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ABSTRACT

This thesis analyzes the descriptional power of finite automata,
regular expressions, pushdown automata and certain generalized models
of macro grammars. Descriptional power is measured in essentially two
different ways.

In the first the results are relative in the sense that the power of
one class of automata or grammars is measured relative to that of another
class. The emphasis in this area is on ambiguity in finite automata and
pushdown automata. It is shown that ambiguous nondeterminism allows
more succinct definitions than unambiguous nondeterminism which in turn
allows more succinct definitions than determinism. This Is true for both
pushdown automata where the succinctness gain is nonrecursive, and for
finite automata where the gain is nonpolynomial.

The other measuring method uses complexity theory, in particular
the notion of a set being hard for a complexity class. The elements of a
very hard set are considered very succinct encodings of instances of
some problem. Here it is shown that the inequivalence problem for Ol ma-
cro grammars generating finite languages is hard for nondeterministic
double exponential time, and the complexity of the same problem for (fron-
tiers of) term languages of higher type is analyzed.

Finally ambiguity In regular expressions is considered and it is
shown that the '"nonemptiness of complement! problem for unambiguous
expressions is in NP and thus is easier than for ambiguous expressions

(unless NP is equal to PSPACE).
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1. INTRODUCTION

This work deals with the descriptive power of language defining me-
chanisms when used in the definition of finite, regular and context-free
languages. The power of a mechanism such as a grammar or an automaton
will be measured in terms of how succinctly it can describe some fairly
simple sets. Assume that we have a way of measuring the size of some
type of automata or grammars. The problem of asserting objectively how
powerful they are as descriptors is approached in two different ways.

In the first, which might be called the method of relative succinctness,
the power of a class of descriptors is characterized by way of comparison
with some other class of descriptors. The following example (due to Moore
[28] and also to Meyer and Fisher [26]) illustrates the method. Consider the
classes of nondeterministic and deterministic finite automata, and let the
size of an automaton be measured by its number of states. Since a deter-
ministic finite automaton (dfa) is by definition also a nondeterministic
finite automaton (nfa), every set defined by a dfa is also defined by a nfa
of the same size. The converse of this does not hold. This is because there
exists for each positive integer n a regular language I_n which Is accepted
by a nfa with n states but not by any dfa with less than 2" states. Thus,
nondeterministic finite automata allow in general more succinct represen-
tations of regular languages than deterministic finite automata. In a case
like this we will say that there is succinctness between the class of dfa's
(DFA) and the class of nfa's (NFA) and if we want to be more precise we say
that there is exponential succinctness (or zn—succinctness) between DF A
and NFA. Irrespective of how we say it, the important point is that we have
measured the power of nfa's relative to that of dfa's.
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Now to the second way of measuring descriptive power. In this method,
which might be called the method of absoluie succinctness, we measure
succinctness in terms of standard concepts from the theory of computational
complexity. A typical way of characterizing a problem or a set in complexi-
ty theory is to show that it is hard for some complexity class. A set being
hard for a sufficiently 'ldifficult" class is then interpreted as evidence
that it consists of very succinct encodings of instances of a problem. Con-
sider as an example the problem of deciding whether a regular expression
generates all words over its terminal alphabet. This problem is known to
be hard (actually complete) for the class of problems which are solvable
by polynomially space bounded Turing Machines (PSPACE). Since PSPACE
is in practice considered a 'difficult" class, the language of regular ex-
pressions provides a succinct way of defining large nontrivial sets.

This thesis contains relative as well as absolute results in the sense
just mentioned. In the area of relative succinctness most of what is already
known are results about the succinctness relations beiween determinism
and nondeterminism in finite automata and pushdown automata. We have
already seen that in the case of finite automata, addition of nondeterminism
to the device increases its descriptional power. This is also true for push-
down automata (pda's) and in this case the succinctness gain is even more
dramatic. It can be shown (see [ 11]) that there is no recursive function
f such that size (Pd) < f(size(Pn)) where Py and Pn are arbitrary deter-
ministic and nondeterministic pda's, accepting the same language.

It is interesting to note that in both of these two theorems the succinct
automata are not only nondeterministic but also ambiguous. Hence a natural
question is whether ambiguity plays a role in this context, and the answer
is affirmative, i.e. there is succinctness between deterministic and un-

ambiguous machines as well as between unambiguous and ambiguous ones.




Ambiguity has been studied quite intensively in connection with con-
text-free languages and it is well known that the classes of ambiguous,
unambiguous and deterministic tanguages are all different. An example of
an (inherently) ambiguous context-free language is the language
{aibjcl< | i, , kz1,i=jVvj= ki (see [29]) and an example of an unam-

biguous language which is not deterministic is {wwR 1 w € {a,b} * |

(see [ 12]). Ambiguity in finite automata has not received the same atten-
tion, and the reason is probably that since the nondeterministic, unam-
biguous and ambiguous finite automaton languages are all the same, the
concept is not interesting from the point of view of '"traditional!! fanguage
theory., "Succinctnesswise!!, however, ambiguity in finite automata or
regular expressions seems to be of interest. One reason is that regular
expressions are heavily used in connection with specification of the syntax
of programming languages. An especially interesting application of regular
expressions in this connection is their use in socalled extended context-
free grammars (see [23]), where it is allowed to use regular expressions
over terminals and nonterminals as righthandsides of productions. Since
there are (normally) semantic actions associated with the process of recog-
nizing the language generated by such a grammar, it is important that the
expressions are unambiguous (requiring determinism seems to be too re-
strictive ‘in this connection). Furthermore, if extended contexi-free
grammars are used as inputs to a parser generator or maybe even a com-
piler compiler, it might be of interest to know how hard it is to determine
if a regular expression is ambiguous, and if so, how big the smallest
equivalent unambiguous expression is, The application of regular expres-
sions in this connection is clearly an example where the size of the ex-
pression is a very real complexity measure.

The nonrecursive succinctness between dpda's and npda's mentioned




above was proved by Geller, Hunt 1ll, Szymanski and Ullman in [11].

It is also a corollary of Valiant's result from [34] that there is nonre-
cursive succinciness between unambiguous and deterministic pda's. Here
we show that the same type of succinctness is found between unambiguous
pda's and arbitrary nondeterministic ones (this result has also been pub-
lished by Tom Szymanski and the author in [31]). We also show that am-
biguity plays the same role in finite automata as in pda's provided the
word "nonrecursive'! is replaces by !"nonpolynomial', i.e. there is no
polynomial p such that size(M1) < p(size(Mz)) where M1 and M2 are ar-
bitrary deterministic (unambiguous) and unambiguous (nondeterministic)
finite automata accepting the same language. Since every n-state
nondeterministic automaton has a deterministic equivalent with no more
than 2" states, nonpolynomial (or exponential) succinctness is also the
best we can hope for.

In the area of absolute succinctness we shall concgntrate on the prob-
lem of deciding whether a grammar or expression generates all strings
over its terminal alphabet. After discussing the (knovvn) decidability re-
sults for 2 ¥*-ness of context-free grammars as well as the Turing Degree
of the regularity problem for pda's, the Z*-ness problem for finite auto-
mata and regular expressions is considered. Again emphasis is on the role
played by ambiguity and it is shown that for unambiguous regular expres-
sions, (non)Z*-ness is decidable in nondeterministic polynomial time (NP).
Hence, this problem is easier than the general problem - unless, of course,
NP happens to be equal to PSPACE.

The fact that Z¥-ness for context-free grammars in undecidable
suggesis investigating restrictions on the grammar or the language under
which the problem becomes decidable, It is well known that Z¥-ness remains

undecidable even under the assumption that the language is cofinite and it




is clear that the problem becomes trivial if the language . is assumed to
be finite. What is not so trivial, however, Is to determine whether a con-
text-free grammar, which is known to generate a finite language, gene-
rates all strings of length less thanh or equal to some number. In view of
the connection between complexity and succinctness mentioned above,
this can be reformulated as asking how succinctly coniexi~free grammars
can describe finite sets. It was proved in [20] that due to the !''squaring!
structure in contexi-free grammars (the derivation tree is a complete
binary tree) this problem, which might be called the Ek—ness problem, is
hard for nondeterministic exponential time. This result has an applica-
tion in the theory of program logics ([ 5, 10]) in the following way. A
context-free grammar corresponds in a natural way to a nondeterministic
program scheme with parameterless procedures. The scheme computes
a set of uninterpreted values which is equal to the language generated by
the grammar (see [ 15]). In a program logic with the proper type of non-
deterministic primitives it is easy to assert that a scheme does not com-
pute all possible values, hence the complexity result for contexi-free
grammars generating finite languages shows that a decision procedure
for such a logic over finite interpretations must require at least nondeter-
ministic exponential time. t

It is natural to ask what happens when more general models of program
schemes are considered, and a natural exténsion is to allow procedures
with parameters. If, as a first step, the parameters are allowed to range
over sets of strings, the proper generalizaiion of a context-free grammar
generating a finite language is an Ol macro grammar (M. Fisher [9])
generating a finite language. Now just as a contexi-free grammar can be

viewed as an equation to be solved in the domain of sets of strings (see

t This was pointed out to the author by R. Constable..




[8]) an Ol macro grammar can also be viewed as an equation to be solved
in some domain, and the proper choice is a domain consisting of functions
from sets of sirings to sets of sirings (where a set of strings is inter-
preted as a constant funciion) (see [6]). We show that the problem of de-~
ciding whether a '"finite!' macro grammar does not generate all strings of
length less than or equal to some number is hard for nondeterministic
double exponential time and hence that the method of defining sets as (con-
stant) functions computed by nondeterministic programs with parameters
allows very succinct representations of finite sets. If the type of para-
meters allowed in the procedures are generalized to functions of functions
of sets and functions of functions of ... etc., the result is a hierarchy

of sets which is called the Ol-hierarchy in [8]. In [8] it is also shown
that this family of sets can be obtained as homomorphic images of solutions
to context-free like equations in an appr‘bpr‘iate (many sorted) algebra.

We use this characterization in a discussion of the complexity of deter-
mining whether a "ievel " grammar does not generate all strings of length
less than or equal to some number.

This thesis is organized in 5 chapters of which this is the first. Chap-
ter 2 contains preliminary definitions from automata theory and complexity
theory. The succinctness results are presented in Chapter 3, and Chapter 4
contains the material on complexity. Finally Chapter 5 consists of the com-

plexity results for grammars generating finite languages.




2. PRELIMINARIES

The reader is assumed to be familiar with standard concepts from
automata theory and complexity theory and is referred to the books by
Aho and Uliman [4] and Aho, Hopcroft and Ullman [3] for definitions
not explicitly presented in this thesis.

We shall use standard notation and terminology. A is the empty word
and | x| is the length of the string x. We now define finite automata, push-

down automata, Turing Machines and regular expressions.

A nondeterministic finite automaton, nfa, is a system M=(Q,Z},6,q0,lf)
consisting of states, input alphabet, transition function (from Q X Z to sub-
sets of Q), staristate and final states. M is in configuration (q,x)€Qx T *
if it is In state q and x is the part of the input that remains to be read. i'_
is the usual "transition relation'" between configurations, i.e.

(q1,ax) — (qz,x) iff a, €0 (q1,a). The language accepted by M is the set
T(M) = {x €T *| ] q€F: (qo,x) == (a,A )} where ¥ is the reflexive and

transitive closure of |— . M is said to be an unambiguous finite automaton,

ufa, if no word is accepted in more than one way, i.e. for no x = 48,008

is there more than one sequence of states dg?Tqs+++5q, such that a5 €F

- < . e
and (qi—1’ai"'an) — (qi’ai+1" .an) for 1= i< n, Mis a deterministic

finite automaton, dfa, if for all € Q and a € Z, 6(q, a) contains at most one

element.

A nondeterministic pushdown automaton ,npda, is a system

M= (Q,Z ,F,G,qo, ZO,F) where Q, Z, dg and F are as above. T' is the alpha-
bet of stacksymbols, ZO the stackbottom, and the transition function § maps
Qx (Z u {)\} ) x T to finite subsets of Q x ' ¥. M is in configuration

(g, ) €QxZ*x I'* if it is In state g, x is the part of the input that re-
mains to be read and & is the content of the stack. The relation |- between
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configurations is defined by (q1,ax,Ao¢) — (qz, x,Bo) if (qz,,B ) €6(q,a,A).
}——i is the reflexive and transitive closure of }— and the language accepted
by M is the set T(M) = {x€ T ¥ | Jq€F, g€ I *: (ags %, Zg) =% (a,2 o) .

M is unambiguous, an upda, if there is no input x which is accepted in more

than one way, i.e. there is at most one sequence of configurations

= <t
Cpr1C12+++1S, such that o (qO’x’ZO)’CiI_Ci+1 for 0 =i <nand

c. = (g, ,ot) for some g€ F and ¢ € T'*. M is a deterministic pushdown
automaton, dpda, if for all g€ Q, a€ T U {x} and Z € T, 8(q,a, Z) contains
at most one element and furthermore M never has a choice between making
a A —-move and reading an input symbol,

A nondeterministic single tape Turing Machine is a system M =

(Q,l",é,qo,F‘) with states, tape alphabet including the blank B, transition
function, startstate and final states. 0§ maps Q x I" to subsets of

Qx I'x {-1,0,1} and is assumed to be undefined on arguments where the
statecomponent is in F. A configuration of M is an element of T"¥(Qx T")T" *
representing in the usual way the nonblank portion of the tape, the state,

and the symbol under the read-write head. Configuration <, follows from
configuration C]’ ¢, — Cys if <, is obtained from < by a single application of §.
The language accepted by M is the set T(M) = iar L € {Ir~ ¢} * Hq €F,
acT, o, BET™: (qp,a,)a,.. a % a(q,a) B} where |-X is the reflexive

and transitive closure of — . A Turing Machine is deterministic if

8(q, a) never contains more than one element. Multitape Turing Machines

are obtained in the usual way.

Let Z be an alphabet. The regular expressions over I, REXPZ, .
is the smallest set satisfying
a) @, A, and each a € T are in REXPy

b) if P and Q are in REXPE then so are (P+Q), (P+Q) and (P ¥*).




The language generated by a regular expression is defined in the obvious
way.
Next we define some of the Important concepts from complexity theory.

Let M be a multitape Turing Machine. The amount of time (amount of

space) used on x is the number of steps in the shortest accepting computa-
tion (the smallest number of tape cells used in an accepting computation) if
x is accepted, and the number of steps in the longest computation (the
largest amount of tape cells used in any computation) if x is rejected. If

the computation on x does not terminate, both amounts are undefined. M runs

in time (space) t(n) for some function t(n) if for all n= 0, for every x of

length n, M uses no more than t(n) time (space) on x.

Time and space classes are defined as follows.

DTIME (t(n)) = LA | A is accepted by a deterministic TM
which runs in time t(n)}

NTIME (t(n)) = { A| A is accepted by a nondeterministic
TM which runs in time t(n) |

DSPACE (t(n))

—

A | A is accepted by a deterministic TM

which runs in space t(n)}

it

NSPACE (t(n)) A | A is accepted by a nondeterministic

TM which runs in space t(n)}

Now some of the best known complexity classes are

P = U bTIiME (n))
h
NP = U NTIME (n')

i=0
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PSPACE = DSPACE (n')
i=0
o] |
EXPTIME = U boTiME (™)
i=0
" i
NEXPTIME = U NTIME (27)
i=0
o i
EXPSPACE = [|J DsPACE (2)

I
o

In these cases where the resource bounds are all at least linear, the
amount of storage taken up by the input is also charged to the computation.

If however, the space bound is sublinear we have to do something else. Then
we assume that the input is placed on a special read-only input tape and
only the tape cells used on the worktapes are counted. Then we have

@©

DSPACE (i * log(n))
i=0

LOGSPACE

i

NLOGSPACE

U NSPACE (i * log(n))
i=0

LetX and  be two alpha'bets. A function f: Z ¥ 4+ Q¥ is said to be

ptime (logspace) computable if there is a deterministic multitape Turing

Machine with a read-only input tape and a write~only output tape which
runs in polynomial time (logarithmic space) and which, given x on the input

tape, halts with f(x) on the output tape. A set A €T * is p~reducible

(log~reducible) toa set B Q*, A< o B(A= log B), if there is a ptime
(logspace) computable function f : ¥ = 3 * such that f(x) € B iff x € A.
A set A is hard for a class C under Sp (glog) if every set inC is p~reduci-
ble (log-reducible) to A. It is complete for C if it also belongs to C.

We shall also use the following encoding of Turing Machine computa-

tions. LLet M = (Q,I‘,é,qo,F) be a nondeterministic single tape machine and

let # be a symbol not inT'U (Qx I). For any input x = a4...8,, the set of



11

valid computations of M on x is the set

Valcomps (M, x) = {# zo# zl# o zn# | all z,'s are
configurations, Zq is the initial confi-
guration, z, is a final configuration
and z; — Ziiq for 0 i< n}

The complement of Valcomps (M,x) w.r.t. {TU (QxT)U {#}} * is called

Invalcomps (M, x). If M is a tape bounded TM we use a sequence of padded

configurations of equal length in the definition of Valcomps. That is, If M
uses space t(n) (t(n) = n) and x in an input of length n, then each z, in Val-
comps (M, x) will be of length t(n). If z, 1s "not long enough!' we use the
blank j as padding symbol. In case M uses less than linear space we do the

following. A configuration of M on x will be a pair (i, z) where i is a binary

number whose value is the position of the input head and z is the configura-
tion of the worktape including the machine state. Valcomps (M, x) and
Invalcomps (M, x) are then defined as before.

Finally we consider the concept of Turing Degree. Let B be a set.

A Turing Machine with oracle B is a TM which in addition to its normal

operations can ask the question !"Is x € B! for any string x. A set A is

Turing reducible toasetB, A<_ B, if A is accepted by anh always halting

-T
TM with oracle B. A and B are Turing equivalent, A = T B, ifA ST B and
B=_ A. Let A beaset. The jump of A, Av, is the set {i | M'iA‘ is defined

on input i} where M'iA is the i'th Turing Machine with oracle A. Let [A]T
be A's equivalence class under = T Then [¢]T is called Turing Degree 0,
[(év]_l_is Turing Degree 1, [gﬁvv ]T is Turing Degree 2 etc. We recall that
The Halting Problem is in Turing Degree 1and that Finiteness of Turing

Machines is in Turing Degree 2.




3. SUCCINCTNESS

In this chapter we consider succinctiness beiween different classes of
descriptors. We survey a number of known results and present new re-
sults mainly about ambiguity in finite automata and pushdown automata.

The . notion of succinctness between two classes of descriptors is
made precise in the following way. Leth 1 and mz be classes of descrip-
tors generating the families of languages £ (I 1) and £ (M 2). Let _s_i_z_(g.1 and
§_i_g_e_z be functions mapping M 1 and mz to the nonnegative integers. By

m 1J°iﬂL-m g We denote f(n)-succinciness between M 1 and o meaning that

there are languages defined by smalliln 1-descr*iptor‘s which require large

m 2—descr‘iptor‘s. The difference beiween small and large is determined by

f(n). Formally 1-—11% m o Mmeans that there is a family of languages

{L(n) | n€ N} in &M 1) n £(m 2) defined by a family of ,~descriptors

{m1(n) | n€ N} such that for any family of mz—despriptors, {mz(n) | né N},

defining the same languages, ize_z(mz(n)) = f(_s_iie_!(m,'(n))) for almost all n,
We jllustrate the use of the terminology with a result from [26] . Let

NF A (DFA) be the class of nondeterministic (deterministic) finite automata

and let the size of a finite automaton be its number of states.

Theorem 3.1 (Meyer and Fisher)

on
NFA ———» DFA

Proof
Consider the family of regular languages {L{(n) | n € N} where L(n)

is the set accepted by the nondeterministic automaton Ml(n) =

({0,1,...,n=1},{0,1},6,0,{0}) whose transition function is defined by

12
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i

6 (i, 1)
6(i, 0)

{(i+1) mod n} for 0< i< n-1

i

{ 1,0} for 1< i< n-1

Consider the family of deterministic machines {Mz(n) l ne N} obtained by
the usual subset construction from {M1(n) | n € N} . It Is easy to show that
all states in Mz(n) are reachable and that no two of them can be identified,

i.e. that Mz(n) is reduced. But then any deterministic machine accepting

size(M1(n) {1 theorem is

L(n) must have at least Zn states and since Zn =

proved. [

Note that, by definition, f(n)-succinctness provides only a lower bound
on the succinctness gap between two families of descriptors. It does not
say anything about how good this lower bound is. In Theorem 3. 1 the lower
bound is actually optimal. This is because every nondeterministic finite
automaton with n states has a deterministic equivalent with no more than
2" states.

Theorem 3. 1 shows that the addition of nondeterminism to a finite con-
trol results in a more succinct description mechanism. This is also true
for pda's where as shown in [H] nondeterministic machines are so much
more powerful than deterministic ones that there is no recursive function
bounding the succinctness gap. Before we present the proof of this result
we introduce the notation for nonrecursive succinctness and define some
size measures.

Nonrecursive succinctness between the classes 1 and 5 is denoted
by 1 onfec m 9° It means that there is no recursive upper bound on the
succincthess between 1 and m 5 O, equivalently, that for any recursive

function f(n) we have It 1 —f(—rl),-m 5
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Next we determine the size measures to be used throughout the rest
of this thesis. -We. shall in all cases choose the most natural size measure,
namely the number of symbols used to specify the descriptor whose size we

are measuring. This is made precise in the following definition.

Definition 3. 2 Let FA, PDA, CFG, TM and REXP be the classes of

finite automata, pushdown automata, context-free grammars, Turing Ma-
chines and regular expressions. The size measures on these classes, which

all will be denoted by size(*)are defined as follows.

a) For M in FA, PDA and TM, size(M) is the total number
of occurrences of symbols in the definition of M as an
n-tuple.

b) If G is in CFG then size(G) is the total number of
occurrences of symbols in G's definition as a 4-tuple.

c) If R € REXP then size(R) is the length of the expression. O

Now we present the succinctness result for dpda's and npda's.

Theorem 3.3 (Geller, Hunt 11l, Szymanski and Uliman)

Let DPDA (NPDA) be the classes of deterministic (nondeterministic)
pda'!s. Then

NPFDA 2CS5 bppA

Proof
Let f(n) be an arbitrary recursive function. We have to show that

NPDA X0 sepA.




15

Let { M(n) | n€ N} be a family of Turing Machines which all halt
when started on blank tape and let T(n) be the number of steps executed by
M(n). Consider the word z(n) = # zd# z, # zz# co B Z1(n) # where
# zo# z‘? # zz# z? #.. .#ZT(n) # is the valid computation of M(n) on blank
tape, i.e. z(n) is the valid computation in which every second configuration
is reversed. It is easy to see that the complement of z(n) is a context-free
language which is accepted by a npda whose size depends only on the size
of M(n). Let P(n) be such a npda and let g be a recursive function such that
for all n, size(P(n)) < g(size(M(n))). Let T be the symbols.occurring in z{n).
Since ¥ - {z(n)} is cofinite it can also be accepted by a dpda D(n). Now,
dpda's have the following two properties:
a) given a dpda P1 there is another dpda PZ accepting the
complement of T(P1) such that s_i_g_e_(Pz)S (§_i_z_§(P1))z (see [4]);
b) they have pumping, i.e. if a dpda accepts a "long'" siring
(compared with its size) then it accepts infinitely many

strings.

Combining these two properties we get the existence of a recursive func-
tion h such that for all dpda's B, if x is not accepted by P and |x| = h(size(P))
then x can be "pumped!" and there are infinitely many words not accepted
by P. Now, since z(n) is the only word not accepted by D(n) it follows that
[z(n)| =< h(size(D(n)) and since z(n) is at least as long as T(n), which is M(n)'s
running time, we have T(n) < | z(n)| < h(size(D(n))).

Assume that the family {M(n) | n€ N} has been chosen in such a way
that for almost all n, size(M (n)) < g;-1-0f"1ioh—1 (T(n)) - where we have
assumed without loss of generality that h, g and f are all monotonically

increasing . Then we have the following relationship between the nondeter-




ministic pda's {P(n) | n€ N} and the deterministic ones {D(n) | n € N}.

size(P(n)) = glsize(M(n)))

-1 -1

< glg” o Ton!

(T(r))
< lon T (hisizeD)))

= i Nsize(D(n)

Hence for almost all n, f(size(P(n))) < size(D(n)) and we have proved f(n)-
succinctness on the family of languages {Z ¥ - {z(n)} | n € N}. All that re-
mains to be shown is that it is possible to choose the machines M(n) such

1 (T(n)). But this follows from the fact that

that size(M(n)) < g_1of_10h_
otherwise there would be a fixed recursive relation between the size of
a TM and its running time on blank tape,. and that would. immediately make

the Halting Problem decidable. O

Next we compare two ways of extending a deterministic finite control,
namely by addition of a pushdown store and by addition of nondeterminism.

The first result is from [26].

Theorem 3. 4 (Meyer and Fisher) There is a constant ¢ > 0 such that

5 ¥

2

DPDA DFA

Proof
In Proposition 6 in [26] a sequence of dpda's {P(n) | n € N} with the

following properties is constructed. P(n) has on the order of n states, n
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input symbols and n pushdown symbols and it never pushes more than two
symbols in a single move. Furthermore it accepts a regular language which
is not accepted by any dfa with less than 221’1 states. Hence, the size of
P(n) is k * n3 for some constant k and the size of an equivalent dfa is at

n
least 22 . 3

Because of the exponential upper bound on the succinctiness between
dfal's and nfal's we get the following corollary which states that nondeter—~
minism in a finite control is not always as powerful as the addition of a

deterministic pushdown siore,

Corollary 3.5 There is a constant ¢ > 0 such that

c+3/n

DPDA NFA 0

The next theorem shows (together with Corollary 3. 5) that two classes

can be incomparable from the point of view of succinciness.

Theorem 3.6 There is a constant ¢ > 0 such that

zc-ﬁ

NFA ———— DPDA

Before we can prove this result we need the following theorem from

[11], which is presented without proof.

Theorem 3.7 (Geller, Hunt I1l, Szymanski and Ullman) There is a constant

c'> 0 such that for n = 8, any pushdown automaton accepting the language




Q(n) = {x# x| x€ {o,1}"

. cls
has size at least 2 n. 1

Froof of Theorem 3.6

Consider for each natural number n the language
L(n) = {x#y | x,v € {0,117, x# vyl

It is easy to see that L.(n) can be recognized by a nondeterministic finite
automaton of size O(nz). The machine guesses that x and y differ on the
i'th bit. Having read the value of this bit in x it skips the input until it
sees // and then checks that the i'th bit in y is indeed different from the one
in Xx. We claim that a deterministic pda recognizing L.(n) must have size at
least 2" " where c is a constant. To see this observe that the lan-
guage Q(n) from Theorem 3.7 is equal to L(n)n ({0, 1} " # fo,11M).
Now (as in Theorem 3. 3) it is easy to show that if L(n) is accepted by a
small dpda then so is L(n) and since a finite control needs no more than
2n+1 states to check that a word is in {0, 1} " # {0, 1} " it follows that if
L{n) is accepted by a small dpda then so is Q(n), which is a contradiction.
]

Next we consider the effect of ambiguity, first in finite automata anrd
then in pushdown automata (or context-free grammars).

L.et UF A be the class of unambiguous finite automata and recall from
Chapter 2 that an ufa is allowed to use nondeterminism but not to accept

a word in more than one way.




19

Theorem 3.8 There is a constant ¢ > 0 such that

2" o/n

UFA —= DFA

Proof

Consider the family of languages {S(’n) \ n &< N} where

S(n) = {x#am | x€{0,1}", 1<m<n, the m'th bit of x is 1}

Since a deterministic automaton must distinguish between all x-prefixes of
the words x # am, it is clear that a deterministic machine accepting S(n)
must have at least 2" states. An unambiguous machine, on the other hand,
can recognize S(n) by guessing which bit is the m'th, skipping the input
until it sees #, and then check that the guess was correct. It is easy to see

. : . . 2
that such a machine needs not be any bigger than O(n“). [
Thus unambiguous nondeterminism is more powerful than determinism.
Next we show that ambiguous nondeterminism is also more powerful than

unambiguous rondeterminism.

Theorem 3.9 There is a constant ¢ > 0 such that

2" /N
NFA =—— UFA
Proof
Consider again the family {l_(n) [ n e N} used in the proof of Theorem
3.6, where
Lin) = {x#y | xyefo, 1}, x#y]}
and recall that L{(n) is accepted by a nfa of size O(nz).

LetM = (Q,Z,G,qO,F) be an unambiguous finite automaton accepting L(n).
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We show that M must have at least 2" states, in fact we show that at least
that many states are reachable from the startstate via prefixes of the form
x#.

Let x€ {0, 1} " be arbitrary and assume that Kx = {q1, cees O }is the
set of states reachable from qO via x#. Define for each i (1 =i < I<xx) the
set A; ={yé€ {o,1} n | dgeF: (qi,y) £ (q,\)} consisting of the words in

{o,1} " Which lead from the state q; (in Kx) to acceptance. Consider, for x

varying over VT{’O, 1} n’ the total collection of these sets A =
sk
HA' } _x } n . Since the same set can occur several times in A,
x' i=17x € {0, 1}
we let BI’BZ’ ...,B_be a listing of A without repetitions. L.et K be the set
m

of all states reachable from g_ via some prefix of the form x# and consider

0
the function which maps each state g in K to the set of words in {0, 1} n
which lead from q to a final state. It is easy to see that this function maps
K onto {BV N ,Bm} . Hence in order to show that there are at least 2"
states in K it is sufficient to show that there are at least that many Bi‘s.

We do this by interpreiing subsets of iO, 1 }n as elements of the 2''-

dimensional vector-space over the field of characteristic 2. Assume that

X41%gy e+, XyN 1S an enumeration of the words in {0, 1} ", With each
Cc {0, 1} " we associate the vector & = (c1,cz, .es ’Cz,”) where for
1=j< z“,cj = 1iff x, € C.

k
X .
Now consider for each x the set Ax = U A; consisting of all y's such
i=1
that x # y is in L(n). We claim that since the automaton is unambiguous, the
sets Al, .o ,A::xar‘e mutually disjoint. This follows since if there is i, j

and y such that vy € A;( n AJ>< then we have

(q07 X# y) 'i (qi’y) l"—% (pP}\)

and

(qo: X# y) l'_'* (Qj’y) l'—e'e' (I:’z:}\)
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where both Py and p, are in F. But then x# y is accepted in two different

ways, and that is a contradiction. Now since Ax’ .o ,Aix are disjoint and

-
furthermore all occur among the Bi's, the vector Ax can be written as a

,-"
linear combination of the vectors {Bi} ?lT, i.e. there exist coefficients
tryeeeyt € {0, 11 such that
m
Y
(*) Z\X = T t B,

Assume that x is the i'th element in the enumeration of {0, 1}“, i.e.

X = X Since all words of the form X # ><j are in L(n), unless i = j, .it .
follows that A is equal to fo, " - {xi} , thus Z‘x. =(1,1,...,1,0,1,...,1),
where 0 is the il‘th coordinate, But it is easy to sele that the vectors

{Xx } 2T1 are linearly independent and since (*) shows that they all can be

=
written as linear combinations of %1, N ’ém it follows that m = 2", Hence
there are at least 2" Bi‘s, consequently also at least 2" states in K, and

the theorem is proved. 0

Theorems 3.1, 3.8 and 3.9 together can be represented by the following

triangle.

f// \c'm

IT we consider the same three classes of pushdown automata the situa-
tion is quite analogous provided all succincthess functions are replaced

by nonrecursive functions, i.e, we have the picture




UPDA

nonr ec/ "\Qit:r* ec

DPDA == NPDA
nonrec

The NPDA - DPDA result was shown in Theorem 3.3. Now we prove
the NPDA - UPDA result which has also appeared in [31]. The basic tech-
nique in the proof is the same as in Theorem 3.3, We show that if the NPDA
- UPDA succinctness is assumed to be recursive, then the Halting Prob-
lem is decidable. Again we encode Turing Machine computations into context—
free grammars but this {ime the encoding has to be different because UPDA
is not closed under complement (see [ 18]).

l_et M be a deterministic single tape Turing Machine which halt when
started on blank tape. For technical reasons M is assumed to perform an
odd number of steps and to not write the blank symbol. Thus at the end of
its computation every tape cell which has been scanned will be left non-
blank. Let I be the class of all machines of this type.

Let Q be M!s stateset “and I its tape alphabet. Let {# ,a,b,c} be a
set of hew symbols disjoint from both Qx I''and I, and let A=(QxT)u T'U {#}.

— A
We associate iwo languages L., and I_M, with M as follows:

M
- R R R i, 0]
Ly = {x1#x2#x3#x4#...#x2nabc |

a) nz1,i=1, j=1

b) ><1 is the starting configuration of M when

started on blank tape,

c) X op—1 f— 20 for 1<p =<nj
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A |y nl s
Cop = v oty B s o 3 a2 'chJx

a) nz1, j=1

b) yzp}—-—yzp_H for 1< p<n

c) Yon is a halting configuration of M}

- A +. .+ + + = A
Observe that both L_M and L_M are subsets of A a b ¢ . L_M and L_M have

been chosen to generate strings consisting of pairs of M-configurations.

M?

the even-odd pairs which represent single steps.

A
In the odd-even pairs represent single steps of M, and in I_M, itis

p— A
It is easy to see that L.,, and L, have unambiguous context-free

M M
— A
grammars, GM and GM respectively, whose sizes are no bigger than a con-
stant times the size of M. If we take their union, we get a grammar GM for
the language
[ A
I_M = I_MU LM

having the property that
size(GM) < C + size(M)

for some constant C independent of M. This grammar, however, is ambi-

— A
guous because L.M N I_z is non-empty. Indeed, this intersection contains
exactly one string z which corresponds to the computation Zy1Zgyeees 2o,

of M started on blank tape in the following way.
_ , R R N, N N
z = 21#22#...#22na b c

where N is the amount of tape used during the computation.

— A,
Since LM n L_M is a finite set, I_M also has an unambiguous contexi-

free grammar. One way of producing such a grammar is to first construct
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—_ A A
unambiguous pda's for the languages L., , and L‘M' Modify the pda for I_,, by

M M
adding appropriate states to its final control to enable it to reject z. Con-
vert the pda's to grammars, take their union, and the result is an unam-
biguous grammar for I_M. Its size, however, is large due to the exira
machinery necessary to avoid generating z in two different ways.

Next we prove that any unambiguous grammar for L., must be huge if z

M
is long, the reason being that since z has inherited two different structures
(one from EM and another from CM) it will have two different derivations
in any small grammar generating L‘M' The proof is very similar to the
proof that {aib‘ick ] i=jVij= k_} is an ambiguous language which can be
found on page 205 of the book by Aho & Ullman [4] . It uses the following

result from [29]

Lemma 3. 10 (Ogden)

Let G be a context-free grammar with m symbols (terminals and non-
terminals), let h be the length of the longest righthandside of the produc-

tions and let k = max {3, h 2m+3}.

If z€ L(G), |z| 2 k and if k or more po-
sitions in z are designated as being '"distinguished!" then z can be written

as uvwxy such that

1) w contains at least one of the distinguished positions

2) either u and v both contain distinguished positions or
x and y both contain distinguished positions

3) vwx has at most k distinguished positions

4) there is a nonterminal A such that

* * P i % i .
S 2 UAy 2 UVAXY D uvwxy forallizo0 O
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Using Ogden's [_emma we can prove the following {emma which is the

key to the result.

Lemma 3. 11

Let M be in¥ and let N be the amount of tape used in its computation
on blank tape. Let G be any context-free grammar generating I_M and let
k be the constant from Ogden's Lemma,

If Nz k! + k then G is ambiguous.

Proof

Consider the language L, , and the corresponding string z as described

M

above, Let us rewrite z as q::ga,NchN where @ € A+ is that portion of z repre-

senting the computation of M., We will show that if N = k! + k then z has

—— A
two different derivations in G (recall that iz} = I_M N LM).

Assume that N = k! + j where j 2 k and consider the word z! =c)¢aNchJ
A
which is a member of |_M and therefore of L_M. Since j =2 k, we may dis-
tinguish all the b's in z! and write z! as

z! = uvwxy

where u, v, w, x and y satisfy the conditions of Ogden's LLemma. We claim

that v consists entirely of b's, x consists entirely of ¢'s and |v| = | x

The argument is as follows.

If x and y both have distinguished positions, then x € b+ because w
has at least one distinguished position. This implies that v is A or else v
is a member of A+, A+a+, A+a+b+, a+, atbt or b'.

If v does not contain any a's then the string uwy is of the form

gg'aNbJ"'cJ for some i > 0. Since this string has different numbers of a's,

b's and c¢'s it can't be a member of I_M and so v must contain at least one a.
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If v contains other symbols than a's, then the string uvzwxzy is not in
Ata*b¥c* and hence not in Ly Thus, vE€ at . Now uwy = ocaN_lVl bJ—! ><|cJ

N+| V| bJ+| x| j

and uvzwxzy = pa cd are both in L This implies that

M*
N-|v| =j-]x| and N+|v| = j+| x| which contradicts the fact that N # j.
Hence the possibilities for v are exhausted and we may conclude that x
and y do not both have distinguished positions.

Accordingly, u and v must both have distinguished positions. Moreover,
v € b+. The possible locations for x are x =), x € b+, x € b+c+ or x & c+.
The first two possibilities are eliminated by considering uwy =ga bJ ‘VI—!X|
and the third possibility is eliminated by noting that uvzwxzy is a member of
AtatTctbTet. This means that ve bt and x e ¢t Moreover, if |v| # |x]|,

then the string uwy = ga bJ-‘ V‘c"—‘xl is certainly not in I_M, and the proof

of our claim is completed.

According to Ogden's Lemma there exists a nonterminal A such that

z! can be derived as shown below:
* * *
S =2 UAy D UVAXY = uvwxy = z!
Since v consists entirely of distinguished positions and vwx has at most k
distinguished positions, |v| < k and so |v| divides kl.Let h=k!/|v].
. * . . .

repeating the subderivation A = vAXx exactly h times, we can derive z in

the following way:

UAYy —i\ uthxh y

s 3
-}:'> uvhvwxh‘y =0a b"+h lv‘ i*h ‘V|
1
(Recall that N = kl+j = -—Ili— « vl +i=h]v] +j.)
Now let us consider the string z!' = anchN which is a member of

L. and hence L

M M* By distinguishing all the b's in z" and arguing in a
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fashion similar to the above, we can write z! as z!" = uvwxy with
- - .+ - -+ . .
|v[ = \x ], vE€a and X& b . As before, there exisis some nonterminal
B and integer m for which
T PN o o T ¢ ¢ L
S >uBy » uv BXx vy
%

> WY = 2
To complete the proof we will show that the two derivations of z
described above have different derivation trees. Assume the conirary.
Then the derivation tree for z contains a nhode labeled A and a node
labeled B. No A hode can be a descendant of a B node in any derivation
tree, for if it were, there would be a derivation of the form B _’:-> tz/l\t4
in the grammar, and consequently L,, would contain words of the form

M

t1al\" tzbl\’l t3cl\" t4blv| te

Similarly, B is not a descendant of A. This means that A and B are in-
comparable in the derivation tree for z and hence there are terminal

+ .
29 and S, such that S = S 4

. . T - = + ] .
subderivations B = vBx and A = VAX we can produce, for any integer i,

strings Sqs S BszAs3 in G. By inserting the

the string s1C'vT/>—<'szv'wx's3. By choosing i sufficiently large, we can pro-

duce strings having many more b's than either a's or cls. Such a word is

clearly not in L contradicting our assumption that the two derivations

M’

of z correspond to the same tree. Accordingly, G is ambiguous, ]

We use LLemma 3. 11 to show that the size of any unambiguous grammar

for LM must grow with the amount of tape used in M!s computation.




28

Lemma 3. 12

There exists a constant C with the following property. LLet M be a
machine in ¥ which uses N tape cells in its computation. L.et G be an un-~

ambiguous grammar generating L_M. Then
size(G)=C + [log log N] 1/2

Proof
Let m and h be, respectively, the number of symbols in G and the
length of the longest right side of a production in G. Let g = size(G).

We know from l_emma 3. 11 that

2m+3), + 2m+3

N < (h h

Since m is at least 2 (otherwise G could only generate strings of length 0

and 1) we must have 2m+3 < 4m. In addition, m= g and h < g. Hence

which implies (since g = 2) that
4g
4

Taking logarithms twice,

log log N< 4giog g+ log 4 + log g + log log g
< d4g log g + 4 log g

< 6g log g
2

IN

6g

which is what we want. (]
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Theorem 3. 13 (Schmidt and Szymanski)

nonrec UPDA

NPD A
Proof
Let f(n) be an arbitrary recursive function. We have to show that
NPDA K0 UpDA.
So far the following has been proved about grammars generating the

ianguage L., where M is in ¥

M
a) LM has an ambiguous grammar whose size is no more than
a constant times the size of M.
b) The size of an unambiguous grammar for I_M depends
monotonically on the amount of space M uses in its computation

on blank tape.

Again, as in Theorem 3.3, since the amount of space used by M
cannot depend recursively on M's size there is a family of TM!s
{M(n) | n € N} which gives the desired succinctness result. The details

are similar to the proof of Theorem 3.3 and are left to the reader.

The last result in the "PDA succinctness triangle! is from [34].

We briefly outline the proof.

Theorem 3. 14 (\Valiant)

upPpDA —20CSS pppA
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Proof {outline)

et M be a TM in the class ¥ and let OM and EM be the fwo

languages consisting of the odd-even pairs and even-odd pairs in M!s

computation on blank tape. Let a and b be new symbols and consider

the language

1 =
L M OMa u EMb

It is easy to see that L' A is accepted by a small unambiguous pda. L_‘M

M
is also accepted by a dpda but since a dpda essentially has to see which

marker (a or b) terminates the input before it decides which pair of steps
to compare, its size will depend on the iength of M!'s computation on

blank tape. Hence we can again argue as in Theorem 3.3 ]

The following table summarizes the results presented so far in this

chapter. A function f(n) in row C, and column C, represents the result

fln
C1

open (to the author'!'s knowledge).

Cz, and a "?" indicates that the nature of the succinctness is

Table 3. 1. Succinctness relations between finite automata and pda's.

DFE A UFA NFA DPDA UPDA NFED A
DF A - - - - - -
UFA gc/n| - ? - -
NFA 26N | ge/n - 2 /n ? -
DPDA | ,2° Wn| get¥n | petd/n - - -
UFDA ? ? ? nonrec - -
NPDA | nonrec | nonrec | nonrec | nhonrec | nonrec -
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Most of the results in Table 3.1have been stated explicitly in this
chapter. Theorem 3.1 states that NFA -—z—rz-v- DFA but that was for the
Thumber of states!' measure. Since in the "length of description!! measure
the nfa's M1(n) in the proof of the theorem are of size k * n for some con-
stant k we need the constant ¢ in the result in the table. Of the ' 2lllg in
the table the most interesting ones are absolutely those in the UPDA~-row.
Since the question of whether these functions are recursive or not is related

to the complexity of deciding regularity of unambiguous contexi-free lan-

guages we postpone further discussion until the. next chapter.

The last type of relative succinctness results we consider are re-
sults involving regular expressions. L.et REXP be the class of regular

expressions and recall that the size of a regular expression is its length.

L.emma 3. 15

There is a constant C such that for any regular expressions R there
exists a nfa, M, accepiing the language generated by R such that’

size(M) = C[size(R)] 2.

Proof

This is a corollary of Theorem 9.2 in [3] where it is shown that
there exists a finite automaton M! (with A transitions) which has no more
than 2 » _s__i_z__e_(R) states and furthermore such that no state in the state
transition diagram has more than 2 successors. Since A —transitions,
which are not allowed in our definition of nfa's, can be eliminated without
increasing the machine size more than quadratically, the leinma follows,

O
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Thus there is at most quadratic succinctness between regular ex-
pressions and nondeterministic finite automata. The converse is different

as the following result from [7] shows.

Theorem 3. 16 (Ehrenfeucht and Zeiger) There is a constantc > 0

such that

o€ /0

DFA -2 —» REXP

Proof

Consider the complete directed graph with n nodes and nz distinct arc-
labels. It is shown in [7] that any regular expression generating the set
of all pathsbetween two specified nodes is of length at least 2", Since the
deterministic finite automaton corresponding to the graph is obviously of

size r{z,' the theorem follows. O
The next result is the "inverse! to Theorem 3. 16.

Theorem 3. 17 There is a constant ¢ > 0 such that

zc-ﬁ

REXP 22— DFA

Proof
The language L.(n) in the proof of Theorem 3.9 is generated by the

following regular expression

n-1

i=0

= ({0,1} 'of0,1} =T 0,1} 110,11 "4 {0,1} 110,1} "= 1% 0, 1} Tof 0,1} "I T)
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which is of length k- nz for some constant k. It was shown in Theorem 3.9
that any unambiguous, hence also any deterministic, finite automaton re~

cognizing L(n) must have size at least Zn_ ]

Recalling that the functions in Fig. 3. 1 are lower bounds on the succinct-
ness gaps, we close this chapter by considering the question of how good
they are.

In a very coarse classification such as polynomial, exponential, double
exponential etc., all the results in the UFA- and NFA=<rows are optimal for
the obvious reason that we can always make a finite automaton determinis-
tic by increasing its number of states at most exponentially. As shown in
[33] the DPDA-DFA result is also optimal in this sense. (We shall come

back to this upper bound in the next chapter.)

In a finer classfication of functions, where the degrees of the argu-
ments to the exponentials are considered, it is doubtful that any of the |
results in Fig. 3.1 (except the £ Min the NFA-DF A entry) are optimal.
Indeed, Kozen [22] has pointed out that both the UFA-DFA and the NFA-UFA
result can be strengthened to 2¢°n by considering instead of the finite

languages S(n) and L(n) in Theorems 3.8 and 3.9 the following infinite lan-

guages
sHn) = {x#am| 1<m<n, |x|zm, the mth bit of x is 1}
Ln) = {x#fy | J i, 1<sis=m:|x| =1, |y|] 21, xand y differ

on the i'th bit} .

We conjecture that also the functions in the two last entries in the DPDA
row can be improved, the DPDA-UFA result probably to a double exponen-

tial.




4, COMPLEXITY

In this section we consider complexity results from the point of view
of succinctness. We specifically look at the complexity of the problem of
deciding whether a descriptor of some type does not generate all strings
over its terminal alphabet. This problem being hard for a sufficiently dif-
ficult complexity class is taken as evidence that the descriptors being con-
sidered can represent information very succinctly. Again we shall empha-
size the role played by ambiguity and demonsirate that its presence or ab-
sence does indeed influence the complexity of this problem. As before we
are mainly interested in finite automata and pda's.

To make a connection to the last section we begin by discussing the re-
gularity problem for deterministic, unambiguous and ambiguous context~free
grammars. The recursive upper bound on the succinctness gap between the
classes DPDA and DFA was first proved by Stearns in [32] and later the

bound was improved ([33]) to the following.

Theorem 4. 1 (\aliant) Let P be a dpda with q states and t pushdown
symbols and assume that P pushes no more than h symbols on the stack in one
move. If P accepts a regular language then this language is accepted by a

dfa with no more than

q2|og g+ logt+ logh
z2.

states. O

Hence the succinctness result for DPDA and DF A corresponds io a
decidability result in the following way. To decide whether a dpda P
accepis a regular language, just enumerate all finite automata with fewer

34
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states than the bound in Theorem 4. 1 and check for equivalence with P
(which is clearly decidable). The nonrecursive lower bound in the NPDA-
DF A entry in Table 3.1 also has an (un)decidability counterpart. We recall

that Turing Degrees were defined in Chapter 2.

Theorem 4. 2 (Hartmanis & Hopcroft,[16] ).  The problem of deciding

whether a nondeterministic pda accepts a regular language is of Turing

Degree 2. Ol

Thus, not only is the NPDA-DFA succinciness not recursive, but it is
also not bounded by any function computed by a Turing Machine with a Hal-
ting Oracle. This follows since the equivalence problem between pda's and
finite automata obviously is of Turing Degree 1.

Finally, the "2" In the NPDA-DFA entry in Table 3.1corresponds to

the

Open Problem: Is regularity decidable for unambiguous pushdown automata ?

It is interesting to note that, irrespective of the answer to the question,

regularity of unambiguous pda's is easier than regularity of arbitrary pda's.

Theorem 4.3 The regularity problem for unambiguous pda's is at most

of Turing Degree 1.

Proof
The theorem is a straightforward consequence of the interesting result in

the book of Salomaa and Soittola ( [ 30]), originally due to A.L.. Semenov,
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that the equivalence problem for unambiguous context~free languages and

regular languages is decidable. If G is a context-free grammar we have

L(G) is regular < JM, MeFA A T(M) = L(G)

Now if G is unambiguous the predicate "M € FA A T(M) = L(G)" is recursive,

hence the whole thing is at most of Turing Degree 1. |

Although the complexity of the regularity problem for unambiguous
pda's is open, Theorems 4.1 to 4.3 is supporting evidence that, just as in
the "succinciness triangles' in Chapter 3, unambiguous nondeterminism
falls between determinism and (ambiguous) nondeterminism. This pattern
reappears when we In the following consider the complexity of the pre-
dicate '"M does not accept every word over its input alphabet!,

The following table is a summary of the results in Theorems 4,1 to

4., 3.

Table 4. 1. Complexity of "Regularity for pda's!.

Type of pda |Complexity of "L(F) is regular!

deterministic decidable
unambiguous at most Turing Degree 1
ambiguous Turing Degree 2

Next we consider "L(M)# Z*" where M varies over the three classes
of finite automata. The complexity of the problem is well known for both
nondeterministic [27] and deterministic machines [21] (recall that

Slog (Sp) denotes log-space (p-time) reductions).
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Theorem 4.4 (Meyer & Stockmeyer, Jones)

a) Theset {MENFA | T(M#Z*} is complete for PSPACE
under = .
P
b)  The set {M € DFA | T(M)# L%} is complete for NLOGSPACE

<
under < log"* (]

The reason "T(M) # ¥ is so difficult in general is that the length of
the shortest string not accepted by a nondeterministic finite automaton can
be exponential in the size of the machine. In the next lemma we use an ar-
gument similar to the proof of Theorem 3.9 to show that ambiguity plays

an essential role in this respect.

Lemma 4.5 LetM=(Q,2,0, qo,F) be an unambiguous finite automaton

with m states. The shortest word not accepted by M is no longer than m+1.

Proof

Letw=a 10085 be one of the shoriest words not accepted by M and

let KO’KI’KZ’ cen ’Kn be the set of states reachable from A9 via A,

818485y c 80008 4 and age..a . We will show that the set of states
n—1

K= U Ki contains at least n-1 elements. As in Theorem 3.9 we do this by
i=0

associating with each state in K a set of words which gets interpreted as a
vector in an appropriate vector-space in such a way that n—-1 of the vectors
become linearly independent.

Here the proper choice of words is the set of suffixes of w. Let for

1= i~<_r1><i denote a8, 10+ 3, and let X = {x1,x2,...,x }. We associate

i+1 N

subseis of X with the states in Ki in the following way. Assume Ki =
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{q1,. e e Gy } and let for 1< j < ki,AJi be the set of words in X leading from
i .

q; to acceptance, i.e. AJi ={x € X | 3 g€ F: (qj,x) % (g,\)} . Consider the
k

i .
union Ai = U AJi of these seis. Since al. . .ai__1 leads to the states in Ki
j=1

and since Ai consists of the words leading from there to acceptance, X, =

a.eeed cannot be in Ai because then the automaton would accept
w = a1. . .ai 1ai. . .an. Furthermore, since w is the shortest string re-
Jected by M the i+1 words a,.. .ai_1><i+1, ceea@eee@ 41X, which are all

shorter than w, are accepted. But that means that X, ? % all are in

+100

AL,
i

Now consider the n~dimensional vector-space over the field of charac-
teristic 2 and interpret subsets of X as vectors in the following way. If
Cc X then @ =(Cl""’cn) where for 1< j< n,e, = 1 0ff ij C. By the
above argument we know that X ¢ Ai and that xJ. € Ai for i < j<n. Hence

the vector Z\i is of the form

1 i-1

=Y
A= (b,eee,b™,0, 1,00, 1)

i i
where the first i—-1 coordinates are determined as follows:

1 if aqe- .ai_1 ><j is accepted by M

in= for 1<j<i-1
0 otherwise

LetB 1 Bz, N ’Bk be a listing, without repetitions, of the sets appearing

in the total collection of sets | {AJi}j-——II }?=1. Again, as in Theorem 3.9,
since the automaton is unambiguous each Ai is a disjoint union of
K,
-
A: g e ’Ai ', hence Ai can be writien as a linear combination of the vec-

- -3
tors B 170 ’Bk' Also, the number of states in K is greater than or equal

to the number of sets in the listing B]’BZ’ ...,B, , soall that remains is

K




39

-+ -
to show that sufficiently many of the veciors A TR ’An are linearly in-
dependent.

Consider the matrix

o0 1 ... e, -
1
by 0 1 eiinnaa.
1 2
by b5 0 T .uvunnn. 1
A = ¢ )
b: e L0 1... 1
b; e . b2—1 0
L J

Y
whose i'th row is A . 1T we disregard the first column and the last row we

get the (n-1) x (n-1) submatrix

7~ )
T e 1
0 1 vevurinn e
Al = ( 20 1., S
b2 .. b1
n-1 n—1
L. o

which is easily seen to reduce, by Gaussian elimination over the field of
characteristic 2, to the (n=1) x (n=1) unit matrix. From this we conclude

that the matrix A has rank n-1 and hence that n-1 of the vectors

)

> . ] :
A An are linearly independent. Now the same argument as in

Jaeees

Theorem 3.9 applies, and we conclude that the automaton has at least n-1

states. =
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L.emma 4.5 has the immediate corollary that deciding whether an auto-
maton accepts all words over iis input alphabet is probably easier for un-

ambiguous machines than for ambiguous ones.

Corollary 4.6 The set

{ Me UFA | T(M)# T ¥}

is in NP.

Pr.oof

The method is exactly the same as the one used to show that the prob-
lem is in PSPACE for arbitrary finite automata (see Lemma 10.3 in [3] ).
But since, by L.emma 4.5, the shortest string not accepted by an unambigu-
ous machine is no longer than the number of states in the machine, the al-

gorithm stops after a polynomial amount of time in this case. O

We get analogous results if regular expressions are considered
rather than finite automata. Thus the set {R € REXP ] L(R)#Z*} is com-
plete for PSPACE and {R € UREXP | L(R) # T *} is in NP, where UREXP
is the class of unambiguous regular expressions, i.e. expressions that gene-
rate each string over its alphabet at most once. The notion of determinism
seems unnatural for regular expressions and we shall not attempt to give
any definitions.

Next we consider the complexity of determining whether a regular ex-

pression is ambiguous.
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Theorem 4.7 The set

A = {R € REXP |R is ambiguous }

is complete for NLOGSPACE.

Proof
First we show that A is in NLOGSPACE. Let R be a regular expres-
sion of length n (over the alphabet ¥ ). We show that if there is a word
which is generated in more than one way, then there is one which is no
longer than 2nz. It is easy to see that there is a finite automaton M =
(Q,E,G,qO,F) with no more than n states accepting the language generated
by R such that if a word is generated in two different ways by R then it is
accepted in two different ways by M. Now, let w be the shortest word ac~
cepted in two different ways by M and assume that |W| 2 2n2+1. L et the

state-sequences corresponding to the two accepting computations be

Sy =dgdy-++q,and s, =pgpg...p  where AP, €F, pyg =9y and m = | w
Since m 2 an + 1, some pair of states occurs at least three times in the
sequence (qo,po)(q1, p1), ceey (qm,pm). Assume that (qi, pi) = (qj, pj) =(qk, pk)
for some i; jand k with 0< i< j< k=< m. Since the sequences Sy and s, are
different, either dge - qqu._H. .o qm is different from Poe - pipj+1' . pm or

dge - qjqk+1’ - Q. is different from Poe - pjpk+1" ceP In either case we

can, by cutting out the proper piece of the input, obtain a shorter word

which is also accepted in two different ways, and that contradicts the as-
sumption that the shortest word is longer than an. This shows that a log-
space bounded Turing Machine is powerful enough to guess (symbol by symbol)
a word generated in more than one way if there is one.

To see that the machine is also capable of checking that such a word
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is indeed generated in two ways by the expression, we first note that this
would be straightforward if the input had been the automaton M, rather than
the expression R. Then we would just guess two sequences of states and
accept in case they both end in final states and are different. Now, since
states in M correspond to positions in R, we construct the nondeterministic
Turing Machine such that it guesses two sequences of positions, each cor-
responding to a parse of the word. The reason this is not difficult is that

R is assumed to be syntactically correct, hence we can always, by counting
parentheses, find the subexpression beginning at or ending at a certain
position. The details of the construction are left to the reader, but it should
be clear that the algorithm works correctly and runs in nondeterministic
logarithmic space.

Next we show that the set A is hard for NILOGSPACE. Given a nonde-
terministic log-space bounded Turing Machine M and an input x we construct
two unambiguous regular expressions ﬁx and &x’ such that F—Qx U Eix is am-
biguous if and only if M accepts x. The technique is the same as in Theo-
rem 3.13, ﬁx represents all the odd-even pairs of consecutive configura-
tions of M on x and ﬁx all the even-odd pairs. Then ﬁx m'r‘zx is nonempty
exactly in case there is a valid computation of M on x.

We assume without loss of generality that the machine M always per<

forms an odd number of steps. Consider the following two sets of words

W= {41 1$z1#12$zi# |3$z3#. A '2n$22n#'
a) nx1
b) (i 1»21) is the starting configuration of M on x
. . | ‘s
c) (xzj,zzj)folloWs fr‘om‘ (|2j—1’ ZZj—1) by M!s transition

function (for 1< j= n) }
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\?vx = 1 Sz #1824 82 . H, Sz, H)

A

a) nz 1

b) ('Zn’ ZZn) is an accepting configuration of M on x
. H 1

c) (lzj+1,zzj+1)fo|lows from(tzj,zzj) by M's

transition function (for 1< j< n)}

W>< and Wx are generated by the following two unambiguous regular ex-

pressions

where
a)

b)

e)

R, = #18$z#" N« (P¥)
A
R, = B+ (P*):F
X
z, is the starting worktape configuration

1

N is the sum of all expressions of the form i $ z# such
that (i, z) follows from (1, 21)

P is the sum of all expressions of the form i $ z#i' $ z'#
such that (i', z') follows from (i, z)

B is the sum of all expressions of the form # i $ z#

F is the sum of all expressions of the form i $ z# where

the state in z is a final state,

_— A
It is clear that Rx and Rx are unambiguous and also that the expressions

N, P, B,

J— A
F - and therefore also Rx and Rx ~ can be computed from M and

— Ao
X by a deterministic log-space bounded Turing Machine. Buth ﬂWx is

nonempty

if and only if it contains a word representing a valid computa-

e A
tion of M on x. Hence the expression Rx = Rx + Rx is ambiguous If and only

if M accepts x. This shows that the set A is hard for NLOGSPACE. O




44

In this chapter we have shown that ambiguity in finite automata
makes the set {M [ T(M) 75 T*} harder than the corresponding "unam-—
biguous!t set (unless F’SPACE% NP). The situation is similar for pda's
where it is well known that the set {P € NPDA | T(P)# Z*| is nonrecur-
sive whereas, as mentioned in Theorem 4.3, the set {P € UPDA |
T(P)# Z*} is recursive. Hence, the "unambiguous' sets are easier than
the "ambiguous!'' ones. However we do not know exactly how easy they
are because we have not been able to obtain any nontrivial results about
their hardness. The standard way of generating invalid computations
(which will be used intensively in the nexi chapter) does not seem to work
because the resulting grammars and expressions appear to become (very)

ambiguous.




5. MACRO GRAMMARS AND THE OIl-HIERARCHY

In this chapter we consider the complexity of regular term grammars
of higher type generating finite languages. We specifically consider what
Engelfriet and the author called the Ol-hierarchy in [8] The first two
families in this hierarchy are the contexi-free languages and the Ol
macro languages [9] , which are also equal to Aho's indexed languages
[ 1]. It is known that the problem "Is L(G) different from the set of all
strings of length less than or equal to some number!!' is hard for nondeter -
ministic exponential time when G is contexi-free and we show that it is
hard for nondeterministic double exponential time when G is an Ol macro
grammar. We also discuss the complexity of the problem when G varies
over grammars at level i in the hierarchy.

The proof that the problem is hard for NEXPTIME (under p-time re-
ductions) when G is a context-free grammar generating a finite language
was essentially given in [20] . The reason the problem is this hard is the
"'squaring power! of context-free grammars, which is illustrated by the
following grammar of size O(n) which generates the language

fwe fa,b] * | [w| = 2"

1 A,
A| - Ai+1A|+1
- A A
n-1 3}
An -+ a l 45
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It is shown in [20] that this ability to generate exponentially long strings
is sufficient to produce invalid computations of a Turing Machine running
in nondeterministic exponential time. It was not mentioned in [20] that the
problem is actually complete for NEXPTIME so we shall give the (easy)
proof here.

First some notation. An integer expression, E, is a normal arithmetic

expression with (nonnegative) integers, the normal operators +, —, *, /
and also exponentiation which is denoted by '"t''. 1 takes precedence over
the other operators, thus 5 ¥ 2 ¢+ 3 means 5 - 23. From [20] we borrow
the notation T * ¥ (E) which for an alphabet & and integer expression E de-
notes the set of strings over © of length E,

Let CFGFIN be the class of contexi-free grammars generating finite

languages, and let |IE be the class of integer expressions.

Theorem 5.1 The set

Fo = {(6G,BE) e CFGFINX IE | L(G)# (ZU {AD** (E)}

is complete for NEXPTIME under Sp.

Proof
It was shown in [20] that F is hard for the class DONTIME(Zj "N
under log-space reductions, and it is an easy exercise i; extenfj that
construction to show hardness for NEXPTIME { = C] NTIME(ZhJ)) under
p-time reductions. =0
To see that FO is in NEXPTIME we note that the pumping lemma

for contexi-free languages yields a constant kG bounding the length of any

string generated by G (recall that G generates a finite language). Let
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member(G, x) be a Boolean procedure with the property that for all con-
text-free grammars G and all terminal strings x, member(G, x) is true
if x € L(G) and false otherwise. It is well known that there exist such
procedures which run in deterministic polynomial time (see [3]). Now

the following nondeterministic algorithm accepts the set F—‘O;

Input: (G,E) € CFGFIN X IE
Output:  "Yes" if L(G)# (ZU {X})** (E)

Method: Compute k the constant from the pumping lemma).

c !

if kG < E then answer "Yes!! and halt

else
begin

comment check whether L(G) ~(Z U { A })** (E) # &;
= i << .
guess x = ajag...a_ for some m with E= m = kG’

Output ("Yes") if member(G, x)

comment check whether (ZU { A })* ¥ (E) - L(G) # &,
guess x = a,a,...a for some m <= E;
Output ("Yes") if not member(G, x)

end

i

The algorithm runs in nondeterministic exponential time because of the

well known fact that there exists ¢ > 0 such that kG < ZC. -S—'EE(G).

Hence it doesn!t take too much time to guess the siring x. (!
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Next we show that the set FO is complete for nondeterministic double
exponential time when we consider Ol -macro grammars generating finite
languages. Macro grammars were introduced by M. Fisher in [9] as a
generalization of context-free grammars. If context-free grammars are
viewed as nondeterministic macroes without parameters, then macro gram-
mars are nondeterministic macroes with parameters. Before giving the
formal definition we introduce some auxiliary concepis.

A ranked alphabet Q is an indexed family <Q.n> of disjoint sets.

NEN
A symbol T in Qn has rank n. Let Q be a ranked alphabet. The set of

macro-~terms over {J is the smallest set of strings satisfying

a) A and f€ QO are macro-terms
b) If t1 and t2 are macro-terms then t1et2 is a macro-term
c) If fe Qn and t;,...,t are macro-terms then f(t1, ceny tn)
is a macro~term.
Let X = {XT’XZ’ R TERE } be a denumerable set (of variables) and let
for each k =z 0, ><k = {x],i.,. oy xk} . For any ranked alphabet {} we denote

by Q(Xk) the ranked alphabet where Q(Xk)o =Q,U X, and Q(Xk)i = Qi for

i= 1.

Definition 5.2 A macro grammar is a system G={%,% ,P,S) where

Y is a finite alphabet of terminals

& is a finite ranked aiphabet of nonterminals

P is a finite set of productions of the form F(><1, S ,xk) T
where F is a nonterminal of rank k and 7 is a macro-
term over & (2 U Xk) (k= 0)

S is a nonterminal of rank 0 (the startsymbol).
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Note that a macro-term over (%L U Xk) contains variables from

{x1,...,xk}. 0

Example 5.3 The following is a macro grammar. G = ({a, b},3,P,S)

where J ; = {s,Al, 5, ={F,H}, 3, = @ for i = 2 and P is the following set

1

of productions

Flx,)+ FlHGx,)

F(xi) X,

H(x1) XXy

A -+ a

A + b 0

When several productions have the same lefthandside we shall write

them as "one production’ with ! n separating the righthandsides.

The language generated by a macro grammar G is the set of terminal
strings derived by macro expansion from the startsymbol. Since macroes
can be nested within macroes,the mode of derivation has to specify where
in a macro-~term expansion cah take place. We shall be concerned with the
socalled Ol-mode, where only outermost macroes can be expanded.

l_et T be a macro-term with variables RKyseeo s X and let Eioeres tk be
macro-terms., Then T[t1, PN tk] is the macro-term obtained from T by

replacing each occurrence of X, inT by ti‘ Ol-derivation is defined for-

mally as follows.
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Definition 5. 4 LetG =(Z,3%,P,S) be a macro grammar and let o, and

o, be macro-terms. Then o, Ol-derives 05 01 & Too if and only if

i) For someF € &,0, contains a subterm of the form
F(tl’ cee, tn) which is not itself a subterm of any other
term of the form G(s,,. .. ,sm)

ii)  There is a production F(x1, coe ,xn) +7 inP

iii) 0, Is obtained by replacing the occurrence 'ofF(t1, ceey tn)

ing, by T[t1,...,tn]

¥ *
The Ol~language generated by G is the set {w € L* | ) C?l w}- wher‘eO:>
' 1

is the reflexive and transitive closure of C:J>l . Cl

Example 5.5 Consider the grammar G from Example 5, 3. It is left to the

reader tc show that G Ol-generates the language

Lo(6) = {wefa,bl* | |w| =2"for n=0}. O

Note that if we consider 1O-derivation, where innermost macroes are ex—

panded first, then the grammar G generates the language

L~G) = {a%, b

IO(

because then the derivation has to start with

z(:») F(A) = F(a), or
:(>_J F(A) = F(b).

—

S
S
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From now on we shall talk about Ol-generation only. LLet MACFIN be the

class of macro grammars which (Ol-) generate a finite language and let

F-'1 be the analogue of FO’ i.e.
F, = {(G,E) € MACFINX IE | L(G) # (Z U {A})** (E)}.

Also define the complexity class NEXP(1) by
o nl
2
NEXP(1) = |J NTIME (2% )
=0
We shall show that F1 is hard for NEXP(1) under Sp. Just as the key in
(the omitted part of the proof of) Theorem 5. 1 was the ability of context—
free grammars to generate exponentially long strings, the key here will be
the ability of macro grammars to generate strings of double exponential

length. The following grammar Gn of size O(n) generates the set

fwe fa,b] % | |w| =22 }.

HO(B)

I—Io(x) - H1(H1(x))
H.(x) - Hi+1(Hi+1(x))

Ho_q(x) = H_(H_(x))
H (%) 4 xXx

B + al|b

Theorem 5.6

The set F1 is hard for NEXP(1) under Sp.




Proof

LetM=(Q,T,50, qO,Fj) be a nondeterministic Turing Machine which
runs in time T(n) = zzn and let x = aqee.a be an input of length n. We
assume without loss of generality that M is a singletape machine. We shall
construct a pair (Gx’E) where G_ is a macro grammar generating a finite
language and E is an integer expression, such that L(Gx)# (Z - A x*(E)
exactly in case M accepts x. The terminal alphabet, 2, of G>< will be
T=Tu(@xDu {#.

According to the definitions in Chapter 2, a valid computation of M on
x is of the form# [(T - {#1)** (T(n) #]h where 1= h = T(n)+1. Hence each

2N HT Ny .

valid computation has length at most kx = 2 + 2 + 2. G>< will gene-
rate all invalid computations of length = kx’ and E will be the expression

21 (21Nt j+ 1)+ 2121(n1 j)+1) +2. We now follow [20]in characteri-

zing the set of invalid computations of length < kx.

A string w, |w| <k_is an invalid computation if and only if

a) IW] is less than the length of the initial configuration, i.e.
wE (T U {AL)*¥* (T(n) + 1)
b) |w| sk _but w does not end in "#!1, i.e.
we [(TU A)** (k -1)] - (- {#})
c) w contains an error between two consecutive configurations
d) w does not contain a symbol of the form (g, a) where g€ F

anda€eTl, i.e.

we (m - U (a,a)u (A= (k)
gEF
acT’

e) w does not begin with

#lag,aplay. . a [(b)**(T(n)-n)] « #
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Since we have already shown how to construct a macro grammar of
n

size O(n) generating the language {w € {a,b} * l W = 2z } it is easy to

see how to constiruct grammars of size O(n‘f) generating the sets of w's

satisfying a), b) and d). Now we show how to obtain the sets in c) and e).

Let p{n) = n! and consider the following grammar Gp(n)

s 0 F L (H(A), F (A, B)

H;(x) ? o H (0

Fp(n)(x;‘y)-' xy | yx

Hp(n)(x) -+ xx

G

() generates (as we shall show in Lemma 5.7) the following lan-
guage over {A,B}, Sp(n) = {/—\"BAT(n)-J—1 | 0<j<T(n)} (recall that
p(n)
T(n) = 22 ). We generate the set in c) as follows, If w contains an

error between two consecutive configurations, then w Is of the form

Z.l = u1u2...u.uu

s i i ] -
YV 'UT(n) where each of the uJ. s is an arbitrary !con

figuration! and where u represents the two consecutive configurations con-

)

taining the error. We can generate most of z, by first generating (in Gp(n)

T(n)-j-1 and then let each of the Al's generate the set

o, =H#ABA

(Z U {X})*¥* (T(n) + 1). Now, u, which will be generated by B, is of the
= % % _ .

form z, v1a1b1c1 z (T(n) = 1)) azbzczv2 where the triple azbzcz

does not follow from a1b1c] by a single application of M!'s transition func-

tion, and vy and Vo is the part of u that we !"don't care about!', Zg is at

most of length 2T(n) + 2, hence |v1] + ]vzl is at most T(n) - 3. To gene-



54

rate z, we construct another grammar of size O(p(n)) which from the B in

@, generates an arbitrary element of Rp(n) = {CJDC-I—(h)—?’—J | 0=j<T(n)-3},

then we let the C's generaie = U { X} and from D we generate all elements
in a1b1c1 = *‘*(T(n)-J))azbzcz where the pair (a1b1c1, azbzcz) represents
a transition error. That we can generate Rp(n) in a small grammar follows
from the fact that macro languages are sizeclosed under intersection with
regular sets (see the remark following the proof).

To obtain the invalid computations with a wrong initial configuration we

note (again following [20] ) that if w does not begin with#(qo,a1)az. cea

[{b) * *(T(n) = n)]# then it is because

i) it does not begin Wlth#(qo,a1)a2...an or
ii) it does not contain two occurrences of # or
iii) the two first occurrences of # are not separated by T(n)

characters or

iv) it has a nonblank character in its j'th position where

M2 j< T(n) + 1

It is easy to construct grammars of size O(p(n)) generating the sets in

i), 1) and iii), so we only have to worry about iv). Again we use closure

of macro languages under intersection with regular sets to show that we can
obtain the language {Cn+1AjBAT(n)_n—j | 0<j< T(n)-n-1} from which it

is easy to generate the set in iv).

Putting all the pieces together we have shown that there is a grammar
G of size O(p(n)), which can be consiructed in polynomial time from M and
x such that L(G ) &(Z U {A})**(k ) and LG, ) # (Zu {A} )**(k ) If and only if

M accepts x. Hence the set F‘1 is hard for NEXP(1) under Sp. O




Remark By macro languages being sizeclosed under intersection with
regular sets we mean that there exists a polynomial p(n, m) such that for
all macro grammars G and all finite automata M, 1) L. =L(G) N T(M) is a
macro language and 2) L is generated by a macro grammar G' such that

size(G!) < p(size(G), size(M)).

in [1], [2] and [9] it is shown that the classes of languages gene-
rated by (Ol) macro grammars, indexed languages and nested stack auto-
mata are all equal. Furthermore [ 1], [2] and [ 9] contain the following

sequence of (language preserving) transformations
Macro = Indexed - Nested Stack -+ Indexed -+ Macro

Since in each transformation the size of the output descriptor is polyno-
mially bounded by the size of the input descriptor, and since nested stack
automata have a normal finite control, the usual state-product construc-
tion between finite automata shows that macro lapnguages are sizeclosed

under intersection with regular sets. .

The next lemma was used in the proof of Theorem 5.6.

Lemma 5.7

The macro grammar Gn' with productions

0
4

F (H,(a), F(a,b)

Fibay) 2 B (Hi (s B bov)

FoOGy) 4 xy | oyx
Y
Hn(x) XX -
. 22 1 L
generates the language L(Gn) = %a‘lba —i- 0<j<2 } .

55
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Proof

We prove the following by (backwards) induction on i.

For all terms tys ths ts
Nei
* 2z
a) G.(t,) > (t,) \
it 1 Ne—i .
Ol %] z2 ~1-j on-i
' < i<
b) Fi(t1,t2) O:|> tytoty for 0<j< 2

a) and b) are obviously true for i

i+ 1. Then

Qux

_QU*

b) Fi(tPt

o)

n. Assume that a) and b) are true for

Gip1(Gpq(ty))

on=(i+1)
(G (102 (by ind. hyp.)

zn—(i+1) 2r1—(i+l)

[(t,)z 12 (by ind. hyp)

Fi(Crpq(ty)y Bt t)))

‘ 2r‘n-(i+l) .
(Gt F (1, 1,) (G, (1) -i-1
2n—(i+1)
for allj 0<j<2 (by ind. hyp.)
2n-(i+1) _ 2n—(i+1)
[(1))2 RS ~1-k

on=(i+1) n=(i+1)
[(t,)? 1t (22 _j-1)
2n—(i+1)

for all0<j, k< 2 (by ind. hyp.)
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but this last set of strings is easily seen to be equal to

. zn-—i‘ o-i
{(t1)*| t, (t1) t(2 -1-j) |0<j< 2 } which is what we want.

Now the language generated from S is the set of strings generated from

F . (G

(eq(a), F

1(a,b)) which by a) and b) cocntains all strings of the form
n-1

@%2 Y[afpba? kT @?2 )1 (22 Sty ferallosk, <22 .
Again it is easy to see that this set is equal to I_(Gn).
It is left to the reader to verify (by induction) that the grammar only

n
generates strings which have length 22 and contain exactly one b. O

Having shown that macro grammars provide a very succinct way of
describing finite sets we now generalize the notion of a macro grammar by
allowing the parameters to be more complicated. As mentioned in the intro-
duction we shall consider parameters which are functions (of higher type)
and we shall view the nonterminals of the grammar as operators mapping
functions to functions. In this terminclogy, a nonterminal in an ordinary
macro grammar’isa function mapping sets of strings to sets of strings and
the language generated by the grammar is the minimal fixed point of the
function which corresponds to the starisymbol of the grammar. The purpose
of the generalization is to study the succinctness of descriptions of finite
languages when these generalized grammars are used.

In order to show how grammars can be viewed as functions, we first
present the characterization of Ol macro languages as socalled OI( 1)~
equational subsets of the algebra of strings. This characterization,
which is from [8], uses concepts from universal algebra, which we now
introduce briefly. The reader is referred to [8] and [ 14] for missing

definitions as well as greater detail.




Let Z be a ranked alphabet. A Z-algebra, A, consists of a set A

called the carrier of the Y-algebra and for each nonnegative integer n and

. . AN _ . . -
fe En an operation fA A AL Ifn =0 then fA is a constant, i.e. fA CA.

If A and B are Z-algebras, a Z~homomorphism h : A + B is a mapping such

that 1) for each f € EO"h(fA)= fy and 2) iffe Z, and a +»,a_ € A then

2o -
h(fA(a1, cee ,an)) = fB(h(a1), cen ,h(an)). The set of T-trees , TZ’ is the

smallest set of strings such that

a) each f € ZO is in TZ

b) iffEZn, Lpeeest € thhenf(tr..tn)ETE

It is well known that if T2 is interpreted as a Z-algebra in the obvious

way (i.e. f(t1, cee, tn) = f(t t )) then TE is free in the class of Z-alge-~

10t

bras i.e. given a Z-algebra A, there is a unique ¥ ~homomorphism from

TZ} to A.

Let X be a set of variables and recall that the ranked alphabet

2(XK) is defined as follows. Z(X)O =Eo U X, E(x)i = Z}i for i = 1. TZ(X) denotes

the algebra TZ(X) which is the free F-algebra on generators X i.e. given a
Zi~algebra A and a mapping h : X + A then there is a unique -homomorphism
h from TE(X) to A which extends h (i.e. h(x) = h(x) for all x € X). Let t be

an element of TZ(X) and assume that x ) X, are all the variables oc-

1o

curring in t. The derived operation t, : AM 4 A is defined as follows

A

.. ,ané A, tA(a1,. .. ,an) = a(t) where 3 is the

X) to A with S(Xi) = a, for 1< i=<n.

(cf. [14]). For each a,.

uniqgue homomorphism from T

5
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Example 5.8 Let Q be the ranked alphabet with QO = {al, “es ,an,e} ,

QZ = {m} and Qi empty otherwise. The string concatenation algebra W’Z’
.

or just W when Q is understood, is the (~algebra whose carrier is the set

of strings '{al,. .. ,,an} *, where a,y = a for each of the a's in Q,, ew

where m is concatenation of strings. The unique {:~homomorphism from

=)\, and

TZ} to W, which we call FRONT, maps {i~trees to sirings in the obvious

way. For example h(m(aTm(a2a1))) = {a1a2a1} . O

From now on Q will always be the ranked alphabet from example 5. 8.
Let G = (N, §a1, ...,a },P,S) be a context-free grammar with nonterminals
N’
N = {AV .o ,Ak} . We associate a set of equations with G in the following

way. Replace in P each righthandside of the form CqCoe++ S by i) eifk =0,

i) ¢, ifk =1and iii) m (clm(cz. . .m(ck_lck).. .)) when k = 2. Now the
righthandsides are elements of TQ(N) i.e. they are (~trees with nonter-
minals as variables. Hence we can interpret the productions of the gram-

mar as a system of equations of the form

Ar = Ry

(*) :

where each Ri is a finite subset of TQ(N). In general a set of equations

like (*) where all variables have rank O is called a regular set of equa~-

tions. The proper domain in which to solve such a set of equations is a

subset algebra, which we introduce next.
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LetZ be a ranked alphabet and let A be a Z-algebra. The subset

algebra of A, denoted by P(A), is the T-algebra whose carrier is the set

of subsets of A and whose operations are defined as follows., For f € 20,

={f ] and for f € Z, (n>0) fP(A) is def.?ned by fP(A)(LP ces ’Ln) =

p(a) = 1Al
{fA(al,...,an) | a, € L, for 1< i< n}. A derived operation in A, tas

(L L)

extends to a derived operation in P(A) in the same way (i.e. tp( prec - n

A)

PP ,an) | a €L, }.) and a set, R, of derived operations in A

define a derived operation, tR, in P(A) as follows: tR(I_ y o e ’Ln) =

1

U t(L.,...,L. ). Now any regular system of equations such as (*) can
per A n
Bbe interpreted as defining the following mapping Mg: lP(A)k -+ lP(A)k

R Rk

preeealg) = (0 L, L)yt (L, )

Since we want to talk about MG‘s minimal fixed point we need the following
continuity concepts. Let S be a partially ordered set (poset) with ordering
< and minimal element | . A nonempty subset .5;1 of S is called directed

if any two elements of 51 have an upper bound in S S is called L_J-com-

1
plete (A-complete) if every subset (every directed subset) E‘;.1 has a least

upper bound lUb(Sl) inS. If T is another poset and f: S » T then f is called

Ll-continuous (A-continuous) if f(lub(S1)) = lub(f(SI)) for all subsets (all

directed subsets) S, of S for which Iub(S1) exists.

1

If the carrier of the subset algebra is ordered (partially) by normal
set inclusion then it can be shown (see [8]) that the mapping MG defined

above is L.l-continuous and hence that it has a minimal fixed point

0
17"

element of P(A) (equational subset of A).

(- . ,L_g). A component of this fixed point, L_?, is called an equational
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Example 5.9 Consider the algebra WQ from Example 5.8, The subset

algebra of V\/Q, P(WQ) will be called the string language concatenation al-
gebra. Its carrier consists of subsets of -{a ;... ,ahi *-and m denotes

usual concatenation of sets of strings. If the set of equations (¥) is solved

in P(WQ,) then the equational subset of WQ corresponding to the i'th component

in the minimal fixed point of M__ is equal to the set of strings generated by

G
G from nonterminal Ai' Thus the first component in the fixed point is equal

to L(G) (recall that A1 is the startsymbol). a

LetZ be a ranked alphabet and let F be a system of regular equations
like (¥). There is a subset algebra in which it is particularly interesting
to solve E and that is the subset algebra of the free algebra TZ)' Let A be
any Z-algebra and let h be the unique homomorphism from TE to A. It is
easy to see that h extends to a unique (L.l-continuous) homomorphism from
P(TZ) to P(A); but then it follows (again see [8] ) that we can obtain the

solution to E in P(A) as the image under h of the solution in P(TE).

Example 5. 10 Let P(WQ) be the string language concatenation algebra.

The solution to (¥) in P(WQ) is the FRONT-image (cf. example 5.8) of the
solution in P(TQ). Note that the set of (~trees, which is the solution in
P(TQ) looks very much like the set of (normal) derivation trees of the con-

text—-free grammar G. O

Now consider macro grammars as defined in Definition 5.2 Again we
want to view a grammar as a set of equations, but this time we have the
additional complication that the unknowns (the nonterminals) are allowed to

have rank different from 0, i.e. they occur in '"the middle! of terms which



are righthandsides of pr‘oductiéns. The way to handle this is, as shown by
Downey in [6] , to view the unknowns as ranging over functions from seis
of strings to sets of strings rather than sets of sirings as in the case of
regular equations. The meaning of an occurrence of a nonterminal with
rank different from 0 is then that the function associated with this nonter—
minal has to be composed with the function(s) occurring as argument(s).
Hence the solution (or the minimal fixed point) of the equation obtained

from a macro grammar is a tuple of functions mapping sets of strings to

sets of strings. In particular some of the components of this tuple can be

just a set of strings which is then viewed as a constant function.

Example 5. 11 Consider the following macro grammar
S -+ F(A) | a(\,B)
F(x1) X%,
A + al|b

G(XI’XZ) » XX,
B + B

The solution to the set of equations we intend to associate with this
grammar will be the following five tuple (SO,FO,GO,AO,BO) where S° =
{ab, ba, aa, bb}, A= {a,b}, B°=¢ and F° and G° are the following

functions

ML, l_zg{a,b}*: FO(L.1,I_2) = L, Ly

- M 0 = . .
bl g, L) L, L, 0]
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As we want the solutions to macro equations to be elements of appro-
priate algebras we have to take care of the problem that the nonterminals
have different rank. This is handled with the use of heterogeneous (or
many sorted) algebras where it is possible to have more than one carrier.
We briefly introduce the necessary concepis.

Let S be a set (of sorts). An S-sorted alphabet ¥ is an indexed

family <X of disjoint sets. A symbol f € EW s is called an

w,s><w,s>€S*XS )

operator of type <w,s>. If w =) then f is a constant of sorts. Let X be

SES

seis called the carrijers of A (AS is the carrier of sort s) and for each

an S-sorted alphabet. A Z-algebra A consists of a family <AS> of

< - S ¥ y : .
w,s> € S* x S and each fe ZW g an operation f.: AS1 X oo X Asn » A
where Sie..s, =w. If A and B are L-algebras, a Z-homomorphism is an

indexed family <hS>S€

’

< of mappings h_: A_ =+ B_ such that 1) if € Z’)\,s

-~

then h(fA) =f_ and 2) is f € Zs and a, €A  for 1=i<n, then

B 1°°*Sh? i

hs(fA(a1, cen ,an)) = 1’5(hS 1(a1), cee ’hs(an))'

.S

The set of Z—trees, TE’ is the smallest family <,T2, S SES which satis-

fies
i) for s € S : ZA,SQTZ,S
i) for nz1ands,s1,...,sn€SiffGESr“Sn,sand
< i -
t, € TE’S_for‘1__ i < n,then f(t1...tn)€ TE,S

VVariables are introduced in the following way. Let X = <><S>SES be a

family Qf disjoint sets and let 2(X) be the S-sorted alphabet where for

each s € S, Z(X) =7 U X_ and for each w# X and s € S, LX), o=
?

X,s  A,s

ZW’ < Now, TE (TE(X)) is the T-algebra with TE,S (TE(X),S) as carrier
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of sort s and operations defined in the obvious way. As in the ranked
case, TE (TE(X)a) is the free algebra in the class of Z-algebras (the
class of Z-algebras with generators X). Finally for a Z-algebra A, the
subset algebra P(A) is defined in a way completely analogous to the
ranked case.

Now we can start building the heterogeneous algebra we are inter-
ested in. First we introduce the socalled derived alphabet (Maibaum, [25])
of a ranked alphabet. This alphabet will be used extensively in the

following.

Definition 5. 12 L_.et Z be a ranked alphabet and let N be the set of non-

negative integers. The derived alphabet of Z, D{(X), is the following N-

soried alphabet.

Let, for each n= 0, in ={f | fe¢ En} be a new set of symbols; let for
eachnz= tand 1=i<n, ﬁ? be a new symbol; and let, for eachnz= 0, k= 0

Ch,k be a new symbol. Then

DBy = Zo

. > =5 n <i<

i) for n 1’D)\,n Znu{'ﬁi | 1<i=<n}

iii) for n,k = 0, ank...k,k {Cn,k}
e
n times

iv) D = @ otherwise O

W, s

The symbols of D(Z) will be used as operators in D(X)-algebras whose
carriers are functions. The 'H?'S will denote projections and the c k‘s
3

will be used as composition symbols.



First we define the appropriate algebra for solving macro equations.
The carrier(s) will consist of functions from sets of strings to sets of
strings, and the cn,k's will denote composition of such functions. Since
we want the solutions to be the same as the functions computed by the
grammar under Ol-derivation, our algebrahas to reflect the fact that the

"Ol-composition! of functions is not L _l-continuous but only A-continuous

(see [8] for a more detailed discussion of this).

Definition 5. 13 L.et D(Q) be the derived alphabet of Q. EA(P(W)), the

D(Q) algebra of A-continuous functions over P(W) is defined as follows

i) for iz 0, & (P(W))i is the set of all A-continuous functions

A

P(W)' 2 P(W), in particular & (P(W)) g = P(W)

JAY

i) for 1< i<n, 5i={ai}

iii) m = concatenation in P(W)

iv) for iz 1, 1Sj_<_iandl_1,...,L_i in P(w)

i _
Lyl =L

V) for i,j= 0, f€F,(P(W)),; 9yseeny9, € EA(P(W))J-

c. .(f,gT,...,gi) = fo(g1,...,gi) O

P

Now recall the way in which we solved regular Q~equations in the
Q-algebra P (W) and recall also that the solutions were called equational
elements of P (W). It is easy to show that we can use exactly the same
approach here, i.e. we can solve regular D({))~equations in the D()-

algebra & ,(P(W)), thus obtaining equational elements of B‘A(P(W)). Note

A(
that in particular elements of 3A(P(W))O {= P(W)) can be equational.

65
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Definition 5. 14 An element of P(W) is said to be OI{(1)-equational if it

is equational as an element of 5A(P(W)). O

The following theorem is one of the main results in [8]

Theorem 5. 15 (Engelfriet and Schmidt) The Ol{1)-equationa! subsets of

° (Wﬂ) are exactly the Ol macro languages over the alphabet {a1, cea O

N
We shall not attempt to prove this theorem, rather we show in the
following example how the language generated by the grammar in Example

5.11 is obtained as an equational element of P(W).

Example 5. 16 Let {' be the ranked alphabet where 96 = {a, b, e} ,
QL = {m} and Ql = # otherwise. The derived alphabet D(§}!') consists of
the symbols &, b, €, m together with projection- and composition symbols.

Consider the following set, E, of regular D(Q!') equations.

1,0 2,0
S = /N /IN
F A G e B
€2,1
Foo=J/
Eﬁ: 11;
A = 3|6
€2,2
G = 1
r'ﬁﬂ'? ﬂg
©2,0




67

If E is solved in EA(P(WQ,)) then we obtain exactly the solution
(s°,F%,G°,A°%,B%) from Example 5.11, The righthandsides are derived
operations whose meaning follow from Definition 5, 13. Thus, for example,
the righthandside. for G, cz, 2(5 ‘IT% 'R‘g) is interpreted in the following

way. The function of two variables m (which, by the way, is concatenation)

2. c's indices 2,2

and ’1’1’2

is composed with the two projection functions 17?
express that m is a function of two arguments and that the result of the
whole thing also has two arguments. Take as another example the second
righthandside of S, cz’ O(G e B). Here CZ,O expresses that G ranges over

functions of two variables and that we compose with two constants, thereby

getting a constant back. [

In view of Theorem 5. 15 it is hardly surprising that there is a system-
atic way of transforming any macro grammar into an equivalent set of regu-
lar D(Q) equations. Again the reader is referred to [8] for details.

The characterization of macro languages in Theorem 5.15 is not strong
enough to be really useful, because it does not specify what the solutions
to systems of regular equations look like. In the case of regular -
equations we saw how to solve in P(W) by solving in P(TQ) and then
taking the FRONT-image to get a set of sirings in P(W). We would like
to do something similar in this case, i.e. we would like to get the solu-
tion to a regular D()) equation in SA(P(W)) as the homomorphic image
of its solution in an algebra whose elements are some kind of D({))~trees.

First we need the following definition.

Definition 5. 17 Let Z be a ranked alphabet and let D(Z) be the derived

alphabet. The tree-substitution D(X)-algebra DTz(X) is defined as follows.
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The domain of sortnis T

=z

(Xn). For f€ En’ f is the tree 1’(><1.. .xn)
(for f€ 5y, F=f). Fornz1and 1=<i=n, ‘f‘f?

= X5 for nz 0, k=0,
t € TE(xn) and tI,...,tné TE(xk)’ cn’k(t,t1,...,tn) = t[tl,...,tn] i.e.

the result of substituting ti for ><i in t. , (]

If we denote by YIELD the unique homomorphism from the (free) D(Z)-
algebra TD(Q) to DTQ(X) then an intuitively appealing way of obtaining
equational subseis of EA(P(W)) is the following. Solve the regutar D(Q)-

equations in the subset algebra P(T Q)) thereby obtaining a regular set of

D(
D(Q)-trees, and then take the YIELD-~image of this set of trees. This re-

sults in a set of OQ—trees from which we get a set of sirings by application

of FRONT. Unfortunately, this does not work because, as shown in [8] ,
we end up with the 10-lanhguage rather than the Ol-language which we are

interested 'in. The mathematical reason for this is that the subset algebra
P(TD(Q)) is free in the ""'wrong'' class of D{({))-algebras, namely in the class
of algebras where all operations and homomorphisms are Ll-continuous. As
we have already mentioned, the Ol-mode of derivation leads to an operation
of function composition which is A-continuous but not Lj-continuous. Hence,

instead of P(T Q,)) we want an algebra which is free in the class of

D(
D(Q)-algebras with A-continuous homomorphisms. Such an algebra was
defined in [14] and we now briefly intiroduce the necessary concepts. The
reader is referred to [ 14] for further details.

Let 2 be an S-sorted alphabet and assume that the symbol | is in

E)\ s for all s. CTE is the set of all finite and infinite trees labeled by
b

2 such that a node labeled with a symbol in Z}S s . s has exactly n
1 * * w n’ .
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successors which are roots of subtrees of type s 12591+ s8¢ CTE is
ordered (partially) by a "subtree-ordering" in which ] is the minimal
element (see [ 14]). When viewed as a L-algebra CTE is free in the class
of T-algebras with A-continuous and | -preserving homomorphisms. For

an S-sorted set of variables X, CT_(X) is the free Z-algebra on generators

>
X. We can view CTZ(X) as a D(T)-algebra in the same way as DTE(X) above,
the only difference being that Cn,k is now substitution of infinite trees. The
unique homomorphism from CTD(E) to CTE(X) will again be called YIELD.
The relevance of infinite trees to our problem Is the following. Given

a regular set of D(§) equations like in Example 5,16 we view it as a 'deter—
ministic!! set of equations by introducing the binary operator + and replacing
)eed)). For-

ees +r

righthandsides like r by +(r~1+(r'

plrg oo Irg 2 k-1"k
mally we add + to the derived alphabet D({)) as a new element of sort 2 and
denote the resulting alphabet by D(Q)*. Then the solution in CTD(Q)+ to a

regular system of D(Q)+—equations of the form

is the k—-tuple of infinite trees obtained as follows. Start with (Al’ . ’Ak)
and replace the Ai's by their righthandsides, then replace all Ai‘s by their
righthandsides, and so on. For obvious reasons a iree of this  type is

called a regular _infinite tree. If we apply YIELD to such an infinite tree we

obtain as result another infinite tree in the D(Q)+—algebr*a CTQ+(><). In this
last infinite tree the internal nodes are labeled by m or + and the leaves

by i, By,ee058,, €00 variables from X. If + is interpreted as union and m
as concatenation of string languages, the iree defines a derived ope-
ration in & ,(P(W)), which is equal to (a component of) the solution in

A
&'A(P(W)) to the original set of regular equations. Formally, let DER be
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the unique A-continuous, | -preserving D(Q}+—homomor‘phism which maps

trees inCT X) to derived operations in EA(P(W)). We have the following

Q+(

theorem from [8].

Theorem 5. 18 Let E = {A. = R.} ';___1 be a system of regular D()-

i i
equations and let E+ = {Ai = Pi} li<=1 be the corresponding '"deterministic!
Do)t equations. If (F—'Ol,

are the infinite trees obtained from A1, oo ,AI< by successively

e ,F?() is the solution of E in 3A(P(WQ)) and

@

o0}
oeeesty

replacing Ai‘s with r‘i's then we have for 1< i<k,
F? = DER ° YIELD (t;) 0

This can be summarized in the statement that the following diagram
is commutative. FIX denotes the operation of solving the equation =

(finding its minimal fixed point).

FIX
F1X

YIELD
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Example 5. 19 Consider the regular set of equations E in Example 5. 16.

The corresponding '"deterministic!! D(Q)+ system is

/ +\
S = C C
1,0 0
/\’ /W
F A G e B
€2, 1
= = /\
- 1 1
m 17’1 ‘ﬂ'1
+
A = / \
a b
€2,2
G = /
— 2 2
m ’n'1 ’I‘Tz
©2,0

o
BI_\—
/

and the infinite tree corresponding to' S is

/N
AN
A N
1 My 1R m - a _/IZ,O
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If YIELD is applied to this tree we obtain the following tree in CTQ.,_(X)

.
N\
N ZRN
AN TN
a b a b a m

7N\

Finally application of DER results in the set of strings {aa,ab,ba, bb}.

O

Having seen how to obtain Ol macro languages as equational subsets
of EA(P(W)) or, equivalently, as images under DER©¢ YIELD of infinite
regular trees, we are now ready to define the Ol-hierarchy. The first
family of languages in the hierarchy (after the Ol-languages) is obtained
by solving sets of regular equations in an algebra whose elements are ope~
rators. Recall the definition of EA(P(W)), where the T's and c's in D()
were associated with projection and composition of functions. If we could
derive the alphabet once more, then we would obtain some new T'!'s and
c's which could be interpreted as projection and composition of operators.
This is done as follows (note that so far we have only defined derivation
of ranked alphabets and that we now define it for arbitrary many sorted

alphabets).
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Definition 5.20 L.etZ be an S-sorted alphabet. The derived (S* xS)-

sorted alphabet D(X) is obtained as follows. Let, for each <w,s> € S* xS

and each f € Z)W < T be a new symbol; let for each w € S* (w # \) and each
H

i, 1=<is|w|, 'lT\lN be a new symbol; and let for each w,vE S¥*, s €S,

cW v.s be a new symbol. Then D(Z) consists of these symbols with their
? ?

types (elements of (S¥ x S)* x (S¥* x S)) specified as follows

i) for f € ZW S? T has type <\, <w,s>>
H
i) W\IN has type <A ,< W, W
< < << e o< < > .
iii) Cw,v,s has type <<w,s><v,w > V, W >, <V, 5> O

We also need the following generalization of Definition 5. 13.

Definition 5.21 LetX be an S-sorted alphabet and B a A-continuous

z-algebra with Ll-complete carriers. The D(Z)-algebra of A-continuous

functions over B, denoted by IFA(B), is defined as follows.

i) the domain of sort<s... .s,,s> is the set of all
A—-continuous functions from BS 1><. . .XBsn—’ BS
i) for f € Zw,s’_f-sz
iii) for w =w,...w_and b1€BW1,..., b, € Bwn,
16y, esb ) = b,
iv) for w = w,.. CW s fe 3A(B)<w,s>’ 94 € EA(B)(v,wﬂ‘ ..
gné 3A(B)<v,wn)’ cw,v,s(f’gl”"’gn) =fo (91""’gn) =
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Since it is easy to see that for any A-continuous Z-algebra with LJ-
complete carriers B, EA(B) is a A-continuous D(X)-algebra with Ll-complete
carriers, we can iterate both the process of deriving alphabets and the
process of constructing function algebras. We define the n'th derived al-
phabet D(T) inductively as follows, 1) D°(T) =T, and 2) for n= 1,

DYz) = D(Dn_1(2)). The n'th iterate function algebra of the L-algebra B
is the D"(T)-algebra 32(8) defined by 1) EZ(B) =B, and 2) for n> 1,
AR B,

Now the formal definition of the Ol-hlerarchy is the following.

n —
EA(B) = &

Definition 5.22 A set of strings in P(W) is Ol{(n)-equational if it is (a

component of) the solution of a system of regular D"(§) equations in
F" .
APW)) O
Again we have a '"useful! characterization of these sets. Recall that
CTDn(Q)"' consists of infinite Dn(Q)+—tr‘ees and let for each nz 1, YIELD
denote the unique A-continuous |-~preserving homomorphism from

CTDn(Q).;. to CTDn—l(Q)+ . The following theorem was proved in [8].

Theorem 5.23 A set of strings in P(W) is Ol{n)-equational if and only if

it is equal to DER © YIEI_Dn(t@») where t” is an infinite regular Dn(Q)+—

tree of appropriate sort. O

Example 5.24 Let Y be the ranked alphabet with EO ={a, b}, Ly = { m}

and En = ) otherwise. & can be viewed as an S-sorted alphabet where S
is a singleton (S = {s} ). Then a,b and m have the following types

a,b has type <\,s>

m 1" H <ss,s>
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Let D(Z) be the derived alphabet of & according to Definition 5.12. D(X)

can be viewed as sorted by (S*¥ x S)* x (S¥* x S). The elements then have

the following types.

a,b has type <X,<\,s>>

m i I <\, <ss,s>>
n N
ﬁi I i <A 2y S ,85>>
n k k
Cn K n 1" <<s ,s><s5 ,5>,,.<S ,S>,<‘sk:5>>
?

The derived alphabet of the manysorted alphabet D(Z), D(D(X)), obtained

by Definition 5. 20 consists of the following elements with types as spe-

cified.

l 3p e
o

=3
— 5

c
n, k

gplMee -k "
i

c "
nl..-nk,ml...m-h,no

Consider the D(D()-algebra EA(I}A(P(W))). Here 7

with type

"

A, <N, <A, S>>
<A, <A ,<ss,s>>>
N
A, <\,<s", s>>>
n K K k
<U,<<s ,s><s ,s>...<s5 ,s>,<s ,sS>>>

n n g
A,<<s' ' ,s>...<s ¥ s>,<s5 1, >>>

e N N
<<<s l,s>...<s k,s>,<s 9,s>>

<<s™ y S>. . L<s™

n
bs>,<s 1,s>>

m. m

<<s t,s>...<s nos>, <s x, s>,
: m

<<s™ o>, . .<s h,s>,<sn0,s>>>.

O

Ny oo oMy

i is inter—-

preted as the operator which takes as argument k functions (with

URPLIPYREEEA L arguments) and returns as result a function with n, argu-

ments. c is interpreted in a similar fashion.

1o D Mye oM, Ny
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Now we want to study how succinctly the regular equations "in the Ol-
hierarchy! can describe finite sets. First we present In the following
example three systems of regular equations of similar size (over I,

D(Z) and D(D(Z)) ) whose solutions in P(Wi*)’ 3A(P(WZ)) and | EA(SA(P(VVE)))

are of different magnitudes. The intuition behind the examples is as

follows. Consider the set of regular Z-equations En'

En S = A;/\A1
/m
A = ~
' A1 A
/+\
An - a b

It is clear that the S—-component of En‘s solution in P(WE) is equal to

Lo = {we {a,b} * | |w| = 2"} . Now, let d be the one~argument function

which Y"squares!' its argument (one representation of d is d(x) = m(xx)).
Intuitively, if in En we replace m by some appropriate composition symbol

from D(Z), and a/+\ by the function d, then we should be able to generate

b
n
the function d2 . Hence the following system of equations (where the sort

of the c's has been left unspecified) should generate the language L_1 =
n n
2 2

{we {a,p} ¥ | lw| =29} (=d“ ({a,b})).
D(E ) s = c/ \+
n N\ /\
A1 A1 a b
A
A1 A
A = d
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Similarly, if in D(En) c is replaced by composition of operators and d

by the operator D, which composes its argument with itself (D(x) = x ¢ x)
22n
2% |

then we should be able to obtain the set L, = {we {a,bl *¥| |w|

in the following way

BN

DID(E )): S = c</ A
/c\/ d é—_ E
: A A
C
A= LN\
Al i+ 1
A = D
1§

The next example shows how this is done formally.

Example 5,25

a) L, Is the S-component of the solution in EA(P(WZ)) to the following

system of regular D(Z)-equations

S = C
1,0
PN
/A
: A c a b
) 1 1.1
. / N\
Ay
Ai = c{’\1
A1 C1,1
. A )
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An = €2, 1
/1\

— 1

m ’171

Ty

b) l_z is obtained as the S—component of the solution in EA(EA(P(WZ))) to

the following system of regular D(D(Z)) equations

S =

A = /‘31,1,1
Al /C\Qn

. 1

. At M

A = C
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By a straighiforward generalization of the technique used in Example

5. 25 we can prove the following lemma.

Lemma 5.26 For eachk = 1, the set {w € {a,b} * | |w| =2 }is

Ol(k)-equational, Furthermore, it is equal to DER o YlELDk(t) where t
is a component of the solution in CTDK(Q)"' to a system of regular Dk(Q,)_

equations of size O(n). O

Now recall that the reason the set FO (F 1) in the beginning of this sec—
tion was- hard for nondeterministic exponential (double exponential) time
was the ability to generate {w € {a,b} * | |w| = 2"} ({w€ {a,b} * | |w| =
Zzn}) by a context-free (macr‘o-)” grammar of size O(n). L.emma 5. 26
suggests that these results might be generalized and in order to do that
we need the following notation.

()

Let Eo(n) = 2" and let for each k = 1, Ek(n) =2 . Let R(k)

be the class of regular Dk(Q)—equations and assume that each equation

has a desighated unknown S which is of type m:k.\.j\,@gsz S>>
Let L(G) be the component of the solution to G in EZ(P(W)) which corre-
sponds to S. L.et R(k)FIN be the class of equations G, for which L(G) is

finite, and consider for each k= 1, the set I'—‘k and the complexity class

NEXP(k) defined as follows

F. = {(D,E) € RIKIFINX IE| L(G) # Qy* *(E)]
NEXP(k) = ) NTIME(E (')
=0

It was shown in Theorem 5, 6 that F1 is hard for NEXP(1) under

Sp, and we would like to use the same method to show that Fk is hard

for NEXP(k), also under Sp. The generalization of the proof works well
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except that here we can't use sizeclosure T under intersection with
regular sets. -It is an open problem whether Ol(k)-equational sets are
closed under intersection with regular languages. However we can prove

the following theorem.

Theorem 5. 27 If the Ol(k)-equational sets are sizeclosed under inter-

section with regular sets then Fk is hard for NEXP(k) under Sp.

Proof
The proof is exactly the same as the proof of Theorem 5.6 with the
exception that now the running time of the Turing Machine for which we
are generating invalid computations is T(n) = Ek(p(n)) for some polynomial
p(n) (rather than EI(p(n))). It follows from the proof of Theorem 5.6 that
the essential point is the ability to obtain the following sets as solutions

to equations of size O(n)

So(n) = {AJBAT(V‘)‘H | 0=<j<T(n)-1}
Rom) = (AlgaT(n)=3-] | 0<j<T(n)-3}
o(n) = [t IAiga T{n)=(nt1)-] | 0= )< T(n)=(n+1)}

Now from Lemma 5. 26 and the assumption that Ol(k )-equational sets are

sizeclosed under intersections with regular sets it follows immediately

that S s R and U are indeed obtainable as solutions to "small!
p(n)’" “p(n) p(n)

Dk(Q)—equations.

We can also simulate the use of these sets as sentential forms in the

following way. Recall that in Theorem 5.6 the words in (for example) Sp(n)

U See the remark following Theorem 5, 6.
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were used to generate invalid computations containing a transition error.
First /B\jBAT(h)—j—1 was generated and then the A's generated (Z U {1} )**
(T(n)+1) and B generated the pair of consecutive configurations containing
the error. We can obtain the same effect here by adding a new set of equa-
tions in which the A-component of the solution is (ZU {)\})** (T(n)+1) and
the B-component is the set of consecutive configurations in error.

That this works is a consequence of the characterization of the Ol(k)-
equational sets as DER © YIEL_DI< of solutions in CTDK(Q)+ . Applying

DER last in the "evaluation!! corresponds to first generating the senten-

tial forms and then expanding the remaining nonterminals. O

We note in passing that we can obtain the set Sp(n) in a way similar
to what we did for macro grammars, thus the assumption about sizeclosure
with regular sets is needed only to obtain Rp(n) and up(n) and it is entirely
possible that they also can be defined ''directly", i.e. without use of
the assumption. Note also that if the Ol(k)-equational sets can be defined
by some class of natural machines with a finite control, then the assump-
tion of the theorem is satisfied. The author conjectures that there is
such a machine model for the Ol{k)-equational sets and hence that the
sets F—‘k are hard for the classes NEXP(k). Finally we note that if the
macro grammars of level k from [ 24] are equivalent to regular Dk(Q)-—
equations then results from [24] imply that the assumption in Theorem
5.27 is satisfied.

We close this chapter by pointing out that for k= 1 it is an open
question whether the seis F:k are in the classes NEXP(k). Recall that we

showed (in Theorem 5. 1) that FO is complete for NEXP(0). The proof

was based on the pumping lemma for context-free languages and on the
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existence of polynomial time algorithms for parsing context-free gram-
mars. Although there exists a pumping lemma for Ol macro languages
(see [ 17]) there are no efficient parsing method for the grammars and
higher up in the hierarchy neither pumping lemmas nor efficient parsing

methods are available.
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