cluster specifications are described in more detail;
the theory behind various techniques for verifying that one data type can

be substituted for or represented as another is given in full.

1. THE PROBLEM

Currently there is much interest in the design of programming languages

which allow:

(1) parametrized types, the consiruction of new types from old [17;

(2) operations that are polymorphic in that they have type parameters
(e.g. an operation for sorting a vector of any size);

(3) limiting the operations that can be applied to a type [27;

(4) types that are abstract in that the type representation cannot be

used outside the type declaration [3];

The first two of these raise the theoretical problem:

When can an actual parameter of type T be substituted for a

formal parameter of type T!?
This is similar to, but not the same as the theoretical problem for abstract
data types:

When can a type T be represented as another type T!'?
In this paper we discuss these two theoretical problems, not the design
of new programming languages. The literature on the design problem is
extensive; those interested should begin by looking at such languages as
CLU, ALPHARD, MESA, EUCLID [4] and pondering on the TINMAN re-

quirements [5]. In the remainder of this section we give an example of

(1)-(4); in section 2 we emphasize the abstractness of all type declara~

tions; insection 3 we give a simple, precise definition of data types and

relate it to other definitions in the literature; in section 4 we propose

a solution of the two theoretical problems.
The usual example of a parametrized type is STACK(EL) with stacks
of values of type EL as its values. We can define polymorphic operations

for such specifications as:

PUSH : STACK(EL) x EL - STACK(EL)
NEW : STACK(EL)

POP : STACK(EL) =+ STACK(EL)

TOP ! STACK(EL) » EL

in many existing programming languages. In some of these languages we
can limit the permissible operations on values of STACK(EL.) to PUSH,
NEW, POP and TOP. Once a limit has been put on the operations on values
of STACK(EL), there may be many useful representations of this parame-
trized type.

The concept of a parametrized type should be distinguished from the
construction of new types from types and constructors that are provided
ab initio by the programming language. In PASCAL. one can write

TYPE ENTRY = RECORD
identifier: ALFA;
atiribute : INTEGER;
END

and there are no parameters in this construction of a new type from the
primitive types, ALFA and INTEGER. Suppose a language allows both
the type ENTRY and the parametrized type STACK(EL) with operations
PUSH, NEW, POP and TOP. Then the language may well allow the decia-

ration

TYPE SymbolTable = STACK(STACK(ENTRY))
and the definition of operations for such specifications as

BlockEntry, BlockExit: SymbolTable » SymbolTable

Initialize: SymbolTable

Extend: SymbolTable x ENTRY = SymbolTable

Find,Offset, BlockNumber: SymbolTable x ENTRY = INTEGER.
Presumably the language will also allow one to limit the operations on
values of SymbolTable to the seven specified above. If so, there may be
many useful representations of the type SymbolTable - some using different

representations of stacks, and some not even using stacks.

Figure 1. VValues of the abstiract type SymbolTable

2. ABSTRACT TYPES

All types are '"abstract!! in the sense that a programmer never knows what
the values of a type really are. Suppose a language allows the definition of
a type

VECTOR = ARRAY [low bound, high bound] OF REAL..
The programmer can read or write values Into a variable v of type VECTOR

by constructions like

v [index] : = real value;

some real variable : = ... v [index] ... ;
or PUT (v, index, real value);
some real variable : = ... GET (v, index) ... ;

The programmer may think of vectors as '"tuples of reals', but she would never

notice if vectors had been implemented in some quite different way satisfying

PUT (v, index, GET (v, index))=v ;

GET (PUT (v, index, real value), index) = real value ;

Indeed there are good reasons for allowing different implementations of vectors -
if the difference between the two bounds Ts large, but only a few vector compo-
nents exist at any one time, an intelligent implementation might use a hashing
function.

Although the programmer never knows what the values of a type really
are, she usually knows how she wants to use them. If her program is to
manipulate rational numbers, she should be able to introduce a data type with
associated operations: ADD ... EQUALS. She should be able to write a

declaration like

cluster
RATIONAL = record
N, D : INTEGER;
end record;
procedure Normalize (VAR x,y : INTEGER);
(* code to replace the values of x,y by values such that x+y*)

(* is unchanged but x,y have no common divisor andy > 0 *)

within

function ADD (a, b: RATIONAL): RATIONAL;
var c,d : INTEGER;
begin
c:=aN#*bD+aD=xb.N; d:=aD % d.D;
Normalize (c, d);
ADD.N : = ¢; ADD.D : = dj

end function;

(* other public functions on rationals *)
function CREATE (a,b : INTEGER): RATIONAL;
begin
Normalize (a, b);
CREATE.N : = a; CREATE.D : = b;

end function;

function NUMERATOR(r: RATIONAL): INTEGER;
NUMERATOR : = r.N;

function DENOMINATOR (r, RATIONAL): INTEGER;
DENOMINATOR : = r.D;

function EQUALS (a,b : RATIONAL) : BOOLEAN;

EQUALS : = (a. N = b.N) AND (a.D = b.D);

(¥ Note that our declaration format separates private and public)
(¥ operations, allows mutually recursive definitions or operations *)

(* and permits several types to be defined in the same cluster *)

end cluster

When the programmer writes a declaration, she reveals that she is thinking
of rationals as ''fractions in lowest terms as a pair of integers!!, Nevertheless
the type RATIONAL is abstract in that there are many different declarations
that give the same result for any computation on rationals that only uses the
operations ADD ... EQUAL.S. An alternative declaration that avoids incessant

renormalization is:

cluster
RATIONAL = record
N,D : INTEGER;
end record;
procedure Normalize (VAR x,y : INTEGER);
(= as before *)
within
function ADD (a, b : RATIONAL): RATIONAL;
begin
ADD.N:=a.,NXb.D + a.D X b. N;j
ADD.D : = a,D X b.D;

end function;

(¥ other public functions on rationals %)
function CREATE (a,b: INTEGER): RATIONAL;
begin
CREATE,N : = a; CREATE.D : = b;

end funciion;

function NUMERATOR (r: RATIONAL) : INTEGER;

var a,b : INTEGER;

begin
a:=r.N; b:=r,D; Normalize (a, b);

NUMERATOR : = a;

end function;

function DENOMINATOR (r: RATIONAL):INTEGER;‘
var a,b: INTEGER;
begin
a:r.N; b:=r.D; Normalize (a, b);
DENOMINATOR : = b;

end function;

function EQUALS (a, b: RATIONAL): BOOLEAN;
EQUALS : = (a.N X b.D = a.D X b.N);

end cluster

We have given this rather detailed example to emphasize the theoretical
problem - when can a type declaration be replaced by another type declaration
without affecting the results of computations. To solve this problem we need
a precise definition of what we mean by "typel!l. This definition ought to
give precise meanings to parametrized types and polymorphic operations. As
both these concepts use types as parameters, this requirement on the defini-
tion of ltype!l can be rephrased: when can an actual parameter type be sub-
stituted for a formal parameter type. If our concept of parametrized type
allows equations, we must be careful about the meaning of equality signs
if we are to avoid the horrors of collapsing types (the authors of [6] were
not and one can prove TRUE = FALSE from their definition of signed integer).
Neither of our declarations of the type RATIONAL satisfies

NUMERATOR(CREATE(n, d)) = n

even although this equation seems natural.

3. DEFINITION AND SPECIFICATION OF DATA TYPES

What is a data type? One answer is: a computational rule that can be applied

to expressions of the type to yield values of the type. Inh many cases we will

have:

(1) values of the type can be stored, printed, passed as parameters ...;

(2) among the expressions of the type we have identifiers and a constant
for each value;

(3) each value of the type is the result of applying the computational rule
to some expression;

(4) applying the computational rule to an expression always yields a value;

but there is no reason to require these properties., However, there is no

loss of generality if we insist on (4) in the form:
the values of a type are partially ordered and there is a least element
1 in this partial order

and thereby avoid partial function troublies.

Definition A data type Is a total function f from a set of expressions E to a

partially ordered set of values V with a least element in the partial order.

For us the data type problem is not to say what data types really are, but rather
to single out the particular function associated with a program language text
that purports to be a data type declaration.
Many data types are syntactic in the sense that their expressions are
given by a grammar like
{Boolean> :: = TRUE | FALSE | NOT <Boolean> |
<{Boolean> AND < Boolean> |

<{Boolean> OR <Boolean>

Since Algol 60 the syntax of most programming languages has been given by
such grammars so these languages can be regarded as syntactic data types.
However, the fact that a data type is syntactic does not help in defining its
computational rule, in giving the ''semantics of the type”.‘ The best one can
do if one has no information beyond the grammar is to define the computation
rule f: E -» V by f(e) = | and take the singleton set consisting of | as V. If
one has information like:
The set of values is {TT,FF, | } and the computational

rule is given by the usual truth tables

then the associated data type becomes more useful.
The simplest way of giving semantic content to a data type is by
domain equation [7]. Scott and others have shown how to solve equations like
StackR ~ {T} + RATIONAL. X StackR
A solution of such an equation Z ~ T(Z) consists of a particular set V and

functions decode: T(V) ~»V, project: V - T(V) such that decode © project is

the Tdentity on V. A solution gives a set of values for a type f: E - V and
two functions that are useful in defining the computational rule, but one needs
something else to define the set of expressions for a type;. Our first declara-
tion for the rationals gives a solution of the domain equation

RATIONAL ~ INTEGER X INTEGER
with CREATE in the rdle of "decode!" and NUMERATOR X DENOMINATOR
in the rdle of "project!'. The solution does not have the identity as

project © decode; we can find an integer pair <n,d> that is not the same as

<NUMERATOR (CREATE(n, d)), DENOMINATOR(CREATE(n, d))>
On the other hand we do have the equation
CREATE (NUMERATOR(r), DENOMINATOR(r)) = r

corresponding to the fact that decode ° project is the identity.

10

To progress we could follow the tradition in programming language seman=-

tics (cf. syntax-driven compiler generators) and give names to the rules in

a grammar. |t seems more natural to follow the ADJ group [6] and introduce

signatures instead of grammars. A signature X consists of a set SORT(Y)

and a set of operator symbols ZW S for each s in SORT(Y) and each sequence w

2

of elements from SORT(Z).k This sounds complicated but the following alterna-

tive representations of the signature for our data type RATIONAL should

make the idea clear:

Picture representation:

ADD CREATE

Structure representation:

NUMERATOR, DENOMINATOR

SORT(TRADITIONAL) = {RATIONAL, BOOLEAN, INTEGER]}

ADD : RATIONAL x RATIONAL -» RATIONAL

CREATE : INTEGER X INTEGER - RATIONAL

NUMERATOR, DENOMINATOR : RATIONAL - INTEGER

EQUALS : RATIONAL X RATIONAL - BOOLEAN

Grammar representation:

<RATIONALY si=

INTEGER>

<BOOLEAN> e

I

CREATE(K INTEGER>, <INTEGER>) |

ADD(<RATIONAL >, <RATIONAL.>)

NUMERATOR(< RATIONAL>)]
DENOMINATOR(< RATIONAL>)

EQUALS(<RATIONAL>, <RATIONAL>)|

11

The grammar representation shows that the data typesgiven by asignature 3
are syntactic. If we have a set E for each s In SORT(}y), then we can define
Z[ES] as the set of "words!" built from elements of ES by using the operator

symbols in 3. If we also have functions o_ : ES X E’s X eaoa ES - ES

E 1 2 n o]

for each operator symbol ¢ in 2 (in other words, if we have
S, S, ... S4,S,

a y-algebra), we can define a function f by

fle) = if eis aformole , ..., €]

then o(f(e;), ..., (f(e,)) else e.

Now we have a data type f with Z[ES] as its set of expressions and U (ESI s
in SORT(Y)) as its set of values. This data type f: E - V is rather special, it
is a 'retract", it satisfies : VCE, fFof = f, f is the identity on V. An even more
special type fE is given by our construciion when each ES has only one element,
the undefined element | s of sort s.

The two declarations of the type RATIONAL in the last section were

disguised presentations of (ADD ... EQUALS)-algebra with carriers:

Einteger‘ = the usual integers,

E =
boolean = the usual booleans,

E_ .. _ . .
rational = palirs of usual integers.

If the data type f: E - V given by our construction is to reflect the intended
representation independence of the type declarations, the "words!" built from
Er‘ational must be removed from the expression set E. The imprecision of the
last two sentences highlights a crucial difficulty in the theory of abstract

data types: we need to use predefined types when declaring new types, but
these declarations may introduce new elements and undesirabie properties

in predefined types. As always, the most undesirable property is inconsistency

and this can easily occur with equational specifications of types given be a

signature,

12

Signature: CREATE

RATIONAL

NUMERATOR, DENOMINATOR

Equation set:

CREATE(NUMERATOR(r), DENOMINATOR(r)) = r

Figure 2, Equational specification of a type

This Is a convenient way of specifying the data type but the current agitation

about error algebras [7], maximal equivalence classes [8], and final algebras
[9} shows that it s not easy to say exactly what data type is belng specified
by a set of equations. Suppose we have an equational specification

L'T = Ri for 1 inl

of a type given by a signature 3. If we have a set ES for each s in SORT(Y),

we can define an equivalence relation e ~ e' on Z[ES] :

the equation e = e! can be derived from the speci-
fication by substitution of elements of Z[ES] for
variables and the laws of equality.

Suppose we also have functions O : ES X Es X eae E - Es for each

1 2 S o]

operator symbol ¢ in I . Suppose | is an Interpretation,

Sl sg * @ Sn , So
a map from variables to Es’ By substitution this map can be extended to
words built from variables and operator symbols. The usual requirement for

our Y-algebra to be a model Is
j(l"i) is the same element as j(Ri)

for every interpretation] and every equation LT = Ri'

13

Because e ~ e' = by substituting and then applying the

laws of equality we can derive e = e!

the requirement gives

~ el ; i
e e! = fL___(e) is same element as fE(e).

We generalize this.

Definition A model of an equation specification with signature 2 consists

of a set Es for each sort s in SORT(Z) and an equivalence relation = on
LIE_] such that
s
(COMPATIBLE) e~ el = e = e!

= s identity on ES

The model is operational if we also have e =e] & ... & ¢ =¢e! =
ole;,...] =0lel,... ¢] for all operator symbols ¢.

Any equational specification of a type given by a signature Z has
the model given by fZ} - each Es has just one element, and distinct elements
are not equivalent. If the equational specification is to give new types from
old, we must have Es for some subset OLD of SORT(Z). An element e of

Z[ES] is determined if its sort s is in OLD and there is an e! in E such

that e~ e!,

Any equivalence relation

m

satisfying (COMPATIBLE) agrees with ~
on determined elements, and gives a candidate for the data type specified
by the equations:

the set of expressions is E[ES]

the set of values is the quotient set Z}[ES]/E

the computation rule is f(e) = equivalence class of e.

14

There are equivalence relations satisfying (COMPATIBLE) if and only

if for every e in E[ES] there Is at most one e! in Es satisfying e~ el,
The finest of these equivalence relations is~j; the coarsest is +

defined by: for any two elements of the same sort s we have e, = e,
unless there is no e!' in E_ such that we have one of e; ~ e! and e, ~ e
but not both. The finest operational model is given by ~, the model given
by + may not be operational, the coarsest operational model is the final

algebra of wand [9].

Before we can explain parametrized types we must solve the theo-
retical problem
When can an actual parameter of type T be
substituted for a formal parameter of type T'7?
A partial solution is: if all formal expressions of type T! occur in E
then f: E #+ VV can be substituted for T'; we give a complete solution in
the next section.
L et us begin with polymorphic operations. Suppose we want io write
a function LOOK to test if an element of an arbitrary type EL. is in a
vector v whose components are of type EL. Assuming "formal functions!:
EQUALS : EL x EL + BOOLEAN
LowerBound, UpperBound : VEC = INTEGER
GET : VEC X INTEGER = EL

we can write the declaration:

15

function LOOK (v: VEC; e: EL): BOOLEAN,;
var i INTEGER;
begin LOOK : = FALSE;
for i : = LowerBound(v) to UpperBound(v)
do if EQUALS(e,GET (v, i))
then LOOK : = TRUE;

end function

Our declaration of the polymorphic operations LOOK does not convey
semantic information directly. Assume that the formal expressions occurring
in the declaration of a polymorphic operation LOOK belong to a formal
expression set E!'', The declaration of LOOK gives a data type, if we bind
the parameters by giving some data type f: E # V,

Consider our first cluster specification for the rationals. The
functions ADD ... EQUALS are declared as polymorphic operations.
Not only does the part of the specification between: cluster and within

determine

ElNT = values of type INTEGER
EBOO = values of type BOOIL_EAN
ERAT = pairs of values of type INTEGER,
but it also binds the parameters of the polymorphic operations - it gives

values to formal expressions like

a.NXx b.D + a.D x b.N
in the declarations of ADD ... EQUALS. The binding of the parameters
gives functions

T2=’E

RAT

1 .
AL?D = : ERA

: i
EQUALS'_ 12 » E

Era
. [
and these give a data type f': E[ERAT’ ENT? EBOO] - ERAT+EINT+EBOO

BOO

by fllcle; ...]) = o'=(f'(ey, ... f'(g)). If the declarations of

16

ADD ... EQUALS had been mutually recursive, we would have used

a slightly different approach:
; ; 1.

Given a function f't: E[ERAT’ B NT? EBOO] ? EpattE NT EROO

the declarations give functions for each operator symbol, and

these functions can be combined into a new function F(f!');
E[ERAT’ E T EBOO] ? EpattENTTEgoo: The function

f! is the least fix point of F.

However we define f! we can extend ADD'E ce EQUAI_S'E by

il

ADD _(a, b) ADD' _(f!(a), f'(b))

EQLJAL_SE(a,b) EQUAI_S'E(f'(a), fi(b))
The data type f defined by the cluster specification is the restriction
of fl toX |4, EINT’EBOO] where @ is the empty set. The equivalence

relation on [¥, S EBOO]:
f(e) is the same element as f(e!)
shows the connection with equational specifications.

Now for the declaration of parametrized types. Figure 3 shows an

equational specification of the parametrized type UnboundedArray of (EL).

PUT

Sighature

INIT

Equation set
GET (PUT(a,i,e) =e

for 1 # | PUT (PUT(a,i,e),j,e') = PUT (PUT(a, j,e!),i,e)

Figure 3. Equational specification of a parameirized type

17

Suppose E is the set of integer expressions and E is the set of

INT EL

expressions of the type EL.. Let E be the empty set so the set

ARR(EL.)

of expressions for the type specified by the equations are the words built

from E and EE using PUT, GET and INIT. We can show (COMPATIBLE)

INT

for the ~ given by the equations in Figure 3. The only non-determined

L

expressions are those of sort ARR(EL.). All these expressions are
+ —equivalent whereas
(a) PUT(a,i,e,) and PUT(a,i,e;) are not equivalent in any
operational model when e, and e, are different,
(b) PUT(PUT(a,i,e,),i,e;) and PUT(a,i,e,) are equivalent
in the coarsest operational model, but they are not
~ —equivalent.
Since there is considerable debate about what is actually defined by an
equational specification, it seems better to define this parameirized

type from the functions decode and project given by a solution of the

domain equation
Z~ Z X INTEGER x EL + (T)
The functions for the operator symbols PUT and GET are given by
function PUT(a:ARR; i:INTEGER; e:EL):ARR;
PUT : = decode (a,i,e);
function GET(a:ARR; i:INTEGER):EL;

case project (a) of

<a',i',e>: if i = i! then e else GET(a', i)

otherwise undefined,

The resulting data type can be different from that given by our equations
in that there is no reason why decode should give the same value for

the arguments PUT(PUT(a, 1,e,),2,e;) and PUT(PUT(a,2,e,),1,e,).

18

This remains true even if the second equation is replaced by

GET(PUT(a,i,e),j) = GET(a,]) for i# j because projecto decode

need not be the identity.
However we declare the parametrized type UnboundedArray of (eL),
it can be used in such declarations as:
cluster
STACK(EL) = record
contents: UnboundedArray of (EL);
pointer: INTEGER;
end record;
within
function NEW : STACK;
NEW. pointer : = 0;
procedure PUSH (s: STACK, e : EL);
begin PUT (s.contents, s.pointer, e);
s.pointer : = s, pointer + 1;

end procedure;

procedure POP (s: STACK);
s.pointer : = s, pointer - 1;
function TOP (s: STACK), EL;
TOP : = GET (s.contents, s.pointer);
end cluster;
Here NEW, PUSH, POP and TOP are polymorphic operations with formal
types STACK and EL. Like LOOK they lose their polymorphism when
these formal types are bound to actual types. The actual itype to be bound

to the formal type STACK is given between record and end record. As

soon as we have a set EEL_ we get a set Ear‘r‘ and a data type g that gives

a meaning to the PUT and GET expressions in the cluster declaration.

1f we take Ea X E

re X Binteger 35 Estacke We 96t data types: NEW , PUSH,,

POPg, TOPg. These data types induce a data type for the cluster as
a whole by:
flole, «v. g) = Gg(f(el) ... e))
This data type should be compared with that given by the analogous con-
struction for the declaration
cluster
STACK(EL) = record
if not empty
then (head: EL; tail: STACK(EL))
end record; (* see Figure 4 *)
within
function NEW : STACK;
NEW. not empty : = FALSE];
function PUSH (s: STACK; e: EL): STACK;
begin
PUSH. not empty : = TRUE;
PUSH. head : = e; PUSH, tail : = s;

end function;

function POP (s: STACK): STACK;

POP : = if s.not empty then s. tail else undefined,

function TOP (s: STACK): EL.;

TOP : = if s.not empty then s. head else undefined,

end cluster.

19

20

If we want to allow for errors and other stack operations, this decla-

ration is easier to modify than the equivalent equational specification

It

POP (PUSH(s, e)) s

TOP (PUSH(s, e)) e
Our declaration used a recursive data type [10, 11, 1] for presenting
a solution of the domain equation Z~ (T) + Z x EL.; it can be reformulated

using the equation functions decode and project instead of record field

selection.

NEW PUSH(NEW, e,) PUSH(PUSH(NEW, e), ;)
= decode(T) = decode(decode(T), e,) = decode(decode(decode(T), e), €,))
€
€ €o
I —|

Figure 4. VValue of Stack Type

As another example of the use of recursive data types we give a cluster
specification for unbounded arrays
cluster
UnboundedArray of (EL) = record
if not empty
then (rest: UnboundedArray of (EL)
index: INTEGER
contents: EL)

within

21

function PUT (a: ARR; i: INTEGER; e: EL): ARR

begin
PUT.not empty : = FALSE;
PUT. rest = a,
PUT. index =i
PUT. contents = e

end
function GET (a:ARR; i: INTEGER): EL
begin
if a.index = i then a.contents

else if a.not empty then GET(a. rest, i)

else undefined

end clusier,

4, IMPLEMENTATION

Now that we have a precise definition of a data type, we can tackle the
problem - when can one data type T, be represented as another T, without
affecting the resultis of computations. The first solution of this problem
was given for another definition of data types [3] The key idea is:
operations on T, can be simulated by operations on T,. For operations

g, from T, to T, simulation means the existence of functions rep and

0, such that the following diagram commutes

Analogous diagrams can be given for any operation on T, .

22

The strong tendency to change the direction of rep arrows in such
diagrams is a sign of the subtlety of the data type problem. Much discussion
was provoked by an arrow reversal in a recent description [14] of how
one might generate g, automatically from rep and g, .

How can we use the idea of simulation, if we accept the definition
of data type in the last section? The natural suggestion is to say that the
data type f;: E; =+ \V; can be represented by fy,: E; = V; if there are

functions encode and decode such that the following diagram commutes:

encode
= E
‘ | -
V, == Ve
decode

This is not quite adequate and becomes less so if one does not resist
the temptation to reverse the bottom arrow (the counterpart of the rep
arrow in the earlier diagram). The reason why it is not adequate is that
it forces:

an undefined computation remains undefined

if one type is represented by another;
and this seems too stringent. It seems better to give a more general defi-
nition which reduces to the commuting of our diagram when f, is always

defined and the partial order on V, is identity.

Definition A function encode: E, -+ E, represents a data type f,: E, * V,
as a data type f,: E; #+ V, if and only if there is a monotone function decode
such that

(1) f, © decode o f, 0 encode

A data type f; can be represented as a data type f, (abbreviated f; <<f;)

if there is a function encode that represente f, as f;.

Lemma << js transitive and reflexive,

Proof: Taking the identity for both encode and decode gives reflexivity.

Sl;lppose we have encode, : E; =+ E;, encode,: E;, # E;, and monotone
decode,: V, =V, , decode,: Vy @V, such that

f, © decode, o f, o encode,

f, € decode, o f; 0o encode,
From the second inclusion we get

f, o encode, C decode, o f; 0o encodes o encode; .

From the first inclusion and the monotonicity of decode, we get

f, © decode, o decode, o T3 0 encode, o encode, .

The transitivity of << is proven. O

Theorem Representations do not collapse types.

Proof: Suppose we have data types f,: E; »+ V,; 3! E; +V,, and
functions decode and encode satisfying (1). Suppose e, and e, are
elements of E, such that

file) S vafi(e)=v

fileg)cvafi(e)=v.
From (1) we infer

f, (e,) = decode o f, o encode (e,)

f, (e;) = decode o f, o encode (e;)
If we do not have f, (e;) = f, (e;), we cannot have f, o encode (e,) =

f, 0 encode (eg) and our proof is complete. a

23

24

How can we represent a data type f; that is specified by a set of
equations over a signature L7 Suppose we have a set ES for each

s in SORT(Z). If we also have a type f,: E;, =\, and a function

encode: E(ES) + E,, we can define an equivalence relation = on
Z[E_] by

e = e! if and only if f, o encode (e) = f; o encode (e!).
In the case when = is a model of the equational specification, we can

define decode by

decode (v) = the ~ equivalence class containing e

for all e such that f, o encode (e) = v

and we have encode representing the data type f; specified by the
equations as f,. Suppose the type f,: E; + V, is also specified by a set
of equations over signature 2. If we have

e = e! can be derived from the first equation set

= e = e! can be derived from the second equation set
then any model of the second equation set will be a model of the first
equation set. By the argument above identity represents the data type
for the first equation set as the data type for the second equation set. These
data types exist if the second equation set is consistent:

e = e! can be derived for at most one e! in ES.

Lemma For any data type f: E @ V such that f(E) = VV there are data types

? and f such that
A,
(a) f is a retract
(b) the value set ofE is the quotient of E by an equivalence relation

(c) f, << f, for f;,f, in<f, £, F>

25

Proof: Define the equivalence relation ~ on E by

e~ el o fle) = f(e')
Definef(e) as the equivalence class containing e. Pick representatives
of the equivalence classes. Define 1/°\(e) as the representative ofE(e).
Clearly (a) and (b) are satisfied. Take the identity on E as encode.
As f(E), <°\(E) and E(E) are order isomorphic we have decode for each

choice of f; and f, in (c). O

Comment This lemma shows the connection between our definition of
a data type, the Scott definition [7] and the algebraic definition [6].
The tedious requirement "f(E) = V' can be satisfied by "adding expres-
sions to EM" ~ this is most artificial when f is totally defined but we have
to add an undefined expression because the partial ordering on V has a

least element | .

Lemma Letf,: E, @V, and f,: E; ? V, be data types. If E; is a subset

of E; and f; is the always undefined function, then f;, << f,.
Proof: Take identity as encode and the constant function as decode. [

Comment In section 3 we defined a data type fE for each signature 2.
Our lemma gives fZJ << fE for any data type fE given by a Y-algebra.
If Es is both the carrier of such an algebra and the expression set of a
type fS: ES - \/S,

decode and identity as encode.

then we have fS < fE because we can take fS as

26

In the last section we gave a partial solution to the theoretical
problem: When can an actual parameter of type T be substituted for a
formal parameter of type T!? The similarity of the partial solution to the
preniss of the last lemma suggests T! << T as the complete solution. If
we bind an actual parameter f: E <+ V to a formal parameter of type T!,
then the value of a formal expression e is fo encode (e). Polymorphic
operations like LOOK and parametrized types like STACK(EL) become
data types, when formal expressions acquire values., Programming lan-
guages should only allow declarations of polymorphic operations and
parametrized types that satisfy

(MONOTONICITY) f, << f, = G(f)) << G(f;)
where G(f) is the data type given by the declaration for actual parameter f.
Suppose G!(f) is the data type given by some other declaration for the
same actual parameter f. If the two declarations accept the same actual
parameters, and we have

(UNIFORMITY) G(f) << G!f) for all actual parameters f
we can prove such statements as

G(G(f)) << GYG!(ff)).
In this way we can verify that such declarations as

SymbolTable = STACK(STACK(ENTRY))

do not depend on the way STACK and ENTRY are implemented.

27

5. VERIFICATION

In this section we describe three useful techniques for proving that a
function encode: E; + E, represents a data type f, : E, »V, as a data
type T, 1 E; - Vyistructural induction, arrow reversal, generator induc-
tion. For most data types that occur in practice f,, f, are least fix
points of functionals Fy: (E; + V,) 2 (E; » V), Faoi (B, * V) 2 (E, » V).
We say that f is the least fix point of the functional F: (E = V) = (E = V)
if for every e in E we have
W F(L) e gle) & fle) < gle)
where 1 is the always undefined function. When the partial order < on
V is such that directed chains have least upper bounds we can write this con-
dition as
fle) = UFN() e
and continuity gives F(f)e = f(e) for all e. What do we mean by continuity
here? The usual definition is in terms of partial orderings on sets like
E <+ V. In computing practice only the following special case arises
(CONTINUITY) Me.dn. FYU) e = (e)
and we can infer this when F has the property
gle) = L or Flgle) = gle)

for any e in E and any g = F'(L).

Example

Let A be any Z-algebra. The corresponding data type is the least fix
point of the functional

Flglo[e «.. g]) = oler) ... gle).
Assume the value of N is undefined if any of its arguments is undefined.
The value F(L) e is defined if and only if e has operator depth < n+1; it

is the same as F-'n(_U_) e if e has operator depth < n.

28

Suppose we have encode: &£, + E,, decode \V, + V, such that

(1) F, (decode o fo encode) (e) < decode o F,(f) o encode (e)

(MONOTONICITY) f(e) < f'(e) = F, (f) (e) = F, (f') (e)

From L =1 (e)< decodeo A, o encode (e) we can infer

F:< (d,)ec K (decode o A, o encode) e

1
o Fl?—1 (decode © FZ(LE) o encode) (e)
K
C decode 0 Fz (dL;) o encode (e)
By (CONTINUITY) we have K such that
fle) = FR (1,)e

fle) = FH(lL,)e
for any e in E, . Substitution now gives
f, © decode o {, o encode

We have proved f, << f, by structural induction.

Example

Suppose A and B are L-algebras. The corresponding data types are the
least fix points of the functionals

Fufdo[ey oo &) =0 (fley) ... flg))

Fo(f)lol ey «vv &) = og(fley) ... fley))

Requirement (1) becomes

O‘A(decode o fo encode(e,) ... decodeo fo encode(e,))

< decode o O'B(f o encode(e;) ... fo encode(e,)).

29

We can infer this from
(2) (JA(decode(b1), ... decode(b, })) © decode o (;B(b1 cee b))
Although we can also infer (2) from

()'A(decode(bl), ... decode(b, }) = decodeo g_(b, ... b)

B
It is usually much easier to prove (2) directly — to require decode to be

a Z-homomorphism is to require too much.

Example

In section 2 we had two declarations of types for rationals. L et

f,: E, #V,; be the data type for the declaration inwhich rationals were

A
"fractions in lowest terms", and f,: E; » \/; be the data type for the de-
claration that avoided incessant renormalization. Define decode by
decode (v) = if v is a rational then Normalize(v) else v.

Requirement (2) becomes

ADD, (Normalize(a), Normalize(b)) © Normalize o ADD, (a,b)

CREATE, (a,b) < Normalize o CREATE, (a,b)
NUMERATOR, (Normalize(r)) < NUMERATOR, (r)
DENOMINATOR, (Normalize(r)) € DENOMINATOR, (r)
EQUALS, (Normalize(a), Normalize(b)) © EQUALS, (a,b)

The cluster definitions give V, =V, = Integer® + Integer where

il

integer =(... -1,0,1,2...). If a' = Normalize(a) and b' = Normalize(b),

there are integers k and | such that

a.N=kx a'.N a.D =kx a'.D

I x b'.N b.D I x bt.D

I

b. N
Since Normalize(x,y) = Normalize(k x | x x, kx | x y) for all integers

X,¥,k, ! we have

30

Normalize(a'.N x b'.D + a'.D x b'.N, a'.D x b'.D)

= Normalize(a.Nx b.D + a.D x b.N, a.D x b.D)
and this is ADD, (Normalize(a), Normalize(b)) = Normalize o ADD, (a,b).
Because the representation of a rational in lowest terms is unique, we
have

a'."N =b'.N AND a'.D =b'.D #» a.Nx b.D =a.D x b.N
and this is EQUALS, (Normalize(a), Normalize(b)) = EQUALS; (a, b).
The inclusions for CREATE, NUMERATOR, DENOMINATOR are

Normalize(a,b) € Normalize(a,b)

Normalize(r).N < Normalize(r).N

Normalize(r).D © Normalize(r).D
so they require no proof. We have verified that f, can be represented
by ..

Our next verification technique is arrow reversal: to infer f; << 1,
from

(3) projecto f; © f, o encode and decode o project(v) = v.

Suppose we have encode : E; » E,, project V, =+ \, such that
(4) projecto fle)= f!' o encode(e) = project o F, (f)(e) = F,(f!) o encode(.e)

We can infer

project o Fl; (l,)ec F—'Z (1) o encode(e)
from project (1) = project (ll,) e< I, o encode(e).

By (CONTINUITY) we have k such that
fle) =F (L) e
f(e) = FS (1) e

for any e in E,. Substitution now gives

projecto f, (e) < f, o encode (e).

31

Example

Suppose A and B are L-algebras. Define F, and F, as before. Require-
ment (4) becomes
projecto f(e) < f' o encode(ofe; ... g |)
= project o o'A(f(el) ... fle,))& GB(f'(encode(el) ... fli{encode(e,)).

This is satisfied when each O'B is monotone and

project o oA(f(el) ... fle,)) C GB(Qr'o]ect o f(e;) ... project o f(e,))

for all f, o, &, ... & . Thus we can infer (4) from
(5) projecto o'A(al ...)C GB(Er‘o]ect(al) ... project(a,))

or the unnecessarily strong: project is a Z-homomorphism.

Example

Once again let f; and f, be the data types for the two declarations of the
rationals. Define project as the identity, and decode as before. We can

verify f, << f; by proving decode o project(r) = r and

ADD, (a,b) < ADD, (a, b)

CREATE, € CREATE;, NUMERATOR, < NUMERATOR,,

DENOMINATOR,; € DENOMINATOR;, EQUALS, © EQUALS,
for the appropriate partial order on \/,.

We define the partial order < on VV, by

vC vl <«=> v and v! are the same
OR v = Normalize(v')

We have to prove Normalize(r) = r and the inclusions

Normalize(a.N x b.D + a.D x b.N, a.D x b.D)

< (a.Nx b.D+a.Dx b.N, a.D x b.D)

Normalize(a',b') < (a',b')

32

r.N = Normalize(r).N
r.D = Normalize(r).D
(a.N =b.N) AND (a.D =b.D) = (a.Nx b.D =a.D x b.N)

where a, b, r are normalized. As not all pairs of integers are in

f, (E,), this set of inclusions is easier to prove than our earlier set.

Our third verification technique is generator induction. If we
define project™ by
project”(a; ... a,) = <project(a,) ... project(a,)>
we can write requirement (5) as
(6) project o O'ACQ'BO project™,
and this is none other than (3) with project” in the role of encode.
If we define decode® by

decode™ (b, ... b,) = <decode(b

%) ... decode(b,)>

we can write requirement (2) as

(7)

N 0 decode™ C decode o og-

Since decode 0 project is the identity, this gives

OAC decode © Og © project”.

The operations o, and g are data types in their own right and we have
p A P

B

< g from either (6) or (7). Generator induction is our name for

oA B

proving (6) or (7) by induction on the "structure of V, .

Example -

In the last section we had two declarations for STACK[EL]. Choose
any data type as EL.. Let f,: E; » V, be the data type for the declaration
in which stacks were unbounded arrays, and f,: E; + V, be the data

type for the other declaration. Define decode: V2V, , project: V, =\,

33

and the partial order © on V, by (see Fig. 5)
project (PUSH(... (PUSH(NEW, e;),e,) ... e,-)
= <a,p>

where GET(a,i) =if 0= j<p then e, else L

project (Lg) = L srg
decode (a,p) = PUSH(... PUSH(NEW, e,),e1) ... e, ;)
where ¢, = GET(a, |)

- 1

decode (J"ARR) ST
<a,p>C<al,p!'> <=> <a,p> =<a’,p'>
OR GET(a,j) =if0=<j<p then GET(al,j) else L

Clearly we may not have project o decode(a,p) =<a,p>, but we do have

decode o projeci(s) = s and project o decode(a,p) < <a,p>.

& p

decode (g & l€e ... €y |8 §) = PUSH(. .. PUSH(NEW, &;), e,).

e €

B
project (PUSH(...PUSH(NEW, e,),e)...€,~) = ?_l__L & € «.. €pm|l _Lg

o p o q
; & e ... e | L % C§ do [dy vee dymy | dy é
<=> e = d; for i=0,1,...p~-1

Fig. 5 Maps between stacks and unbounded arrays

To prove that the data type f, can be represented as the data type f,,
we can prove

project o NEW, € NEW,

project o PUSH, (s, e) © PUSH, (project(s), (e)

project o POP, (s) < POP, (projeci(s))

TOP, (s) C TOP, (project(s))

34

Since project(NEW) = < 1,0>, we have the first inclusion from:
<L ,0>C<a,p> for all a,p. Now suppose
s = PUSH(...PUSH(NEW, e;),e,)...e,~) and <a,p> = projeci(s).
For p> 0 we have

project © PUSH, (s,e,) =<a, ,p+1>

project © POP, (s) =<ay,p-1>

TOP, (s) =€,

fi

PUSH, (<a,p>,e,) <PUT(a,p,&,) ,p+1>

POP, (a, p) <a,p-1>

TOP; (a, p)

il

GET(a,p-1)

It

where GET(a, j) if0< j<pthen e, else L

GET(a,,]) = if0<j< p+lthen e, else L

GET(as,) =if0< j<p-1thene; else .L

Our inciusions become
e, = GET(PUT(a,p,e,),j) for 0= j=p
e; = GET(a,]) for 0< j< p=1
€pmy = GET(a,p-1).

In the case when s is NEW, or | the inclusions are also satisfied

—sST?
because project o POP, (s) and TOP, (s) are undefined.

Since we can formulate the proofs of these inclusions without information
about EL., they ensure that stacks can indeed be represented by unbounded

arrays.

35

REF ERENCES

[1] C.A.R. Hoare: Notes on data structuring, in [13].

[2] ©O.J. Dahl, C.A.R. Hoare: Hierarchical program structures, in [13].

[3] C.A.R. Hoare: Proof of correctness of data representations,
Acta Informatica 1 (1972) 271-281.

[4] CLU, MESA, ALPHARD: see Comm. ACM 20 (1977) no. 8.

EUCLID : SIGPLAN Notices 12 (1977) 1-79.

[5] DOD requirements for high order computer programming languages,
Springer Lecture Notes in Computer Science 54 (1977) 446-496,

[6] J.A. Goguen, J.W. Thatcher, E.G. Wagner: An initial algebra
approach to the specification, correctness, and implementation
of abstract data types, IBM Research Report RC6487 (1977).

[7] D. Scott: Data types as lattices, SIAM J. Comp. 5 (1976) 522-587.

[8] J.A. Goguen: Abstract errors for abstract data types. IFIP Conf.
on Formal Description of Programming Concepts (1977)
21.1-21, 32,

[9] J. Guttag, E. Horowitz, D.R. Mosser: Abstract data types and

software validation. USC Inf. Sci. Inst. Report RR-76-48
(1976).

[10] M. Ward: Final Algebra semantics and data type extensions,

indiana Univ. Tech. Report 65 (1977).

[11] C.A.R. Hoare: Recursive data structures, Int. J. Comp. Inf. Sci. 4

(1975) 105-132,

36

[12] Short version of this preprint, to appear in Springer Lecture

Notes in Computer Science, Proc. MFCS 78.

[13] O.J. Dahl, E.W. Dijkstra, C.A.R. Hoare: Structured Programming,
Academic Press 1972.

[14] J. Darlington: Program transformation involving unfree data

structures, 3eme Coll. Int. sur la Programmation (1978) Paris.

	20051003152714_Page_01_Image_0001.tiff
	20051003152714_Page_02_Image_0001.tiff
	20051003152714_Page_03_Image_0001.tiff
	20051003152714_Page_04_Image_0001.tiff
	20051003152714_Page_05_Image_0001.tiff
	20051003152714_Page_06_Image_0001.tiff
	20051003152714_Page_07_Image_0001.tiff
	20051003152714_Page_08_Image_0001.tiff
	20051003152714_Page_09_Image_0001.tiff
	20051003152714_Page_10_Image_0001.tiff
	20051003152714_Page_11_Image_0001.tiff
	20051003152714_Page_12_Image_0001.tiff
	20051003152714_Page_13_Image_0001.tiff
	20051003152714_Page_14_Image_0001.tiff
	20051003152714_Page_15_Image_0001.tiff
	20051003152714_Page_16_Image_0001.tiff
	20051003152714_Page_17_Image_0001.tiff
	20051003152714_Page_18_Image_0001.tiff
	20051003152714_Page_19_Image_0001.tiff
	20051003152714_Page_20_Image_0001.tiff
	20051003152714_Page_21_Image_0001.tiff
	20051003152714_Page_22_Image_0001.tiff
	20051003152714_Page_23_Image_0001.tiff
	20051003152714_Page_24_Image_0001.tiff
	20051003152714_Page_25_Image_0001.tiff
	20051003152714_Page_26_Image_0001.tiff
	20051003152714_Page_27_Image_0001.tiff
	20051003152714_Page_28_Image_0001.tiff
	20051003152714_Page_29_Image_0001.tiff
	20051003152714_Page_30_Image_0001.tiff
	20051003152714_Page_31_Image_0001.tiff
	20051003152714_Page_32_Image_0001.tiff
	20051003152714_Page_33_Image_0001.tiff
	20051003152714_Page_34_Image_0001.tiff
	20051003152714_Page_35_Image_0001.tiff
	20051003152714_Page_36_Image_0001.tiff
	20051003152714_Page_37_Image_0001.tiff
	20051003152714_Page_38_Image_0001.tiff

