ISSN 0105-8517

COMPLEXITY OF SOME PROBL EMS
CONCERNING L SYSTEMS

by

Neil D. Jones
and

Sven Skyum

DAIMI PB-85 (Revised version)
February 1979

Computer Science Department

— | | I
AARHUS UNIVERSITY ] T T |

i=

Ny Munkegade —~ DK 8000 Aarhus C — DENMARK R 7
Telephone: 06 — 12 83 55 | | IT




ABSTRACT

We determine the computational complexity of membership, emptiness
and infiniteness for several types of LL systems. The L systems we consider
are EDOL, EOL, EDTOL, and ETOL., with and without empty productions.
For each probliem and each type of system we establish both upper and lower

bounds on the time or memory required for solution by Turing machines.




1. INTRODUCTION

The theory of computational complexity (see [ 1 ]) has made it possible
to compare previously studied language families in a new way - by the
relative complexity of their decision problems. Recently several authors
have examined the complexity of some questions concerning L. systems,
a family of language-generating devices which are similar to context—free
grammars but which interpret the productions as parallel rewriting rules
(see [ 4] for an introduction). In this paper we obtain both upper and lower
bounds for the complexity of the general membership, finiteness and empti-
ness problems for several classes of L systems.

We begin by summarizing previous resulis in this area. Van LLeeuwen
[ 17] showed that there is an ETOL system G such that L(G) is complete for
ne (the family of languages nondeterministically recognizable in polynomial
time). He also showed [ 16] that EOL membership (for fixed systems) may be

decided deterministically in time n3' 81

, and Sudborough [13] and [ 14] gave
a (log n)z space algorithm for the same problem, based on a construction

by van Leeuwen [ 18]. Sudborough [ 14] also gave a deterministic log n
space algorithm for EDOL membership, and showed in [ 13] that some linear
languages (and hence some EOL and deterministic ETOL languages) are
complete for nondeterministic log space. Harju [3 ] showed that each deter-
ministic ETOL language can be recognized in polynomial time. Jones and
Skyum [ 7] showed that EDTOL membership is complete for nondeterministic
log space, using an independently discovered algorithm similar to that of

[ 37]; and the same result was again independently shown in [ 14]. Vitényi

[19] showed that general membership for PDOL systems and infiniteness

for DOL. systems can be decided deterministically in polynomial time.




In this paper we establish bounds on the complexity of the emptiness
and finiteness questions for each of the classes ETOL, EOL., and their de-
terministic and propagating versions, as well as bounds on the general
membership problem (that is, to determine whether x € L(G), if given both
x and G as data). ln each case an upper bound is established by exhibiting
an efficient algorithm to solve the problem, and analyzing its time or space
requirements. The lower bounds are established by reducibility arguments.
In most cases the problems are complete for NP or PSPACE. Tight bounds
are established for space requirements of many problems.

The previously published results concerning L. systems, with the
exception of [197], establish the complexity of deciding membership in L(G)
for fixed G. The general membership problem can be significantly more
complex. The most extreme case is the EDTOL systems - each LL(G) may be
recognized in log n space, but deciding whether x € L(G) if both x and G
are given as inputs requires essentially linear space (both by nondeterministic
algorithms).

In general it appears that problems about propagating systems are of
the same complexity as those for non-propagating systems, although some
upper bound constructions are complicated by the presence of A -productions,
and lower bound constructions are complicated by their absence.

In section 2 we briefly review the relevant terminology about com-
plexity and L systems. In section 3 we introduce some definitions and lemmas

N
which will be used throughout the remainder of the paper. These will be used
to efficiently simulate derivations in which large numbers of symbols are gen—
erated and then subsequently erased. Most of the complexity bounds for
the membership question are established in section 4, the exceptions being

several N lower bounds which are corollary to results of section 5, where



bounds on the (non) emptiness and infiniteness problems are established.
Each section begins with bounds for the most general LL systems and pro-
gresses towards the simpler versions, Finally, section 6 contains a
summary of results, in the form of a table. The reader may wish to con-
sult this table while working through sections 4 and 5, for the sake of

perspective.




2, NOTATION AND TERMINOLOGY

We recapitulate here the definitions from computational complexity
and L systems theory which are relevant to our results. The reader may

find more leisurely and motivated descriptions in [ 1] and [ 4 ].

Complexity definitions

The classes of problems solvable within limited time or space bounds

are defined as follows:

DSPACE(S(n)) = { L | L is accepted by some deterministic offline
Turing machine which operates within space S(n)

on all inputs of length n}

NSPACE(S(n)) is defined analogously for nondeterministic Turing

machines, and DTIME(S(n)), NTIME(S(n)) are defined similarly for the time

measure.

The important classes P, NP and PSPACE are defined by

P - U bdTIMERS)
k=1
ne = U NTIME(RS)
k=1
PSPACE = |J DSPACE(RS) = U NsSPACE(R)
k=1

LetlL,Mc Z¥*, We say that L is reducible to M just in case there is
a polynomial-time—-computable function f such that for all x, x &€ L if and

only if f(x) € M. We say that M is WP —-hard if any se} inh$ is reducible to
M. M is complete for NP if M is NP ~hard, and M is in NP . To show that a

problem M is NP -hard it suffices to show that some other problem already




known to be NP ~hard is reducible to M (this follows since reducibility is
transitive). Hardness and completeness can also be defined for PSPACE,

in the same way.

L. system definitions

Definition An ETOL system is a construct G = (V,P,w,Z) where
a) V is a finite alphabet.
b) w € V+ is a word called the axiom.
c) P is a finite set of tables of which each element T is a finite
binary relation, TS V x V¥, such that for every symbol a from
V there exists &¢ in V¥ such that <a,q> is in T. <a,a> € T is

usually wriiten a —_o&¢ or a —= ¢ if it is clear from the con-

T
text which table T is meant.

d) L c V is called the target alphabet.

If for every T in? and for every a in V there exists exactly

one @ in V¥ such that a —s @ then G is called deterministic. If for every

T in P we have that T C V X V+ then G is called propagating. If there is only
one table in G then G is called an EOL system and we write G = (V,P,w,%Z)
instead of G = (V, {P},w,Z).

We wiil use the letters P and D to denote the deterministic and pro-
pagating restrictions respectively. Thus e.g., EPDOL. denotes a propagating

and deterministic EO0L. system.

Definition LetG = (V,P,w,Z) be an ETOL system.
a) Let x = A8y .08, k=0, @580y 0 0,8 € V. Let T be a table in

P, and. let y € V¥, We write x=_y if there exist O qsOnyene t

T




in V¥ such that a, —= o, for 1< i<kandy =040, . .0, . We write ><:(;>3 y

T
if x:>.|_y for a table T in P. G may be omitied if clear from context.
b) =>¥% denotes as usual the transitive and reflexive closure of the binary
G
relation= on V¥ x V¥, Again G may be omitted.
G

c) The language of G, denoted L(G) is defined by L(G) = {xeo* \ w=¥ x|,

Notation

Throughout this paper p will denote the cardinality of V. If x € V¥ then
Alph(x) denotes the minimal alphabet A € V such that x € A¥, A derivation
in an ETOL system G = (V,P,w,S) is a sequence of words PP DY 20

in V¥ such thatc)g1 =w and oﬁ,i:ai 1 for 1< 1 < k. A derivation is written

+
o, = Q§2=> e ak. An occurrence of a symbol a in ai is productive with
respect to the derivation if it derives a nonempty subword of o .
We call a symbol a € V dying if a=% XA. The set of dying symbols,

{a€ Vv | a=*X}] will be denoted by . Note that ifa=% X thena=P \.

d

——

All nonproductive symbols are dying, but a dying symbol might occur as a
productive letter in a derivation. Whenever an L. system is an input to an
algorithm, it will be encoded as a word in the following manner.

An alip~habet Vo= {v1, Voseees vp} is represented by the word
Vo= [\/T; \/E; ‘e ;\/5] where T is the binary representation of i. This can
naturally be extended to words and productions. We will encode an ETOL.
system G = (V,P,w,X) as the word G = [V,K’—,W,f] over the alphabet

{Vv,0,1,[,3;],—=}. Note thatp logp = O(|G|).

The problems we discuss may all be represented as membership questions
for the following sets. Let C denote any L system class, and let x denote

the obvious coding of the word x € T *,




1. NONEMPTYC = (G| G is in C and L(G) # &)
2. INFINITEC = {G| G is in C and L(G) is infinite}
3. MEMBERC  ={<G,%> | Gis inC and x€ L(G)]

4, L(G), for a fixed system G in C.

Note that an upper complexity bound for a problem is automatically

an upper bound for a subproblem. Thus, for example, the upper bound on

EFPOL EDOL

MEMBEREOL also applies to MEMBER and MEMBER . Similarly,

a lower bound for a subproblem is also a lower bound for the general problem.




3. DERIVATIONS WITHOUT DYING LETTERS

The upper bound constiructions are complicated considerably by the
need to handle systems containing A —productions. For example an EDOL
system may in n steps derive strings containing more than 2" symbols,
all of which are then erased in one step by applying a single A —production.
This causes siraightforward simulation of even short derivations to use
excessive amounts of time and space.

The following definitions and lemmas will be used to provide time~
or space-efficient simulation of LL system derivations.

Let @g1 = gt2:> ... >, be aderivation in an ETOL. system. Such a

K
derivation will be simulated by storing for each ai a pair (ﬁ,B), where B
is the set of nonproductive symbols occurring in ggi, and B is (xi with the

nonproductive symbols removed. Following are some definitions which will

be helpful in explaining just how this can be done.

a) For A,B ¢ V we define A~»_ B if and only if there are u,v € V¥

-
such that u SV, A = ALPH(u) and B = Alph(v). We define A~»B if
AMTB for some T in P. A~—*B, A~ B and AMKB are defined

in the usual way.

b) For o, € V¥ and A € VV we define o <A g if and only if we can write
o= a1a2. . .aI< and g = xoa1x1a2. . 'akxk+1 where ai € VvV and
xJ.EA* for 121k, 0= j<k+1.

Note that ¢ <A g for any A,a, and o <¢ B if and only ifa = 8.
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c) Fora,B € V¥, A,BcV and table T inP we define (a,A) = B,B)

if and only if

1) we can write @ = aja,...a, B =B,8,...8, where for each
i=1,2,...,k there is a production a; v, in T such that
B
AFEBL<T Y,

i) A“““I'l_ C for some C € B
The relations =, :>+, =%, =>k are defined in the usual way.

Note that | implies |a| < |B]. In the EOL and EDOL cases

we omit the T, since there is only one table.

The following lemmas show that the pairs (o, A) may be used to

faithfully simulate derijvations in an ETOL. system. Let the system be

[

G =(V,P,w,Z). The goal is to show that for each derivation

w = WO:> Wi = W € % of G there is a corresponding derivation
! 1 !

(Wo A= (W A )= L= (wk_1,Ak_1)=> (wk,¢), and conversely. At

each step Wi' will consist of the productive letters in Wi, and Ai will

contain all letters in w, which yield A in this derivation.

Lemma 1

I_eta:}»_l_ B and B ¢V for some g, € V¥ and T € P, Let
A={a|a-=y €T for somey € B¥|. Then for all 3! with g! <BB there
exists an @' € V¥ such that

a' <™ o and (@', A) = (B',B)
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Proof
Leta =a,a,...a and =-,81BZ...,8k where a. - B, €T fori=1,...,k.
Decompose B! into 8! =B1'B2'...Bk' so B‘i <B B; for i= T,e..,ke Letg!
be the word obtained from o« by removing each ai with /S‘i = A.
Now X =;3i' B ﬁi implies B, € B¥*, so that a, € Aj; consequently

A

a' <" g. Further, (ai,A) > (B‘i,B) for each a, ina', hence (a',A)éT(,B‘,B)-

O

Lemma 2
Let g’ <A@g and (¢!, A) > (8',B) for some @,a',B' € V*, T € P and

A,B < V. Then there exists a 8 € V¥ such that o=, B and g! B B.

roof

Letep! =a....a and g = X2 ,X,...a, X Wher‘eaiEVandx-éA*.

1" 0 171 S

For each i let a; v, be a production in T such that 8! =,81,82.. -B) and
B
By <",

Since A“’"} C for C ¢ B, there must exist strings Vi € B* such

k

that X B Vi We now choose B = Vo 1Vi¥ 2+ Y Vie Clearly o= B,

| = B B -
and 8 '3132"'Bk< Yo < Vor Vi YV B. O
Lemma 3

Let G =(V,P,w,X) be an ETOL (EOL, EDOL) system, and @, € V¥*.
Thena =% B if and only if (a',A) =% (B8, ®) for some A € V and some o'
with ! <A . Note that A < Vd.

Pr oof

Easy from the two preceding lemmas. O
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4, THE MEMBERSHIFP PROBLEM

We first establish upper and lower bounds for ETOL membership which
are very close to NSPACE(log n), and see that the same bounds apply to
various restrictions of the ETOL. systems and to some emptiness and infinite-
ness problems (Theorem 4 through Corollary 7). We then show that EOL
membership is in NP (Theorem 9), EDOL membership is in  (Theorem 12),
and that EDOL membership requires at least logarithmic space (Theorem 13).
A lower bound of NP for EOL membership will result from Corotllary 21 of

section 5.

Theorem 4

meEMBERETO-

€ NSPACE(n log n).
Proof
LetG =(V,P,w,X) be an ETOL system. By Lemma 3, x € L_(G) if and
only If (w!, A) =% (x,®) for some A € V and w' € V¥ such that w!' <Aw. To
test x € L(G) it suffices to guess A and w!, and (nondeterministically) generate

a sequence

I =
(w', A) (WO,AO)=>(W1,A1):>... ::>(wk,Ak),
accepting x just in case a pair (Wk’Ak) = (x,®) is obtained. Note that

[wo\ < |w1| <...=]|w_|, and that only two consecutive (Wi’Ai) pairs

k!
heed be stored at any time,

Recalling that n is the length of <5,>_<>, we see that this can be done
in space n log n by storing Ai as a bit vector and wi directly. The log n

factor comes from the need to encode each symbol \Z of \V as the string Vi.

O
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Corollary 5

EPTOL EPDTOL

EDTOL and MEMBER are in

MEMBER , MEMBER

NSPACE(n log n).

Theorem 6

MEMBEREFP TO ¢ NspACE(n'™) for any ¢ > o.

Proof
Let Zz = (K,Z,I,#,0, dgs { s }) be an arbitrary 1 tape Turing ma-

chine which operates in space n {#is an end marker), For any x = ageeea,,

construct the EPDTOL system G = (V , T {0}) where

n n? Wx’

v = {g,0} U |Aerando<.<n+1}UK

" {A
_ 0 1.2 n+1
w, = p # ajay...a #

For each (p,a) € (K - {qf})x T there will be a table Tp o In 3T defined

H

as follows:

If 8(p,a) = (q,b,R) then

T ={p-’q,aoﬁbn+1}uici~'ci-1lcEI‘,O<iSn+1}UG

p,a P,a

where Gp a contains d + g for every d € Vn other than
b

p,a0 or c' for c € ', 0<i=<n+1,
If 8(p,a) = (q,b,C) then
_ 0. .0 P
o,a = {p+qg,a =»b }u {c' =+ c ] c€T, 0<i<n+l} UGp,a'
If 8(p,a) = (g, b, L) then
T ={pﬂq,ao—*bwuici-’cl-u|c€1",0<i£n}

p,a
n+ 1 N c:0

Uiec | ceT}ua

p,a’

In addition, 3’n contains the table

—»Ofu§ci~»0| C€T, 0<i<ntljU{a~+g| aé(ku {g,O})—{qf}}.
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It is easily verified that Z yields an 1.D. ¢ = bO' . bi 1 P bi' ..b

n+1
iff G derives the string p p1=i+2 btﬂ-‘ b(?. .. bn_i-H . Consequently
0 -1 7i nt+1
-+ . .
L(c) = {o" 3} if Z accepts x, and L.(G) = @ if Z does not accept x. Further,

|§| = 0(n log n). Consequently L(Z) is reducible to L(G). Now suppose

MEMBEREPDTOL € NSPACE(n1_€) for some ¢, 0<¢ < 1. By [11] there

T1-¢/2

exists LL € NSPACE(n) - NSPACE(n ). Let Z be chosen to recognize L

in spacen. Thenwe candecide whether an arbitrary x € £ ¥ is in L by first

constructing G as above, letting n = |xl and y = On+3, and then deciding

EPDTOL

whether <G, y> € MEMBER . Now l<§,§>] = 0(n log n), so this

process works in space 0((n log n)1—€) = O(n1_€(log t’1)1_€);0(n1—€ nf/z) =
O(n1—€/2)

, a contradiction. 0

Corollary 7

None of the following is in NSPACE(n1_€) for any € > 0:

MemMeerEPTOL . NonempTYEPTO  inEiaiTEEP TO1, MEMBER

ETOL, lNFlNlTEETOL‘, or their restrictions to propa-

ETOL
’

NONEMPTY

gating systems.

Proof
The construction is easily modified so that L{G) is infinite if and

only if Z accepts %, giving the result for INFINITEEDTOL. The other

results are immediate. [

Remark

The following somewhat simpler consiruction yields the same re-

EPDTOL EPTOL

sults except for MEMBER and MEMBER , and may be

interesting in its own right. Given a nondeterministic finite automaton
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M =(K,Z,6,q,,F), define the EDTOL -system G = (K, {P_ | a€x},a5K-F),

where for each a € ¥,

P_ = {p=aqa,..q | 8p,a) ={ady...,q}}

it is easily seen that L{G) is nonempty just in case L(M)# L *. The

NSF’ACE(n1

~€) lower bound obtains from the fact that {R | L(R) # {0, 1} *
and R is a regular expression} is known to be in NSPACE(n) but in no
smaller space complexity class [10]. Given any R, a nondeterministic

finite automaton is easily construction to accept LL(R), so an EDTOL system G

can be built as just described satisfying L(R) # {0, 1} * just in case L(G) # @.

If A ~=productions are allowed it is easy to modify G so L(G) = H} just in
case L(G)# @, giving the result for MEMBEREDTOL.
EOL. . . : . .
We now show that MEMBER is InhP. Step-by-step simulation

would be inadequate to show this for two reasons: the problems with dying
letters mentioned in section 3; and the fact that the shortest derivation of

x in LL(G) may be of length exponential in |<§, x>|. Recall that Vd is the set
of all dying letters.

Lemma 8

Let G =(V,P,w,X) be an EOL system and let o, € V¥ with |a| = |8

Then the relation (g, Vd) =3 (B,Vd) can be nondeterministically decided in

time polynomial in | <G, x>

-

Proof

Leta=a1a2...a 9"

Then the following statements are equivalent:

and B = b,b - by (each a:sb; € V) and letr > 0.

K
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(1) (@,vy) =" 8,V

(2)  (a,Vv,) =" (b,V,) for eachi=1,2,..., k.
(3) a, =" x.b.y. for some x.,v, € Vd*
and each i = 1,2,...,k.

We decide (3) by forming a V x V connection matrix M, where for each

a,b € V

1 ifa- xby is in P for some x,y € Vd*

m(a,b) =
0 otherwise.

Then Mr(a,b) will be 1 exactly when a =" xby for some X,y € Vd'*

(where M" is the r'th power of M, using and-or matrix multiplication).
2
There are only 2P distinct connection matrices, so it suffices to guess

2
anr < 2P | and test condition (3) for this r.
2

r : : 1.2 4 2P
M may be obtained by computingM ,M", M",... , M by repeated

squaring, and multiplying those matrices which correspond to ones in the
binary representation of r. Clearly each of these steps may be done in

time polynomial in | <G,X>|. |

Theorem 9

oL

MEMBEREO- ¢ np.

Proof

Let G =(V,P,w,Z) be an EOL system. According to LLemma 3, x € L(G)

if and only if x€ T ¥ and (w',A) =*(x, @) for some A c V and w' < AW. Observe

that A & \/d, so \/d could be used instead of A.
Recalling that (a,A)= (3,B) implies |a| = |B8|, we see that

(wh, v )=* (x,®) if and only if
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1) (w',\/d) =" (x,®) for some r < p; or
2) there exist k (0 < k< |x|) and strings ai”Bi EV¥(1=2i5Kk)

such that IOAT‘ = ]B.,\ < ]&1\ = 132\ el < m‘-ki = llgk1 and

! * *
(wh, V)= (e, V)= (B> Vy)= (cxz,vd):> By V)=
= e, V) =¥ (Bk,\/d):>p (x, D)
Following is a decision procedure based on these remarks.
Vd

choose ¢ < w;
if (o, Vd) =" (x, D) for some r < p then accept;
for i=1,2,...,|%| do
begin choose 8 so that |@| = |8| and (o, V) =™ (B, V)

if (B,Vd) =P (x, @) then accept;

choose @ so that (B,Vd):> (og,Vd)

By Lemma 8 we see that this nondeterministic procedure runs in

polynomial time.
EOL . .
Ann§ lower bound for MEMBER will appear in Corollary 21,
following from the same bound for NONEMPTYEDOL. We now consider EDOL

membership. Previous work includes "feasible! algorithms (Vitédnyi [ 19])
for the general membership and finiteness problems for DOL systens,

including

Theorem 10

MEMBEREFPOL ¢ p,
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His algorithm is based on the following facts, which we shall also use.

Suppose w 2% x by an EDOL system G = (VV,P,w,%). Then

(a) all steps after the first p|><| can only use productions
a - o in which ¢ has at most one nondying letter;

(b) consequently a propagating system can only use produc-
tions of the form a + b (a, b € V) after p| x| steps;

(c) the derivation is reversible after the first p| x| + p steps,
in the following sense:
IFf w =" aj...a >by...b_andr = p| x| + p, then for each

i=12,...,k, ai is the unique symbol such that

bi:>+ a = b..

The algorithms of [19] do not yield polynomial time algorithms
for non-propagating systems, since they involve a direct simulation of G's
derivation for p(|x| - |w| + 1) steps. This derivation can produce inter-
mediate strings whose length is exponential in p if G has many dying
. EDOL. . . .
symbols. Our algorithm for MEMBER involves a more efficient

way to simulate short derivations, and an application of the Chinese re-

mainder theorem as used in [19].

Lemma 11
Let G =(V,P,w,Z) be an EDOL. system and x€ T ¥, The relation
"y =% x in k or fewer steps'!' can be decided in time bounded by a polynomial

function of |<G, %> | and k.
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Proof
It is sufficient to show that the following functions a(i) (where
0=<i=<kanda€ V) can be computed in polynomial time:
g ifa o B and 3 is a subword of x

a(i) =

# otherwise.

Leta€ Vand 0= i<k, and let the unique a~-production in P be

a-+b.b,...b_. It is immediate that
172 r

" a ifi =0 and a is a subword of x;

a(i) = { b, (i-1)by(i-1)...b (i-1) if i # 0 and b,(i-1)...b_(i-1)

is a subword of x;

L # otherwise.
Thus the a(i)'s may be computed in the order i =0,1,...,k; the
time bound is immediate, since only subwords of x are stored. A similar

technique was used in [ 7 1. O

Theorem 12

MEMBEREDOL €.

Proof

Let G =(V,P,w,2) be an EDOL. system. Assume w:>p‘x1 va¥ z3Px.

Because of fact (a) above the number of nondying symbols in v, z and x are the
same. Let w!, v!, z', and x! be the words we obtained by removing all the
dying letters from w, v, z and x. Then (w!', Vd) :>p\ x| (v, Vd) =%*(z!, Vd)
ﬁp(x',vd). Since all dying symbols in an EDOL. sysiem musti derive the empty

string in p or fewer steps, we actually have that if x € V* then:
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w:;»plxl v>* 2P x for some v,z € V¥
if and only if
(wi, v =PI v s (2, v 5P (a0, v ),

where w! < 9 w, and z'=P x for some w!,v!, 2!, x! € (V—\/d)‘*.

Consider the following algorithm:

(1) 1fws" xfor some r < p| x|+p then accept;

(2)  Find w! € (V=V )* sow! Vd w;

(3)  Find x! € (V=V,)* so x! M.

(4) Find v' € (V—Vd)‘* so (w',Vd):>plx|' (v',Vd);
(6) Find z' € (V=V )* so (z‘,Vd):>p (x1,Vyg);

(6) If z! =P x and (v',Vd) =>* (z',Vd) then accept;

Correctness of the algorithm follows from the remarks above.

Steps 1, 4 and the first part of 6 can be done in polynomial time by
Lemma 11.Steps 2 and 3 are easily done in polynomial time. From
above it follows that step 5 can be done in polynomial time,

(v',Vd) =% (z',vd) in step 6 can be tested in polynomial time using the
Chinese remainder theorem as in [ 19], page 82. Note that |v!| = |z!|

if the relation holds. .

Theorem 13

There is an EPDOL system G such that if L.(G) is in DSPACE(S(n)),

then

su S(n)
P log n

> 0



Proof
L= {anbcn ‘ n = O} is an EPDOL. language. By Alt and Mehlhorn

[2 ], if L is in DSPACE(S(n)), then S must satisfy the condition stated.
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5. THE NONEMPTINESS AND INFINITENESS PROBLEMS

We determine the complexity of nonemptiness rather than emptiness,
since sharper bounds may be obtained. In Theorems 14 through 18 we show
that for systems with tables these problems have essentially NSPACE(Nn)
complexity. In Theorem 19 we see that EOL nonemptiness can be decided
deterministically in space n, but Infiniteness seems to require nondeter-
minism. NP lower bounds on these problems, and h completeness of the
same problems for EDOL systems, are proved in Lemma 20 through

Theorem 23.

Theorem 14

ETOL ¢ \spACE(n).

NONEMPTY
Proof

If G =(\V,P,w,%) is an ETOL system, then clearly L(G)# @ if and only
if there is a sequence A1--o-A2W. . .~-"‘~"'Ak with A1 = Alph(w)  and Ak c .
Such a sequence may be generated nondeterministically one /»\i at a time,

storing only two consecutive Ai‘s as bit vectors of size p. per step. O

Corollary 15

NONEMPTYEP TOL ¢ NspACE(n).

EDTOL

By Corollary 7, NONEMPTY ¢ NSPACE(n1_€) for any

€ > 0,

Theorem 16

INEINITEFE T ¢ NsSPACE(N).
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Proof
Let G =(V,P,w,Z) be an ETOL system. Define for C,C',B,B' ¢ \/:
(c,B)= (C!,B') if and only if there are
o,B8 € V¥ such that C = Alph(a), C'!= Alph(8) and
@,8)= (8,B').
(c,B)S (C',B!) if and only if

(C,B)= (C',B') as above with |a| < |B].

It is easily seen that the following three statements are equivalent:
(1) . L(G) is infinite.
(2) (w,A)=*(8,B)=* (8',B) 2% (x,®) for some
wh,B,B'€ V¥, xe ¥, A,BcV, wt <A w, |B] < |B'|, and
Alph(8) = Alph(g!).

i?

A,B,B!,B",C,C,C,,C5,C <V, Cj < Alph(w), and C, < Z.

(3) (CO,A)=>* (c,B)=>* (C B’):>(cz B") =% (Cc,B)=* ( c ,@) for some

Construction of an algorithm based on (3) above is now straightforward.
The C's and B's can be stored as vectors of p bits, and the relations

> and—<_—> can be easily tested in p bits. ]

Corollary 17

iNEINITEFP TO- i TeRO € nspacE(n).

Theorem 18

The membership, emptiness and infiniteness problems for EFPDTOL,

EDTOL, EPTOL, and ETOL systems are PSPACE complete.
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Proof
We have just seen that each is recognizable in polynomial space.

It is well known that there is a context-sensitive language L. which is

PSPACE hard [ 1]. By Theorem 6 L is reducible to L(G) for an EPDTOL

system G, so MEMBEREPDTOL and the others are all PSPACE hard.

Theorem 19

EOL

NONEMPTY € DSPACE(n).

Proof
Let G = (V,P,w,Z) be an EOL system. For A ¢ V, define
Pred(A) = U (B ‘ BAaA |,
Thus g = B for some B € A¥ if and only if Alph(er) € Pred(A). Conse~
quently w=" x for some x € ©* if and only if Alph(w) < Pred’ (2). Each
Pr‘edS(E) is a subset of VV, so if w derives any strings in Z% it must do
so for some r < 2P, Combining these observations we get the following

algorithm, which can clearly be implemented in space p.

A =70
for r:=1,2,...,2P+1 do
if Alph(w) ¢ A then accept else A := Pred(A);

reject

We now proceed to show that the infiniteness and nonemptiness probliems

for EDOL. systems are n§® complete.

O
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Lemma 20

EPDOL |

NONEMPTY is n P-hard.

Proof
Stockmeyer and Meyer show in [12] how to build from any propo-
sitional formula & a regular expression R of the form
OPr (0% )% + ... + 0P (0% )%
such that 0¥ -L(R) is infinite if & is satisfiable, and 0% = L_(R) if & is

unsatisfiable.

Construct an EPDOL. system G = (V, P, Z? ces ZS,Z) where
Vo= {ZJ; | 1sisr, 0=jsp+a-1}, T=v-{20,25%,...,2™} and
P consists of the productions (i = 1,...,r): ZJ; - Z*:-H for j=0,... ’pi+qi_2
and zPH9 T4 2P Now L(R) # 0% iff L(G) # @ iff G € NONEMPTYEPP Ok

Clearly G can be constructed from R in polynomial time, so

EPDOL .

NONEMPTY is nP-hard. (]

Corollary 21

The following problems are N P-hard: NONEMPTYEP O

oL EDOL oL

NOoNEMPTYESL INFINITE , INFINITEE L

, MEMBERFO" and their

restrictions to propagating systems.

Pr oof

For INFINITEEPDOL, obtain a new EPDOL system G! by replacing

z';’i ta -1, z?i by z‘i’1 o -1, z?t zfi in the above. Now L(G') = @&
if L(R) = 0%, and L(G') is infinite if L(R)# 0%, so INFINITEFF PO g

hP-hard. The other results except for MEMBEFZEOL follow trivially.
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Let G =(V,P,w,Z) be any EPDOL. system. Construct an EPOL
system G' = (VU {g,0},P',w, {0} ) where P! consists of all productions
inP, a=*0forack, 09, and g =+ g. Now L(G) contains words of length
i iff 0l € L(GY).

The theorem follows then by observing that in the proof of Theorem 20

L(R)# @ iff L(G) # @ iff L(G) contains a word of length r. O
Lemma 22

NONEMPTYEP O and INFINITEEPOE are innp.
Proof

LetG =(V,P,w,Z) be an EDOL system, and w = Cog=>e&,= ... be
its derivation. Clearly L(G) is infinite if and only if |ag|, [a,], |ayl,. .-
grows infinitely and Alph(ogj) c ¥ for some j with 2P < j < 2p+1. The in-
finiteness of \a()[ , 1941[ yeo. is testa\b’!é in polynomial time by [ 19]. To
test the ] condition we can form a connection matrix M:

1 ifa-+gbfB is inp for some g,B € V¥

M(a,b) =
0 otherwise.

As in the proof of Lemma 8, we can guess j nondeterministically and

compute M! by repeated squaring. Alph(aj) may be read directly from M?,
which completes the proof for INFINITEFPO, NnoneMPTYEPOL (s

similar but simpler. ]

"Theorem 23

The infiniteness and nonemptiness problems for EDOL. and EPDOL.

systems are N complete,



27

6. CONCLUSIONS

In general the complexity bounds we have obtained lie between those
for the context-free and contexi-sensitive classes. This might be expected,
since every context-free language is EOL and every ETOL. language is con-
text-sensitive. For the most part our complexity bounds are tight, in that
the lower bounds are near the upper bounds, indicating that our decision
algorithms are nearly the best possible. There are three exceptions to this
- EDOL membership, with a lower bound of DSPACE(log n) and an upper
bound of ¥ ; and EOL. nonemptiness and infiniteness, with lower bounds of
N and upper bounds of DSPACE(n) and NSPACE(n) respectively.

The resulis are indicated in the following table, in which the bounds
for context-free and context-sensitive languages are included for comparison.
The resulis of the top and bottom rows and the leftmost column are known,
and may be found in [ 3], [4],[5],[6],[7], [9], [10], [13], [14],

[15], [16], [17], [ 18], [ 19], and [20].

PROBLEM
GRAMMAR MEMBER MEMBER
“eiASS (FIXED o) (GENERAL ) NONEMPTY INFINITE BOUNDS
NSPACE(n log n) UPPER
CONTEXT- NSPACE(n) |____ UNDECIDABLE | UNDECIDABLE _
seNns|TIVE {0 T s ey yTTTTmmET T T T
NSPACE(n} LOWER
NSPACE(n log n) NSPACE(N) NSPACE(n) UPPER
ETOL,
EPTOL ne . . .
NSPACE(n ~¢) | NSPACE( %) | nsPACE(N' ™) LOWER
NSPACE(n log n) NSPACE(n) NSPACE(n) UPPER
EDTOL,
ne
EPDTOL 1 1 y
NSPACE(n ~€) INSPACE(h'™%) | NSPACE(n' ™€) LOWER
2
DSPACE{log” n)
DTlME(ns‘sn) DSPACE(n) NSPACE(n) UPPER
EoL, | o-eZEEllol il ne
EPOL
ne ne ne LOWER
£ [ UPPER
EDOL, np ne |
EPDOL
4 £ ; LOWER
DSPACE(log? n)
2.81 UPPER
DTIME(n )
CONTEXT- | "7 ' @ P P .
FREE
ne LOWER
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In this table we use the notations

£ = DSPACE(log n), ng = NSPACE(log n)

A table entry of the form L for problem P indicates that

a) P is in class U.

b) IfLisnhn&, P, NP or NSPACE(n), then P is L-hard.

c) If L is NSPACE(S(n,¢)), then for any € > 0, P is not
in NSPACE(S(n,¢)).

d) If L is £, then any algorithm which solves P in DSPACE(S(n))

S(n)

must satisfy sup iog N

N

> 0.
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