AMBIGUITY IN FINITE AUTOMATA

by

Erik Meineche Schmidt

DAIMI PB-82
September 1977

Institute of Mathematics University of Aarhus

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06-1283 55

n=m

=N
n

Ambiguity in Finite Automata

by

Erik Meineche Schmidt

T Most of this work was done while the author was a graduate student
at Cornell University. It will appear as part of his Ph.D. dissertation,
which will be submitted to Cornell in the fail, 1977.

CONTENTS

1. INTRODUCTION .ttt etereneasecscosnnsens

2. SUCCINCTNESS

ooooooooooooooooooooooooooooo

3. COMFLEXITY

oooooooooooooooooooooooooooooooo

1. INTRODUCTION

Ambiguity has been studied extensively in connection with contexi~free
languages, where the existence of (inherently) ambiguous languages,
and the undecidability of most properties involving ambiguity are among
the most important results ([4], [9]). Recently Valiant [11] and
Schmidt & Szymanski [10] examined ambiguity from the point of view of
succinctness of descriptions of contexi-free languages. They showed
that there is no recursive function bounding the amount of compactness
gained when using unambiguous pushdown automata (pda's) rather than
deterministic pda's in the description of deterministic contexi~free lan-

guages, and similarly for ambiguous pda's and unambiguous ones.

In this paper we consider similar questions for finite automata. Since
every regular set is accepted by a deterministic finite automaton, there
are no (inherently) ambiguous regular languages. Succinciness-wise,
however, the behaviour of deterministic, unambiguous and ambjguous finite
automata is similar to that of the pda's provided the term ""nonrecursive!
is replaced by ''"nonpolynomial', Since every nondeterministic finite auto-
maton with n states has a deterministic equivalent with no more than 2"
states,the gain in compactness in descriptions between the different types
of finite automata is always bounded by an exponential, so the best we can

hope for is nonpolynomial succinctness.

It was shown by Meyer & Fisher in [7] that this type of succinctness exists
between deterministic and ambiguous finite automata, and in this paper we
show that the same property holds for deterministic and unambiguous auto-—

mata, as well as for unambiguous and ambiguous machines.

We also examine .the role of ambiguity in connection with the complexity
of problems involving regular expressions. We specifically consider the
problem of deciding whether the complement of the language generated by

a regular expression is nonempty. This problem is complete for polynomial
space (PSPACE) when arbitrary expressions are considered, but since the
proof involves ambiguous regular expressions it is natural to ask how dif-
ficult the problem is when only unambiguous expressions are considered. We

show that in this case the problem is in NP, and hence that the absence of am-

biguity makes it easier (unless, of course, PSPACE happens to be equal
to NP). Finally we prove that deciding whether a regular expression is
ambiguous is complete for nondeterministic logarithmic space

(NLLOGSPACE).

The paper is divided into four sections of which this is the first. Section 2
contains the proof of the nonpolynomial succinciness between ambiguous and
unambiguous finite automata and section 3 the result that nonemptiness of
complement for unambiguous finite automata is in NP. Finally, it is shown
in section 4 that the ambiguity probiem for regular expressions is complete

for NLOGSPACE.

2. SUCCINCTNESS

In this section we prove that unambiguous finite automata,in terms of

succinctness,lie between deterministic and nondeterministic machines.

The reader is assumed to be familiar with standard concepts from auto-~
mata theory and complexity theory, and is referred to [2] and [1] for de-

finitions not presented in the paper.

We shall use notation and terminology from [2]. Hence, a nondeterminis-
tic finite automaton, NFA, is a system M =(Q,%,0,q,,F) consisting of
states, input alphabet, transition function (from Q x T to subsets of Q),
startstate and final states. M is in configuration (g, x) € Qx Z ¥ if it is in
state g and x is the part of the input that remains to be read. }— is the
usual ""transition relation!'" between configurations and |—= is its reflexive
and transitive closure. The language acceptied by M is the set

T(M) = {x €T * |JaeF :(ag,x) = (q,)\)}T. M is said to be an unambi-
guous finite automaton, UFA, If no word is accepted in more than one way,
i.e. for no x=a,;a,...a, is there more than one sequence of states
dosTqse-+,9d, such that g, € F and (g ,as...a,) (9,844 ...a,) for 1=<isn .
M is a deterministic finite automaton, DFA, if for all g€ Qand a€ =

8(q,a) contains at most one element.

We now introduce some notation which will make it easier to talk about
succinctness. LetM, and M, be classes of descriptors (such as machines
or grammars) and assume that the family of languages generated by ml is
equal to °~ the family generated by M,. Furthermore let size, and size,
be functions mapping ml and M, to the nonnegative integers. Then, by

mlL”)»mg we denote f(n)-succinctness between M, and M,, meaning that

there are languages defined by small l; -descriptors which require large
mz—descr‘iptor‘s., The difference between small and large Is determined

by f(n). Formally m,_-—fif‘-L M, means that there is a family of languages
{L(n) | n ¢ N} defined by elements {ml(n) | n € N} of M, such that for any
family of l, -descriptors {ma(n) | ne N} defining the same languages,

size, (mg(n)) = O(f(size (m, (n)))).

+ X is the empty word.

Theorem 1 The classes of deterministic, unambiguous and nondeter-

ministic finite automata satisfy the following succinctness diagram

UF A
zc;“/y \\fce“/ﬁ
NEA

DF A <

zn

where c1 and c, are positive constants.
Proof a) The 2"_succinciness between NFA and DFA was proved in [7].

b) The ZCIﬁ—succincmess between UFA and DFA is proved by considering
the family of languages {I_l(n) | n€ N} where

L,(n) = {x#a® | xe {0,1}*, 1< m=n,the m'th bit of x is 1

Since a deterministic automaton must distinguish between all x-prefixes of the
words x # a®, it is clear that a deterministic machine accepting L., (n)

must have at least 2" states. An unambiguous machine, on the other hand,

can recognize L.,(n) byguessing which bit is the m'th, skipping the input

until it sees #, and then check that the guess was correct. It is easy to

see that such a machine needs no more than O(nz) states.

5C2/N
c) To get the NFA —=— UFA result we consider the languages

{L5(n) | n€ N} where

Lo(n) = {x #y| xyE {0,1", x# vy}

Using again the guess—-and-check technique it is straightforward to construct
a nondeterministic automaton with no more than O(n®) states accepting
l_g(n), but since the prefix x and the postfix y can differ in many ways,
the obvious machine is ambiguous. In the following lemma we show that

ambiguity is unavoidable unless the machine is allowed to have 2" staies.

This proves the resulit. 0

What the next lemma says is essentially that a nondeterministic (but unam-
biguous) machine accepting L, (n) has to distinguish between all prefixes

of the form x #.

Lemma 2 Any unmabiguous finite automaton recognizing the language

Lo(n) ={x#Hy | x,y € {0,1}", x# vy} has at least 2" states.

Proof Assume that M = (Q,2,0,9,,F) is such an automaton. We show
that at least 2" states are reachable from the staristate via prefixes of

the form x# .

Let x € {0,1}" be arbitrary and assume that K, = {ql yono ,qu} is the set
of states reachable from q, via x # . Define for each i (1< i<k,) the set
Al ={ye {o,1}" Hq €F :(qy,y) % (a,))} consisting of the words in

{0, 11® which lead from the state q, (in K,) to acceptance. Consider, for x

varying over {0, 1 } * . the total collection of these sets
A= “A’l‘}liZT}xG {o, 1} and let B, ,B;,...,B, be a listing of the sets in

A without repetitions.

Let K be the set of all states reachable from q, via some prefix of the form
x # and consider the function which maps each state g in K to the set of
words in {0, 1}® which lead from q to a final state. It is easy to see that
this function maps K onto the listing B;,...,B, . Hence in order to show
that there are at least 2" states in K it is sufficient to show that there are

at least that many B,'s.

We do this by interpreting subsets of {0, 1}“ as elements of the 2" -dimen-

sional vector~space over the field of characteristic 2. Assume that

Xy 9 %5y ee0yXgn 1S @an enumeration of {0, 1} ™. With each C < {0, 1}* we
associate the vector & = (c1,C55...,C5a) Where for 1< < 2% ¢, =1 iff
xy €C.

Ky .
Now consider for each x the set A, = A . We claim that since the

i=1
automaton is unambiguous, the sets Al,... ,Axkx are mutually disjoint. This

follows since if there is i,j and y such that y € Al n AJ then we have

(do, x#Fy) £ (aq4,y) ¥ (p1,))

and

(g0, x#y) £ (qy,y) £ (pg,A)

where both p; and p; are in F. But then x# vy is accepted in two different
ways, which is a contradiction. Now since A}% yeoe ,Aﬁx are disjoint and further-
more all occur among the B,;!s, the vector Z\x can be writien as a linear com-

=
bination of the vectors B, i.e.

-5 m -+]
(*) Ay =T t; By ty; € {0,1} for 1< j<m

j=1
Let us assume that x is the i'th element in the enumeration of {0, 1, i.e.

x = x,; . Since all words of the form x; # x, are in L,(n), unless i =j, it

follows that A, is equal to {0, 1} ™ ~ {x |, thus R, =(1,1,...,1,0,1,...,1),

where 0 is the i'th coordinate. But it is easy to see that the vectors
n

(A} 2

. . .] - 4
written as linear combinations of §1 yeee, B, it follows that m=z 2®., Hence

; are linearly independent and since (*) shows that they all can be

there are at least 2" B,'s, consequently also at least 2" states in K, and

the lemma is proved. O

3. COMPLEXITY

Here we use an argument similar to the proof of lemma 2 to show that am~
biguity also plays a role in connection with.the complexity of finite auto-

mata.

Consider the problem of deciding whether a finite automaton accepts all
words over its input alphabet. This problem is complete for PSPACE when
arbitrary nondeterministic automata are considered [8] , and it has a poly-
nomial time algorithm in case the automata are deterministic, (actually one
which runs in nondeterministic logarithmic space [5]). The reason the
problem is so difficult in the general case is that the length of the shortest
string rejected by a nondeterministic finite automaton can be exponential

in the size of the machine. The following theorem shows that ambiguity is

essential in this connection.

Theorem 3 Let M =(Q,XZ,0,q,,F) can be an unambiguous finite auto-
maton with m states. The shortest word not accepted by M is no longer than
m+ 1.

Proof Letw=a, ... a, be one of the shortest words not accepted by

n

Mand let Kgy,K,,K5,...,K, be the set of states reachable from q, via A,
81,8185 500058 «00 - anda, ... g,.

n-1
We will show that the set of states K = _/ K, contains at least n-1 ele-
ments. As in lemma 2 we do this by assoié—_i%ting with each state in K a set
of words which gets interpreted as a vector in an appropriate vector-space

in such a way that n-1 of the vectors become linearly independent.

Here the proper choice of words is the set of suffixes of w. Let for 1<i<n

X,; denote a ;ay,; ... @, and let X = {xl s Xg e ee,X, } . Again we associate

subsets of X with the states inK,;. Assume K, = {ql gooe ,qki} and let for Isjsk,
Ag be the set of words in X leading from q; to acceptance, i.e.

Al
Ay

{xlg X | Ja€F :{ay,x) = (a,A)}. Now consider the union

i

A
\U A of these sets. Since a,...a;-. leads to the states in K,
i

and since A, consists of the words leading from there to acceptance,

Xy =a;...a; cannot be in A; because then the automaton would accept

W=2a;...8-,3...8 . Furthermore since w is the shortest siring rejected
by M all the words a, ...85-7 X415+ 03854+ .8;-9 X, , Which are shorter than

w, are accepted. But that means that x;,,...,x%, all are in A;,.

Now consider the n-dimensional vector-space over the field of characteris~
tic 2 and interpret subsets of X as vectors in the same way as in lemma 2,
j.e. ifCc X thené=(,c1,...,cn) where for 1< j<n cy =1iff x; € C.
By the above argument we know that x; § A, and that x; € A, for i <j<n.

Y
Hence the vector A; is of the form

= -
A= (b1,°"’b; 170’1:""})

where the first -1 coordinates are determined as follows:
1 ifa;...a;-, Xy is accepted by M

0 otherwise.

LetB,,B,,...,Byx be a listing, without repetitions, of the sets appearing in
automaton is unambiguous each A ; is a disjoint union of A},...,A;!, hence

the total collection of sets {{Ag } 1° Again, as in lemma. 2, since the

R -

A, can be written as a linear combination of the vectors §1 yeeesBr. Also
the number of states in K is greater than or equal to the number of sets in
the listing B, ,B5,...,B¢, so all that remains is to show that sufficiently

2 2 ; .
many of the vectors A, ,...,A, are linearly independent.

Consider the matrix

C 0 1 cieieennn 1)
b O 1 vouennenn 1
by B301 1

bf veveesee.01 (0L

R > - i

-
whose i'th row is A, . If we disregard the first column and the last row

we get the (n-1) x (n-1) submatrix.

1 Teeeiiiees 1)
(o T P |
o790 N IR |
Al = . >
Bep coeee...B21

.

which is easily seen to reduce, by Gaussian elimination over the field of
characteristic 2, to the (n-1) x (n=1) unit matrix. From this we conclude

that the matrix A has rank n-1 and hence that n-1 of the vectors le yese ,Zt

n
are linearly independent. Now. the same argument as in lemma 2 applies, and

we conclude that the automaton has at least n-1 states. [
Theorem 3 has the immediate corollary that deciding whether an automaton
accepts all words over its input alphabet probably is easier for unambigu-

ous machines than for ambiguous . ones.

Corollary 4 There is a nondeterministic polynomial time algorithm for

deciding whether an unambiguous finite automaton does not accept all words

over its input alphabet.

Proof The method is exactly the same as the one used to show that
the problem is in polynomial space for arbitrary finite automata (see
lemma 10.3 in [1]). But since, by Theorem 3, the shortest string not
accepted by an unambiguous machine is no longer than the number of states
in the machine, the algorithm stops after a polynomial amount of time in

this case. |

4. REGULAR EXPRESSIONS

In this section we consider succinctness—~ and complexity questions for the
class of regular expressions which we define in the usual way.

Let 2 be an alphabet. The regular expressions over ¥ is the smallest set,

Rexpz, which satisfies the following two requirements
1) D, e and all elements in T are in RexpE

2) ifR, and R, are in Rexp2 then so are (R, +R;), (R, *R,)
and (R).

The language denoted by an expression R, L(R), is also defined as usual,

The class of regular expressions, Rexp, is the union of the sets RexpE over
all alphabets T not containing @,e, {,), +, ¥ and + . As size of a regular

expression we take its length.

The following theorem summarizes the succinctness relations between regular

expressions and finite automata. 2) was proved by Ehrenfeucht and Zeiger

in [3].

Theorem &
1) Rexp —% NFA

n
2) DF A 2 Rexp

cA/n
3) Rexp4— DFA for some ¢ > 0,

Proof 1) This is obvious from the usual construction ([2]) of a non-

deterministic finite automaton accepting the language generated by a regular

expression.
2) See [3].
3) The language L5 (n) in Lemma 2 is generated by the regular

expression

-1
= ({0, 1) of 0, 1}==%{ 0, 1}41{0, 1]*2+[0, 1}* 1{0, 1} (o, 1} “0fo, 1} =-)
i=0

1

which is of length O(n®). It was shown there that any unambiguous, hence
also any deterministic, finite automaton recognizing L.g(n) must have at

least 2" states. O

Next we turn to ambiguity. A regular expression is said to be ambiguous

if there is a word which is generated in more than one way. The motivation
for looking at ambiguity in regular expressions is the use of socalled
Extended Context-Free Grammars [6], as a means for specifying the syntax
of programming languages. In these grammars one is allowed to use regular
expressions over terminals and nonterminals as righthandsides of produc-
tions. Since there are (normally) semantic actions associated with the process
of recognizing the language generated by such grammars, it is important
that the expressions are unambiguous, and it might be of interest to know
how hard it is to determine if a regular expression is ambiguous, and if so,
how big the smallest equivalent unambiguous expression is. Let URexp
denote the class of unambiguous regular expressions. The following result

is an immediate corollary of Lemma 2 and Theorem 5, 1).

Corollary 6 o\/ﬁ

Rexp —&—= URexp for some c > 0. O

Before we can show how hard it is to determine ambiguity we need the

following notation.

(N)LOGSPACE denotes the class of sets accepted by (nondeterministic) log—
space bounded Turing Machines (TM!s) with a read only input tape and one
work tape. A set is complete for NLLOGSPACE if it is in NLOGSPACE and
every other set in NLOGSPACE is log-space reducible to it, see [5].

L.et M be a log~space bounded TM with work tape alphabet T" and state set

Q, and let x be an input string. A configuration of M on x is a pair (i, z)

where 1< i< |x| and z € T'*QT' ¥. i is the position of the input head and
z represents in the usual way the content of the work tape, the machine state

and the position of the worktape head. A computation of M on x is a se-

quence (1, z,), (iz, Z)yes oy lin, 2y) where (i, z,,,) follows from (iy, zy) by
application of M's transition function, z, is the start configuration for the

worktape and the state in z, is a final state,

12

Theorem 7 The set
A = | R€Rexp | R is ambiguous |
is complete for NLOGSPACE.

Proof First we show that A is in NLOGSPACE. LetR be a regular
expression of length n (over the alphabet). We show that if there is a word
which is generated in more than one way, then there is one which is no
longer than 2n® . We know that there is a finite automaton M = (Q,2,0 ,q,,F)
with no more than n states accepting the language generated by R and also
that if a word is generated in two different ways by R then it is accepted

in two different ways by M. Now, let w be the shortest word accepted in itwo
different ways by M and assume that |w| = 2n® +1. Let the state-sequences
corresponding to the two accepting computations be s, = q,9, ... q, and

Sg TPoPy ¢-e Py where q, ,p, € F, po =9, and m = IW

Since m = 2n® +1, some pair of states occurs at least three times in the

sequence (qo,po){Ay,P1)yer«s(dy ,py). Assume that (qy,ps) =(a,,p;) =

(e ,pk) for some i,j and k with 0 =i < j <k =m. Since the sequences s, and s, are
different either 95 ...49;9 4, ... d, is different from ps ... Py Pysy ««« Py

OF Qg +++ Gy Csy +++ Oy is different frompy ... PyPyyy +++ Po - In either

case we can, by cutting out the proper piece of the input, obtain a shorter

word which is also accepted in two different ways, which coniradict the
assumption that the shortest word is longer than 2n®. This shows that a
log—space bounded Turing Machine is powerful enough to guess (symbol by

symbol) a word generated in more than one way if there is one.

To see that the machine is also capable of checking that such a word is in-
deed generated in two ways by the expression, we first note that this would
be straightforward if the input had been the automaton M, rather than the
expression R. Then we would just guess two sequences of states and accept
in case they both end in final states and are different. Now, since states in
M correspond to positions in R, we construct the nondeterministic Turing
Machine such that it guesses two sequences of positions, each corresponding
to a parse of the word. The reason this is not difficult is that R is assumed

to be syntactically correct, hence we can always, by counting parentheses,

13

find the subexpression beginning at or ending at a certain position. The
details of the construction are left to the reader, but it should be clear

that the algorithm works correctly and runs in nondeterministic log-space.

Next we show that the set A is hard for NLLOGSPACE., Given a nondeter-
ministic log-space bounded Turing Machine M and an input x we construct
two unambiguous regular expressions R, and ﬁx such that ﬁx U I/:\%x is am-
biguous if and only if M accepts x. The technique is the same as in [10],
R, represents all the odd-even pairs of consecutive configurations of M on
X and ﬁx all the even-odd pairs. Then ﬁx N IE\RX is nonempty exactly in case

there is a computation of M on x.

We assume without loss of generality that the machine M always performs

an odd number of steps. Consider the following two sets of words

W, = {=#i, $z,H#i; Sz Wig $zpH ... Hiy, $2,, % |
a) n= 1
b) (i, 2,) is the starting configuration of M on x
c) (igy,254) follows from (igy-y,255-4,) by M's

transition function (for 1< j< n)}

We = {#i $2, %1, $2, 1, $ 2% ... #iy, $2,, # |
a) nz 1
b) (iEn » Zon) is an accepting configuration of M on x
c) (i3 juq, Zos4q) follows from (i, z5y) by M's

transition function (for 1< j < n)}

J—— A
W, and W, are generated by the following two unambiguous regular ex-

pressions

i

#1$2z #+ Ne (P¥*)
B«(P¥*)-F

>

x> 2

B

where

14

a) z, is the starting worktape configuration

b) N is the sum of all expressions of the form i $ z # such
that (i, z) follows from (1,2)

c) P is the sum of all expressions of the form 1 $ z# i!' § z' #
such that (i', z') follows from (i, z)

d) B is the sum of all expressions of the form # i $ z #

e) F is the sum of all expressions of the form i $ z # where

the state in z is a final state.

— N
It is clear that R, and R, are unambiguous and also that the expres-

sions N, P, B, F - and therefore also ﬁx and I?Qx - can be computed from

M and x by a deterministic log-space bounded Turing Machine. But ﬁx N IE\RX
is nonempty if and only if it contains a word representing a (halting) compu-
tation of M on x. Hence the expression R, = l—?—x + /F\?X is ambiguous if and only

if M accepts x. "This shows that the set A is hard for NLOGSPACE. [

Acknowledgements

I wish to thank Steve Fortune for pointing out the usefulness of vector spaces
in the proof of Lemma’” 2 and Tom Szymanski for bringing the problem of com-

plexity of unambiguous regular expressions to my attention.

15

References

[1] Aho, A.V., J.E. Hopcroft and J.D. Uliman [1974]. The design

[2]

[3]

[4]

[5]

[6]

[7]

(8]

[9]

and analysis of computer algorithms, Addison-Wesley, Reading,

Massachusetts.

Aho, A.V. and J.D. Ullman [1972]. The Theory of Parsing,
Translation and Compiling, Volume 1: Parsing, Prentice-Hall,
Englewood Cliffs, N. J.

Ehrenfeucht, A and P. Zeiger [1976]. ""Complexity Measures for
Regular Expressions!', JCSS 12: 2, 134-146,

Hopcroft, J.E. and J.D. Ullman [1969]. Formal Languages and

Their Relation to Automata, Addison-Wesley, Reading, Massa~

chusetts.

Jones, N.D [1975). "Space-Bounded Reducibility among Combinatorial
Problems', JCSS 11: 1, 68-85.

Madsen, O.L.. and B.B. Kristensen [1976]. "LLR-Parsing of
Extended Context Free Grammars'', Acta Informatica 7: 1,
61-73.

Meyer, A.R. and M. J. Fischer [1971]. "Economy of Description by

Automata, Grammars and Formal Systems!, Conference Record,

IEEE 12th Annhual Symposium on Switching and Automata Theory,
188-190.

Meyer, A.R. and L. Stockmeyer [1972]. ""The equivalence problem
for regular expressions with squaring requires exponential

space!’, Conference Record, IEEE 13th Annual Symposium on

Switching and Automata Theory, 125-129,

Reedy, A. and W. J. Savitch [1975]. UThe Turing degree of the
inherent ambiguity problem for context-free languages!", TCS 1: 1,
77-91.

16

[10] Schmidt, E.M. and T.G. Szymanski [1977]. "Succinctness of Des—
criptions . of Unambiguous Contexi-free LLanguages', To appear

in SIAM J. Computing.

[11] \Vvaliant, L.G. [1976]. ""A Note on the Succinctness of Descriptions
of Deterministic Languages'', Information and Control, 32: 2,
139-145.

	20050927125840_Page_01_Image_0001.tiff
	20050927125840_Page_02_Image_0001.tiff
	20050927125840_Page_03_Image_0001.tiff
	20050927125840_Page_04_Image_0001.tiff
	20050927125840_Page_05_Image_0001.tiff
	20050927125840_Page_06_Image_0001.tiff
	20050927125840_Page_07_Image_0001.tiff
	20050927125840_Page_08_Image_0001.tiff
	20050927125840_Page_09_Image_0001.tiff
	20050927125840_Page_10_Image_0001.tiff
	20050927125840_Page_11_Image_0001.tiff
	20050927125840_Page_12_Image_0001.tiff
	20050927125840_Page_13_Image_0001.tiff
	20050927125840_Page_14_Image_0001.tiff
	20050927125840_Page_15_Image_0001.tiff
	20050927125840_Page_16_Image_0001.tiff
	20050927125840_Page_17_Image_0001.tiff
	20050927125840_Page_18_Image_0001.tiff
	20050927125840_Page_19_Image_0001.tiff
	20050927125840.pdf
	20050929091512.pdf
	20050929091601.pdf
	20050929091726.pdf
	20050929091842.pdf
	20050929091946.pdf
	20050929092041.pdf

