DELTA PROJECT ISSN 0105-8517
REPORT NO. 11

CONSTRUCTION OF SYSTEM DESCRIPTIONS

IN SIMUL.A AND DEL.TA

by
Niels Erik Andersen
and

Morten Kyng

DAIMI PB-81
April 1978

(Revised version)

Institute of Mathematics University of Aarhus
DEPARTMENT OF COMPUTER SCIENCE J‘»

Ny Munkegade - 8000 Aarhus C « Denmark
Phone 06 -1283 55

]
= | IITJH
ME
—

Abstract

In the first part of the paper we discuss the task of constructing a

system description. We emphasize,

- that the part of the world which we want to regard as a system
is delimited through our selection of the components, their
structural relationships and their capabilities to affect each

other,

- that there are different ways of conceiving a given part of the

world as a system,

~ that the terms in which the people, who know the system speak
of it define the concrete starting point from which the system

description should be developed.

The two construction strategies, decomposition and composition
{I"top~down!' and "bottom up!) are discussed. We consider the con-
cepts of subsystems and aggregates as developed in the DEL.TA~
project, which may assist us when using the two construction stra~
tegies. We emphasize that the properties of an aggregate require a
set of attributes to concelve of and describe those properties. Such
attributes are not developed in the DEL.TA-~project.

In the second part of the paper we give a preliminary proposal for con~
ceiving of and describing a simple aggregate concept. We describe

the aggregate concept by means of the class concept. So we do not
need to add new language elements to the SIMULA/DEL TA~-languages.
The problem of the identity of an aggregate is discussed briefly.

In the appendix we give a formalized DEL.TA~description of some of the

attributes proposed in the second part.

CONTENTS

PREFACE

1. CONSTRUCTION OF SYSTEM DESCRIPTIONS

~ Example: A rail road system
- Definition of a system
~ Communication about systems
~ Construction of system descriptions
~ concrete, representative and abstract system
elements
- construction strategies:

- decomposition and composition

1. 1 Decomposition in DEL.TA

~ the subsystem and aggregate concepts
~ decomposition tools:
- nesting and splitting

- example: decomposition of a post office system

1.2 Composition in DEL. TA

~ composition tools:

- enclosing and grouping

2. A SIMPLE AGGREGATE CONCEPT

2.1 Desired properties

2.2 A preliminary proposal

~ terminology

- language tools by means of the class concept

2.3 The identity of an aggregate

- a topic for further work.

REFERENCES

APPENDIX

A formalized DEL TA~description of some of the concepts
proposed in part 2,

PREFACE

This paper is a slightly elaborated veision of the manuscript from a
lecture given by Morten Kyng at the fourth SIMULLA Users! conference
in Noordwijkerhout, Netherlands, 8th ~ 10th September 1976.

The associated abstract and minipaper are printed in the proceedings
of the conference (Norwegian Computing Center - publication no.
S~-81) with the title : "Decomposition and aggregation in SIMULA and

DEL.-TA!,

We want to thank Ejvind l.ynning at the Norwegian Computing Center

for his comments on the manuscript,

Aarhus, August 1977

Niels Erik Andersen and Morten Kyng

PREFACE TO THE REVISED VERSION

In this version a number of minor changes have been made to increase
the readability, and a sketch of a possible implementation in SIMSET
has been added to the appendix.

Aarhus, March 1978

Niels Erik Andersen and Morten Kyng

PART 1

CONSTRUCTION OF SYSTEM DESCRIPTIONS

The subject of this paper is some of the concepts and language tools
available in the task of constructing a system description and in com-
munication about systems.

Let us as an example consider a railroad system,

Example ¢ A railroad system

We want to construct a description with the purpose of clarifying the
relations between service to customers and different repairing and main-

tenance strategies.

When we make this description we may do it in cooperation with several

different groups of people.

From the planners point of view and in the context of planning the work
of repairing and maintenance, we may identify different kinds of loco~
motives and raiiroad cars, the rails with shunts, workshops, and
railroad stations. Within the context of the customers we will talk
about the railroad in terms of railroad lines, departure and arrival
times, the condition of the cars, ticket prices, first and second class,
the possibilities to eat and sieep, punctuality and the frequency of
accidents,

O

In different contexts we may identify different components and different
relations between the components. Components, which in one description
of a part of the world as a system are considered as important and
characterized in a certain way, may in another description of the same
physical part of the world be of minor importance and characterized

by different attributes.

This illustrates that we do not consider any part of the world to be

per se a system with a well-defined inherent structure.

Definition of a system

We use the term system as defined in the DEL TA project (DELLTA 75
p. 15):

1A system is a part of the world

which we choose to regard as a whole, separated from the

rest of the world during some period of consideration, a

whole which we choose to consider as containing a collec~

tion of components, each characterized by a selected set of

associated data items and patterns, and by actions which

may involve itself and other components!!,

We emphasize that a system is only defined when we have chosen the

components, and the structure of the components. We may thus look at

the construction of a system description as the definition of the descri-
bed system.

This is in contrast with some common system description methodolo~
gies, which regard the construction of a system description as a
stepwise uncovering of an a priori given system structure, This is
exemplified by the definition of "'system analysis! in a widely used
Danish edp~dictionary {(GYL.DENDAL. 75):

"System analysis : a process that includes the decomposition
of a system into parts. The purpose is to aquire knowledge

about the way in which the system functions ..., ',

From this point of view system analysis may not take into account diffe-

rent ways of concelving a given part of the world as a system.

Communication about systems

Using the terminology of the DELTA project the system described
will be called the referent system. The person making the description
will be called the system reporter (or just reporter).

Ih a communication process the system description will be used by a

system generator to make a model system.

The generated model system will in some sense be similar to the refe~

rent system. The similarity results primarily from the reporter's

and the system generator's knowledge of the system description language.

We may illustrate this in the following way:

| REFERENT SYSTEM |
| SYSTEM REPORTER e

] SYSTEM DESCRIPTION | lLANGUAGE I
%

| SYSTEM GENERATOR ¢

[MODEL. SYSTEM

The problems in the communication process are discussed in more
detail by Niels Erik Andersen and Niels Karsten Thorhauge in
Rapport 76, In this paper we only want to comment upon some of the
well known languages or description methods used in the construction
and documentation of large edp-programs, such as block diagrams,

state descriptions, users! manuals, programmers! guides, etc,

The starting point in the named description methods or descriptions is

the edp~-programs,

The environment in which the edp-programs are going to be used is
hardly ever mentioned. At the same time the edp—programs may be

based on rather rigid assumptions about this environment.,

In the communication about the construction and the use of edp~programs
(that is communication about a system which contains the edp-programs)
the descriptions of the relations between the edp~programs and the

environment are important. We are interested in system description

methods allowing a joint description of all components of a system —

both those which are computer based and those which are not.

The description of the relations between the edp-program and the en-
vironment is often reduced to so-called !'I/O specifications!. In
GYLDENDAL. 75 (p. 318) it is said that:

"System users (make) a number of demands on the description.
It is e. g. necessary to know which input the system needs,
which output it produces, and how the output is to be treated
and interpreted!,

In practice the input specifications are often separated from the
output specifications. This separation further obscures the relations
between the edp~programs and the environment although it reflects a
division of tabour,

In the next section we consider the task of constructing a system des—~

cription and study some construction strategies.

Construction of system descriptions

The construction consists of the identification of

- the components of the system and

- the attributes and actions of the components.

The part of the world which we want to regard as a system is deli-

mited through our selection of the components and our stipulations

of their structural relationship and capabilities to affect each other,
Some of the properties of the components may be regarded as system

components themselves whereas others are regarded as data items.

Before we procede with the discussion of how to identify and charac-

terize components, we will once more consider the railroad example.

Concrete, representative and abstract elements

The components identified in the referent system (in this example the
railroad system) and the attributes and actions characterizing these

components we will call concrete (referent) system elements (or just

concrete elements). In the railroad example we have trains, locomotives,
railroad cars, departure and arrival times, and ticket prices as

examples of concrete elements.

The elements of the model system representing the concrete elements
we will hame representative (model) system elements (or just repre-
sentative elements). Locomotives and railroad cars may be represented
by objects and ticket prices by integers.Furthermore, locomotive- and

railroad car-objects may be grouped together to represent a train.

The representative elements may in turn be built from elements which are
not directly comprehensible in relation to the referent system. We

say that these elements are abstract elements. When we organize a

queue we may do this by means of Y"predecessor! and "successor! refe-
rences. In relation to the queue in the referent system, these references

are abstract.

In the literature dealing with the ideas and concepts of abstract data

types another terminology (and thus another way of thinking) is used.
In this framework some of the components in the referent system may be
modelled by objects of different abstract types, which then may be im-

plemented using the concrete data types of the language.

Our point here is that although the goal by using abstract data types is to
enable the user to define his own quantities, the conceptual framework is

that of the computer scientist:

- a user-defined queue is abstract

- integers and references of the programming language are concrete,

In order to develop an application-oriented framework we should start from

the other end:

The terms in which the people who know the system speak of it are

concrete, and these define the starting point from which the system

description should be developed.

We may illustrate our concepts once more in terms of a post office example:

Example: A post office system

In the referent system a concrete element may be the action:

a customer delivers a parcel.

In the model system this may be represented by:

a CUSTOMER-object executes the action DELIVER A PARCEL..

The action DELIVER A PARCEL. may be built from subactions such as:

NUMBER OF PARCEL.S:=
NUMBER OF PARCEL.S - 1;

COUNTER. NUMBER OF PARCELS:=
COUNTER. NUMBER OF PARCELS + 1;

which are abstract elements .
[m]

The concepts concrete, representative and abstract elements are discussed

in more detail by Morten Kyng and L.ars Mathiassen in Formal 76,

However, if we read such a top-down description carefully, we will most

L.et us now return to the task of identifying and characterizing the components likely find evidence to support the point of view that the description is not

of a part of the world considered as a system - the task of defining a system a true description of the task of construction. An example of this is given in

or constructing a system description. Naur 72. We will give a simple example later as a comment on the decompo~

sition of the post office described in DELTA 75,
Construction strategies

Composition
We may use at least two strategies: decomposition and composition. In practice

we will alternate between the strategies. The composition strategy is the reverse of decomposition and is often named

synthesis. In programming terminology it is referred to as the "bottom~up
Decomposition approach!.
The decomposition strategy is often named analysis, and in computer
programming terminology it is usually referred to as the "top-down approach!, Example:

Working '""bottom~up!" we may want to consider a collection of components

Example: In the detailed analysis of a component we may find that several as a meaningful whole.

components are needed to portray its behaviour. In the rail road system When we have identified locomotives, carriages and goods-vans in the rail-
we may describe a train-component as a TRAIN-object containing inner road system we may want to group such components together to from trains.
objects representing the locomotive, carriages, goods-vans etc. 0O

[} In section 1.1 and 1.2 we consider some of the DEL. TA~concepts and

When the components of the system which we consider are identified and language tools, which may assist us when using the two construction
characterized, then it is common to describe the construction-task as strategies.,

a decomposition and this often leads to very ni¢e and clearly structured

descriptions. Different degrees of detail may be reflected in the degree of 1. 1 Decomposition in DEL TA

decomposition, i.e. in the kind and number of components identified and in

the amount of detail in the characterization of the components. In the literature on In the DELTA-project a conceptual framework and some language tools have
programming methodology we find examples of this kind of descriptions where been developed to assist in the construction of system descriptions. The

the construction~task is named structured programming or stepwise refine~ concepts are mainly described and discussed.in connection with the decompo-
ment. (See e.g. Dijkstra 72 and Wirth 71). sition strategy. In DELTA 75 (p. 66) some of the desired properties of the

concepts are expressed in this way:

"The user of the language must be allowed to understand the system at a
number of different levels of analysis. A part of the system which at a given
step of decomposition is conceived as a meaningful whole in relation to other
parts of the system, should at later steps still be identifiable as a system

element to which an inner structure may be related, "

10

and this may be achieved in at least two ways (DELTA 75 p. 67):

"By considering the part identified as a subsystem which, like the system
as a whole, is represented by a component which contains internal
components whose existence is confined to the enclosed world of the sub-
system:

Or, alternatively, by considering the part as an aggregate consisting of
a group of components, some of which have permanent membership of the

aggregate while others move in and out of one or more aggregates."

The Subsystem Concept

Subsystems are given the following structural properties:

- the constituent parts of earlier steps of decomposition are meaning-

ful system elements to be referred to within this world.

- the possibility of directly interacting from the outside with the
internal components of a subsystem is strictly limited by the
rules imposed (see DELTA 75 p. 133 f.f.).

The subsystem concept is not used very much in SIMULA-programming.
One reason is that it is not possible to describe the sequencing inside a

subsystem according to simulated time.

In SIMUL_A we have to represent activities, processes etc, by objects

at the same system level, that is objects declared in the block prefixed
by SIMULATION, SIMON, DRAFT or whatever it may be.

In DEL.TA we can describe the sequencing inside a subsystem according

to TIME.

The Agaregate Concept

Contrary to the restrictive structural properties of the subsystems an

aggregate is a more loosely organized system element. The aggregate

11

offers the possibility of portraying a group (of components) of changing
membership, with almost any kind of involvement between the members being
specified. The possibilities of changing memberships (the dynamic structures)
require a set of atiributes to make the changing possibie and some possibi-
lities of specifying restrictions on the use of attributes to achieve a desirable
separation of an aggregate from the rest of the system.

These problems are not discussed in detail in DELTA 75 while the structural

properties of the subsystem concept are analysed and described in detail.

Decomposition Tools

NESTING:

When a component is decomposed into a subsystem having internal components
we will say that the component is decomposed by hesting. The first step of
decomposition is always a nesting,

SPLITTING:

When a component is decomposed into an aggregate we will say that the com~
ponent is decomposed by splitting. '

In DELTA 75 the two decomposition tools are used to decompose a post office

system {p. 151 - 157). We will give a summary of this decomposition and the
explanation in DELTA 75. Afterwards we will give our comments on the example.

Example:

Decomposition of a post office system

The purpose of the decomposition and the system description is to study:

- the behaviour of the queues
- the service towards the customers

- the work load of the clerks.

parent and a baby, therefore we may have a parent component and a

baby component as internal components of a customer component. The

The decomposition is described in two phases. In the first phase only nesting small circle enclosing the connection point of the !lcounter! rectangle

is used and in the second phase the kind of interaction between the components and the directed line into the ""post office’ rectangle indicates that the

is studied and splitting is applied. "counter' rectangle represents zero or more similar components con-
tained within the same !'post office!" component. The variables FIX and

After the first phase which consists of four steps of nesting the result of the VAR are used to denote the number of similar components. The graphical

decomposition is illustrated by this figure (fig. 3.29 p. 155 in DELTA 75): notation is explained in detail in DEL.TA 75,

POST OFFICE Some of the consequences of only using nesting as decomposition tool are:
b
& | - customer components cannot move from queue to queue
COUNTER ENT RANCE (or‘ from counter to counter) because they are internal com-
EiX = 3 ponents of a specific queue component.
T - clerk components cannot operate customer components.
| i
CL.ERK QUEUE Therefore
3 the counters and the queues must be decomposed into aggregates,
CUSTOMER
VAR 20
But we have to decide whether we want to reintroduce the component being
T decomposed as a component within the aggregate, or not. If we reintroduce
the component it provides a link to the earlier steps of decomposition.
P ARENT BABY (DEL.TA 75 uses the word ''retain! instead of "reintroduce!),
FIX=0,1 FIX=0,1 After the second phase in DEL.TA 75 the counter component is reintroduced

and renamed to ''service counter!' to avoid confusion with the counter aggre-
. . R gate, and the queue components are dropped. Aggregates are represented
The post office system contains a set of service counters -~ in this case three.

in the same way as components, only with the borderline of the rectangle
The separate action sequence which introduces new customer components o)))
removed. The result of the decomposition is now illustrated by (fig. 3. 30

into the system is associated with an "entrance! - component.)
page 157 in DELTA 75) :

Each counter component is decomposed into a subsystem containing a clerk
and a queue compohent, and the queue is decomposed into a subsystem containing

a humber of customer componentis. Some of the customers may consist of a

15
POST OFFICE - the DEL.TA language provides no language tools for the description
of aggregates. Such language toois may solve the problem of whether
; T 1 the component which is decomposed into an aggregate should be
COUNTER ENTRANCE reintroduced or not.
FIX =3 In part 2 of this paper we give a proposal for language tools for descri-

1 bing a simple aggregate concept.

CLLERK SERVICE QUEUE 1.2 Composition in DEL.TA

COUNTER

The composition strategy is the reverse of decomposition. It is used when

we want to consider a collection of components as a meaningful whole. Using

CUSTOMER composition as a strategy we may start by identifying and characterizing
VAR Y 0 components and structures that are easy to understand and capture. Resting
on this basic platform we may stepwise build up descriptions,which progres-
q l 1 sively covers a larger part of a complex totality. This can be done by
PARENT BABY
FIX =0, 1 FIX = 0, 1 ENELODING:
O Composition of a subsystem, i.e. conceive of and describe some com-

ponents as parts of a subsystem either as data item attributes or as
Comments on the decomposition example

internal components enclosed by the subsystem., This is the counterpanrt

of nesting.
~ It is very unnatural to introduce the entrance component in the first

step of decomposition. Especiaily when the arguments are in terms of Example: If we have introduced letters, parcels, and customers as components

components (the customers) which are not yet identified. This indicates in a post office system, we may later want to conceive of letters and parcels

that the construction is not really a strict decomposition as described
in DEL.TA 75,

as parts of a customer subsystem and represent them as data item attributes

of customer components (e. g. integers: number of letters and number of parcels).

O
~ Elements which most people would mention first when discussing a GROUPING:
post office such as letters and parcels are not mentioned at all. This

is probably due to the fact that DEL.TA 75 does not describe the

Composition of an aggregate, i.e. conceive of and describe some com-
construction of a post office system description but rather presents ponents as members of an aggregate. These memberships may change
an existing system description in a top down way (cf. page 8). during time. This is the counterpart of splitting.

Example: if we have introduced customers, service counters and clerks as
components in a post office system we may want to conceive of customers
as members of some aggregates called queues and conceive of a clerk,
a service counter and a queue as members of an aggregate called counter.
A customer may move from one queue to another and therefore from
onhe counter to another.
]

The two composition tools, enclosing and grouping, are not dealt with in

DELTA 75. They name the use of the concepts of subsystem and aggregate

in a composition strategy.

We resume the construction tools in this diagram:

CONSTRUCTION
STRATEGY
DECOMPOSIT ION COMPOSITION

SYSTEM (INTO) (oF)
ELEMENT
sosms s sssssssmen s N e e e e e e s e der e e e s e mm e e e
SUBSYSTEM NESTING ENCL.OSING
AGGREGATE SPLITTING GROUPING

17

PART 2

A SIMPLE AGGREGATE CONCEPT

As stated in DELTA 75 and earlier in this paper the dynamic aspects

of the aggregate concept require a set of attributes for their conception
and description. This includes language tools which may be used to form
system structures different from the tree-structures of subsystems. Such
attributes or language tools are not developed in the DELTA-project.

In this part of the paper we give a preliminary proposal for conceiving

of and describing a simple aggregate concept.

At first we consider an unsorted list of those desired properties of

a simple aggregate concept, which we will stress.

2.1 Desired properties

1. An aggregate should be easily identifiable as a system element.

2. It should be possible to group together similar aggregates and
treat them as belonging to a common category.

3. The possible and actual members of an aggregate should be
easily identifiable,

4, It should be possible to specify a lower and upper bound on the
number of the possible members from different categories.

5. It should be possible for an aggregate to contain both components

and other aggregates as members,

6. An aggregate should not be a part of itself,

7o All parts of an aggregate should be system elements at the same
level,
8. It should be possible for an element to be a member of more than

one aggregate at a time.

18

9. An element may during its lifetime change its membership of

aggregates.

2. 2 A preliminary proposal

In order to be able to discuss the aggregate concept more precisely

we introduce some terminology

Terminology

Those elements into which an aggregate is decomposed or from which

it is composed are called the members of the aggregate., And we say

that an aggregate contains its members.

If an element Xis a member of an aggregate AGG1 which in turn is a

member of an aggregate AGG2 we say that X is a part of AGG2. We may

illustrate this in the following way:

AGG2

AGGI1

In general we say that an element, X, is a part of an aggregate, A, Iff

there exists a sequence of elements ><1 to ><n such that X = ><1, A= Xn

and XH_ contains >(i fori=1, ..., n=1,

1

We say that an aggregate includes its paris.

Property number six In the preceding section states that we do not allow

circularity in an aggregate.

|_anguage tools based on the class concept

We will describe an aggregate concept by means of the ciass concept.
The advantage is obvious: we do not need to add new language elements.
Reasonable syntax may be provided by some macro facility. One
drawback is that aggregates may be used only on system level one,
since the classes used to implement them are attributes of the system
object. In SIMULA, however, nesting of objects is rare, and in DELTA
we may regard each object as containing the necessary class declara-

tions as attributes.

In order to describe an aggregate we have to describe the set consisting

of its members.

in SIMULA the class SIMSET gives us facilities for manipulation of
circular two~way lists. Such a list may be used to describe the member
set of an aggregate. An approach in which we prefix all objects repre-
senting aggregates by the class HEAD of SIMSET and all members of
aggregates by the class L.INK of SIMSET will, however, have several
drawbacks:

- an object can only be a member of one aggregate at a time, since

an object prefixed by LINK may appear in at most one two-~way list.

- an aggregate can only contain objects prefixed by LINK as members.
Other aggregates can not be members, since these will be prefixed
by HEAD.,

To avoid the drawbacks we need some kind of muiti~set facilities. These
are discussed in the following subsection. A possible implementation

using SIMSET is sketched in the last part of the appendix.

20 21

The classes MEMBER and AGGREGATE Example:
In a class MEMBER we include the attributes common to all aggregate In the railroad example we may describe a TRAIN aggregate In the
members. This class is then used as a prefix to all possible members. following way:
The outline of the class with its functional and procedural attributes is CLASS TRAIN : AGGREGATE OBJECT
as follows BEGIN
specification of possible members
MEMBER END TRAIN OBJECT
0
MEMBER OF]
PART OF
INTO In the cases where an aggregate may Itself be a member of another
aggregate we would like to be abie to write something like
LEAVE
GOTO CLASS TRAIN : MEMBER & AGGREGATE OBJECT
BEGIN
Example: :

. . C . END TRAIN OBJECT
Using our railroad example one description of a class of locomotives - -

may look like this: . X
This is, however, not possible. Instead we make AGGREGATE a subclass

CLASS LOCOMOTIVE : MEMBER OBJECT of the class MEMBER.
BEGIN
description of attributes and actions common L et us consider the attributes of the MEMBER and AGGREGATE classes
to ali LOCOMOTIVESs in more detalil. In the appendix we give a formalized DEL-TA~description
END LOCOMOTIVE OBJECT of some of the attributes.

O

In the same way we group together the attributes common to all aggre~
gates and describe them in a class declaration. The outline is as

follows:

AGGREGATE

CONTAINS
INCLUDES
ONE OF
EMPTY

POSSIBLE MEMBER

CLASS MEMBER: OBJECT
BEGIN

FUNCTION MEMBER OF (AGG) : BOOLEAN BEGIN test whether THIS,
MEMBER is a member
of AGG or not

END*** MEMBER OF * % %

FUNCTION PART OF (AGG) : BOOL.LEAN BEGIN test whether THIS
MEMBER is a part of
AGG or not
END** * pART OF* ¥ %

PROCEDURE INTO : BEGIN make THIS MEMBER a member of a
specified AGGREGATE, AGG, if
THIS MEMBER is not already a member of

AGG and no circularity is introduced
END* % % INTO * % x;

PROCEDURE [_EAVE : BEGIN make THIS MEMBER leave a
specified AGGREGATE, AGG, if
THIS MEMBER is a member of AGG

PROCEDURE GOTO : BEGIN make THIS MEMBER leave all the
AGGREGATESs of which it is a member
and then make it a member of a specified
AGGREGATE, AGG

END* xx GOTO* * ¥

END MEMBER OBJECT;

23

CLASS AGGREGATE : MEMBER OBJECT
BEGIN
FUNCTION CONTAINS (M) : BOOLEAN BEGIN test whether THIS AGG

contains M as a member

or not
END* * ¥ CONTAINS * * %

FUNCTION INCLUDES (M) : BOOLEAN BEGIN test whether THIS AGG

includes M as a part or not

END* % ¥ INCLUDES * * %

FUNCTION ONE OF : REF MEMBER BEGIN IF

THEN ONE OF is a reference
to one of them

ELSE ONE OF is NONE

END *x* ONE OF ** %

FUNCTION EMPTY : BOOLEAN BEGIN test whether THIS AGG has
any members or not
END* % * EMPTY % % %

END AGGREGATE OBJECT;

Specifying possible members,

We would like to be able to specify the classes(?) of the possibie members
as parameters to the aggregate, i.e. in our rail road example we would

like to write something like:

TRAIN (LOCOMOTIVE,):
AGGREGATE OBJECT
BEGIN

This is, however, not possible - without a macro facility, In any case we

have to end up with something like:

THIS AGG has any members

(1) In DEL.TA it shall of course also be possible to specify that a given

singular object is a possible member of some aggregate.

24

CLASS AGGREGATE : MEMBER OBJECT
BEGIN

ceae

EUNCTION POSSIBLE MEMBER : BOOLEAN VIRTUAL ;
FUNCTION POSSIBLE MEMBER (M): BOOLEAN
BEGIN M : REF MEMBER;
RESULT : = TRUE
END* % % POSSIBLE MEMBER # x #;

END AGGREGATE OBJECT;

CLASS TRAIN : AGGREGATE OBJECT
BEGIN
FUNCTION POSSIBLE MEMBER (M): BOOLEAN
BEGIN M : REF MEMBER;
RESULT : = M IN LOCOMOTIVE OR
M IN CARRIAGE OR
M IN GOODS-VAN
END#* % % POSSIBLE MEMBER * * %
END TRAIN OBJECT ;

In a similar way we may specify lower and upper bounds onh the number

of possible members from each class.

With these additions and the obvious modifications of the class MEMBER
procedures INTO, LLEAVE and GOTO of the class MEMBER, our preliminary

proposal has the desired properties listed in section 2. 1.

25

2.3 The identity of an aggaregate ~ a topic for further work

When decomposing into aggregates we have to decide whether we want to
reintroduce the component being decomposed as a component within the

aggregate or not (cf the post office example in part 1),

If we do reintroduce the component it provides a link to the earlier steps
of decomposition. The component may then be used in a number of ad hoc
ways to represent the aggregate . But the proposed aggregate concept does
not distinguish between the members of an aggregate, and there are no

special language elements to denote the reintroduced component.

If we do not reintroduce the component being decomposed this possibly
implies that none of the membenrs are used to represent the aggregate

as a whole,

Whether to reintroduce the component or not is one aspect of the problem
of the identity of an aggregate. Another aspect of this problem concerns

the empty aggregate.

When decomposing a component into an aggregate the component wili
always be split into other components (two or more). An empty aggregate
will not be constructed. The structure of the subsystems and aggregates
resulting from a decomposition is thus always a tree structure where the
leaves (and the root) are components,

From one point of view we may want an aggregate to cease to exist when it
becomes empty (or to regard operations involving an empty aggregate as

errors).

From another point of view we may want to supply the aggregates with
attributes and possibly some actions. In a composition we may want to
specify the possible members of an aggregate and then use their attri-

butes in the specification of the aggregate and vice versa.

26

REFERENCES

DELTA 75

Dijkstra 72

Formal 76

GYLDENDAL 75

Naur 72

Rapport 76

Wirth 71

Erik H. - Hansen, P. Handlykken,
Kristen Nygaard: "System description
and the DELLTA language!,DELTA Report
No. 4, Norsk Regnesentral 1975,

E.W. Dijkstra: "Notes on structured
programming!! in "Structured Programming!
by Daht, Dijkstra and Hoare.

~ Academic Press, London 1972,

Morten Kyng and Lars Mathiassen:
"Arbejdspapir om anvendelsesorienteret
diskussion af formaliserede sproglige
udtryksmidler!,

DAIMI = april 1976

(unpublished).

J. Nielsen and H. J. Helms: "Gyldendals
edb-leksikon!, Gyldendal, Kgbenhavn, 1975,

Peter Naur: "An experiment on program
development!! ~ BIT 12 (1972), 347 - 365.

N. E. Andersen and N.K. Thorhauge:

En rapport om et special earbejde ~ emne:
"Kommunikationsproblemer under udvikling
af edb-systemer!!, DAIMI, februar 1976,

N. Wirth : "Program development by stepwise
refinement!. - Comm., ACM 14 (april 1971)
221 - 227,

27

APPENDIX

A formalized DEL.TA~description of some of the concepts proposed

in part 2.

In part 2 we introduced the class AGGREGATE as a subclass of the class
MEMBER. We also introduced some attributes to assist us in describing
the relationships of the MEMBER and AGGREGATE objects.

In order to describe the attributes we need some list structures to keep

track of the relationships.

1.
For each AGGREGATE object we need a list of the members of this
AGGREGATE and

2.
For each MEMBER object we need a list of the aggregates of which
this MEMBER is a direct member,

A MEMBER object may be a direct member of more than one aggregate
at a time. That is a MEMBER object may be an element of more than one
list of MEMBERS,

Similarly an AGGREGATE object may be an element of more than one
list of ''is member of!! AGGREGATES.

We will describe the two lists as lists of LISTNOTE objects with the
AGGREGATE and MEMBER objects as listheads., The two listheads con-
tain the list references, MEMBERS and IS MEMBER OF respectively.

We now have the following structure of the lists:

28

1.

List of MEMBERS

2,

AGGREGATE

LISTNOTE

LISTNOTE

NEXTELEMENT= ¢

EL.EMENT= o

INEXTELEMENT= ¢

ELEMENT= ¢

MEMBER

MEMBER

.

List of 'lis member of!! AGGREGATES:

MEMBER

LISTNOTE

IS MEMBER OF’=0/‘

LISTNOTE /

NEXTELEMENT=#

ELEMENT= ¢

NEXTELEMENT =9

ELEMENT =+

AGGREGATE

AGGREGATE

..———“|

29

The concepts proposed in part 2 may be described by:

CLASS MEMBER :

OBJECT BEGIN
IS MEMBER OF : REF LISTNOTE;
FUNCTION MEMBER OF (AGG) : BOO B E;
FUNCTION PART OF {AGG) : BOO B E;
PROCEDURE INTO : BE};
PROCEDURE LEAVE : BE;
PROCEDURE GOTO : BE;

END MEMBER OBJECT ;

CLASS AGGREGATE:
MEMBER OBJECT BEGIN

MEMBERS : REF LISTNOTE ;
FUNCTION CONTAINS (M) : BOO B E;
FUNCTION INCLUDES (M) : BOO B E;
FUNCTION ONE OF : REF MEMBER B E

FUNCTION EMPTY : BOO B E

END AGGREGATE OBJECT ;

CLASS LISTNOTE :
OBJECT BEGIN
NEXTELEMENT : REF LISTNOTE
ELEMENT : REF MEMBER;
END LISTNOTE OBJECT ;

We give a formalized DEL.TA description of

~ the MEMBER procedures INTO and LLEAVE and
- the AGGREGATE functions CONTAINS (M) and INCL.UDES (M),

We do, however, not include tests for possible violation of the upper

and lower bounds of the number of possible members,

30 31

PROCEDURE INTO: PROCEDURE LEAVE :
BEGIN make THIS MEMBER a member of a specified AGGREGATE, BEGIN make THIS MEMBER leave a specified AGGREGATE, AGG.
AGG. That is, if THIS MEMBER is not already a member That Is, If THIS MEMBER is a member of AGG, then AGG
of AGG and no circularity Is introduced, then AGG into THIS out of THIS MEMBER!s !'ls member of!! list and THIS MEMBER
MEMBER's 'is member of!! list and THIS MEMBER into—— out of AGG'!s "members! list.

1 " nj
AGG's lmembers!! list. AGG : REF AGGREGATE ;

AGG : REF AGGREGATE ; PROCEDURE OUT OF IS MEMBER OF LIST :
EFUNCTION CIRCULARITY : BOOLEAN BEGIN LAST, NEXT : REF LISTNOTE ;
BEGIN » NEXT : - IS MEMBER OF NEXTELEMENT ;
IF THIS MEMBER IS AGGREGATE IF IS MEMBER OF ,ELEMENT = = AGG
THEN THEN (% IS MEMBER OF : - NEXT *)
(* RESULT : = THIS MEMBER QUA ELSE (¥ WHILE NEXT.ELEMENT = /= AGG REPEAT
AGGREGATE. INCLUDES (AGG) (* LAST : = NEXT ;

*)

END * % x CIRCUL.ARITY * % %

NEXT : - NEXT.NEXTELEMENT
*)5
LAST. NEXTELEMENT @ « NEXT. NEXTELEMENT
*)

END * % ¥ OUT OF IS MEMBER OF LIST ** ¥

1IF MEMBER OF (AGG) OR CIRCULARITY
THEN (* ERROR¥)

ELSE (* IS MEMBER OF : - NEW LISTNOTE
PUT (* ELEMENT : - AGG

PROCEDURE OUT OF AGG MEMBERS LIST :
NEXTELEMENT : - IS MEMBER OF *);

BEGIN LAST, NEXT : REF LISTNOTE;

NEXT : - AGG. MEMBERS. NEXTELEMENT ;
AGG. MEMBERS : ~ NEWLISTNOTE ’
IF AGG. MEMBERS. ELLEMENT = = THIS MEMBER
PUT (¥ ELEMENT : - THIS MEMBER}

THEN (*AGG. MEMBERS : - NEXT#*)
NEXTELEMENT : - AGG. MEMBERS *); ELSE (¥ WHILE NEXT. ELEMENT =/= THIS MEMBER REPEAT

(* LAST : - NEXT;
END *** [NTO *** . NEXT : -« NEXT. NEXTELEMENT

*);

%)

LAST,. NEXTELEMENT : ~ NEXT, NEXTELEMENT
*)

END % %% OUT OF AGG MEMBERS L.IST * %%

IF. MEMBER OF (AGG)
THEN (* OUT OF IS MEMBER OF LIST;

OUT OF AGG MEMBERS LIST
*)

ELSE (¥ ERROR %)

END % %% LEAVE % %% ;

32

FUNCTION CONTAINS (M) : BOOLEAN
BOOL.EAN BESIN test whether THIS AGGREGATE contains M

as a direct member., That is, test whether M
is an element of THIS AGGREGATE's "members"
list.

M REF MEMBER;

NEXT : REF LISTNOTE;

NEXT : - MEMBERS ;
WHILE NOT RESULT AND NEXT =/= NONE REPEAT
(* RESULT : = NEXT.ELEMENT == M;
NEXT : - NEXT.NEXTELEMENT

*)

END * %% CONTAINS **x ;

FUNCTION INCLUDES (M) : BOOLEAN
BEGIN test whether THIS AGGREGATE includes M as a part.
That is, test whether M is an element of THIS AGGREGATE's
"members! |ist or one of the members of THIS AGGREGATE
includes M as a part.
M : REF MEMBER;
FUNCTION MEMBERS INCLUDE M : BOOLEAN
BEGIN NEXT : REF LISTNOTE ;
NEXT : -~ MEMBERS ;
WHILE NOT RESULT AND NEXT =/= NONE REPEAT
(* IF NEXT.ELEMENT IS AGGREGATE
THEN
(* RESULT : = NEXT. ELEMENT QUA
AGGREGATE. INCLUDES (M)

*);

NEXT : = NEXT. ELEMENT
*)

END * %% MEMBERS INCLUDE M * % * ;
IF CONTAINS (M)
THEN (* RESULT :
ELSE (* RESULT :

TRUE =)
MEMBERS INCLUDE M *)

END * %% INCLUDES * %%

33

Implementation in SIMSET

The list structures could also have been described by means of the
SIMSET facilities as sketched below,

AGGREGATE
MEMBERS= -——Dl HEAD LINK I‘—' LINK
MEMBER = ¢+ MEMBER =
MEMBER MEMBER
MEMBER
IS MEMBER OF=‘—)F HEAD ¥ LINK - LINK
AGGREGATE= ¢

AGGREGATE AGGREGATE

	2464_001 1.pdf
	2464_001 2.pdf
	2464_001 3.pdf
	2464_001 4.pdf
	2464_001 5.pdf
	2464_001 6.pdf
	2464_001 7.pdf
	2464_001 8.pdf
	2464_001 9.pdf
	2464_001 10.pdf
	2464_001 11.pdf
	2464_001 12.pdf
	2464_001 13.pdf
	2464_001 14.pdf
	2464_001 15.pdf
	2464_001 16.pdf
	2464_001 17.pdf
	2464_001 18.pdf
	2464_001 19.pdf
	2464_001 20.pdf

