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Recently several researchers ([5], [4], [6], [3]) have shown an
interest in the complexity of determining the existence of winning
strategies in various games. The purpose of this note is to show that
this problem is (probably) much more difficult for games in which the
players lack perfect information about the state of the game. Familiar
examples of games of this type include Kriegspiel (blindfold chess)
and Battleship. In particular, we show that a simple one token game
on graphs requires polynomial space to analyze in its blindfold
version, although polynomial time is known to be sufficient for the

version with perfect information.

It was shown in [5] that the problem of determining the existence of
a winning strategy in a one-token game is log-space complete for

P (see [1] for definitions of P, PSPACE, etc.). The game there
may be naturally represented in terms of finite automata as follows.
LetM= (S, I, 5, dgr Fy ) be a finite automaton, and let F,<cS.
We interpret F1 and Fz as the sets of winning states, for players

1 and 2 respectively. Initially a token is placed on state dg - The
players move alternately, each in his turn choosing a symbol a

from . If the token is on state p, it is then moved to state § (p, a).
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A player wins by causing the token to be moved to one of his winning
states. At each step both players know which state the token occupies,

so that this is a game with perfect information.

A ""blindfold! version of the game is obtained by requiring that the selec~
tion of symbols from 2 be done without knowledge of the current position
of the token. Thus a strategy for one player is simply a sequence
ay...a € %, This strategy .vvins for player 1 if § (qo,‘ a, b1 a, ...

2

b__;2a,) €F, or 6(q0,a1 by ... a b )e€F, forall by, «..yb €33

It wins for player 2 if é(qo, by ay ... b an) €F, or

6(q0, bya; ... b 12n bn) €F,forallb,, ..., b_€ %

n—
LLet BF be the set of all instances of this game in which the first player
has a winning strategy. We now show that BF is PSPACE-hard. This

is done by a reduction from the known PSPACE~complete set

{ R | Ris a regular expression over { 0,1}
and L(R) = { 0,11%)

Given a regular expression R1 an equivalent nondeterministic finite
automaton M™ = (K, {o0,1}, T, Ay ) may be built by standard
methods (e.g. [1]) with size polynomially related to the size of R.

Now consider the game corresponding to the deterministic finite

automaton

M=(KUKx{ 0,1} U {8, ¢35 KU{0,1}, 5, ap {$]UK-F")

where F'2= { ¢}

8{p,a) = <p,a> if peK, a€ {0,1}

6(p,a) = ¢ if p,a€K

5( <p,adqa) = q if peK, a€{0,1} and g€ 7(p,a)
6(¢, a) = ¢ if aekKyuf{o1}

8{p,a) =% for any other

pEKX{O,1}U{$,¢}, aEKU{O,l}

When it is player 1!'s move, the token will be on a state (call it p) of MR:

e chooses a symbol a € { 0,1 } and the token is moved to < p,a>.
Player 2 then chooses one of the states q in 7(p, a) and the token is

moved to q. If player 1 chooses an a ¢ { 0,1}, or player 2 chooses a




q ¢ 7(p, a) the token goes to ¢ or $ respectively resulting in an imme-

diate win for the other player.

Now suppose M is in BF, so player 1 has a winning strategy. A win
can only occur by a move of player 2, so there must be a sequence
@y, +-+, @ € {0,1} such that 8 (q,, a, d; .. a,a)€{$SIUK-F
for all dys ++es G € K,

R

Now let Qqs =+ G, Now be any sequence of states of MR such that
Aipq € 8lap, a
%n qn) " % R
to accept a; ... a_. Butq,,..., q was arbitrary, so a; ... a ¢ L(M )
and so L.(R) # {0,1}%,

i+1) for 0 < i < n. By definition of M, 6(qo, CPIC PP

ceK-F , so dgs Gqs +++5 G is not a state sequence causing MR

Conversely, L(R) # {0,1}* implies M is in BF.

The reduction is clearly polynomial, so BF is PSPACE-hard.
It is not difficult to see that BF is also in PSPACE, and so complete.

It may be of interest from a game-playing point of view to note that BF
remains PSPACE-complete even if restricted to the more practically
interesting planar graphs. The reason is that by [2] we may assume
that MR is planar ; it is straightforward to build M so that it also is

planar.,

Itisto be expected that exponential space will be required to analyze the
complexity of blindfold versions of games whose perfect information

versions have PSPACE complexity, such as generalized HEX [4]
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