ESMERALDA

An Intelligent Satellite for Interactive Graphics

by

Stephen Biering—Sgrensen
and

Niels J#rn Nielsen

DAIMI PB-79
June 1977

Institute of Mathematics University of Aarhus
DEPARTMENT OF COMPUTER SCIENCE *‘

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06-1283 55

| L]

Table of contents.

Preface

Introduction

An overview of the system

The interpreter

The communications handler
The attention handler

The display handler

The scheduler

The storage allocator

oUvhwi =

Parallelism

Routines and primitives

.1 Events and routine activation
.2 The display file

.3 Flow control

.4 Data

.5 Communication

An example

Weoo~N® O NS

10
10
12
15
16
18

19

2 ESMERALDA

0 Preface.

This paper gives a functional description of ESMERALDA, the satellite
part of an interactive graphics host—satellite system.
The paper is directed primarily to the reader who

A) wants to know what ESMERALDA is, without having to read the
program description and the source text

or
B) wants to design a new host—resident part for the system.

ESMERALDA is described in more detail in the authors’ masters theses.

Readers of type B will find in these theses the detailed information
necessary to implement a new host part. They will also find a description of an
already existing host part: the WIGG/S system.

We want to thank Geoff Wyvill, University of Bradford, England, for his
ideas and assistance during the first phase of the ESMERALDA—project.

We also want to thank Peter Mgller—Nielsen, University of Aarhus, for
good advice during the last year of the project.

ESMERALDA 3

1 Introduction.

ESMERALDA is a program which emulates a programmable graphics
satellite on DAIMI’s interactive graphical terminal (a GT40 with 8K memory).
This is connected by a 2400 baud line to the department’'s DEC—10 computer
system, which serves as the host computer for ESMERALDA.

ESMERALDA is able to execute actions in accordance with locally
stored descriptions, the so—called routines.

The routines are written in an interpreted language. They are
transmitted to ESMERALDA from an applications program in the host
computer. Each routine is stored and can be executed on request. Such a
request may come from the applications program in the host, or a running
routine, or it may come as the result of the real—time event in the satellite (for
example an operator action) with which the routine has been previously
associated.

The association of a routine with a specific real—time event is an
example from ESMERALDA's repertoire of actions. This repertoire, of course,
also includes the creation and manipulation of pictures on the graphical screen.

The transmission of routines from the applications program to the
satellite, and the ability to connect the activation of a routine to a real—time
event, are the main ideas behind the ESMERALDA system.

ESMERALDA

2 An overview of the system.
In this chapter we describe the various parts of the ESMERALDA

system.
The following figure shows the ESMERALDA machine:

LINE TO HOBT

TTY COMMU~
NICATIONS
HANDLER
SWITCHES
\\ SCHE-
DULER
MOY-STIOK 1 v TENTIONS TERPRETER
] HANDLER BTORAGE |) o
CLOCK] ’
ALLOCATOR
LIGHT~PEN
DISPLAY
GRT HANDLER
2.1 The interpreter.
The interpreter interprets various descriptions of actions — called

routines, which have been transmitted to the satellite from the applications

program in the host computer.
A routine is executed by inserting a request in a queue, which we will

ESMERALDA 5

call the ready—queue. Insertion of a request into the ready—queue can be done
by a request either from the applications program in the host or from a running
routine in the satellite; or it can happen automatically when an event, which the
routine has previously been associated with, occurs. For example, a light—pen
hit on a menu item can cause the execution of an associated routine.

When a routine is executed it is associated with a so—called data block,
a block of storage, where it can store its variables and constants. The
association between a routine and its data block takes place when the request
for execution is inserted into the ready—queue. This association is completely
dynamic. Hence a routine can be executed with different data blocks at
different times and a single data block can be associated with several different
routines. This will typically be the case when a data block contains some
common variables, which many routines use.

2.2 The communications handier.

It is the communications handler’s task to handle the communication
between the host computer and the satellite.

It either connects the GT40's teletype to the monitor in the host (so that
it function like a normal teletype connected to TOPS10) or it connects the
satellite (as an entity) to the applications program in the host. The
communication takes place in one of two different modes: monitor-mode and
system—mode.

In monitor—-mode the communications handler works as a simple
teletype interface, and the characters are transmitted singly between the
teletype and the host.

When the applications program starts executing in the host, the system
automatically shifts to system—mode. In system—mode the communication
takes place in records, that is whole lines.

Records which are written by the operator on the GT40 teletype are
always sent directly to the applications program in the host; while records from
the host can have four functions. The first of these is

1) Teletype message.
This is printed directly on the teletype.

In addition there are three types of messages which the applications
program uses to control the storage of the routines and the data blocks in the

6 ESMERALDA

satellite. These are

2) Build command.
A record of this type is a description of a routine that is to be
stored in the satellite for subsequent execution.

3) Activate command.
This command is used to activate an already transmitted routine.
It puts a request for the routine’s execution into the
ready—queue. The data block, which the routine will be
associated with upon execution, must also be specified.

4) Delete command.
If there is no further use for a routine or a data block stored in
the satellite, the host program can request its deletion with this
command, thereby releasing the space for other purposes.

The build and delete commands make it possible for the applications
program to control which functions are to reside in the host at any time and
which in the satellite. This division of labour is performed at run—time and is
completely dynamic.

For instance it is possible for the user to create his own roll—out
facilities, if he has a set of routines which he uses only occasionally and
therefore does not want to store permanently in the satellite. At the time that
he wants to use these routines in the satellite (or preferably some time before,
so that the routines have already been transmitted when they are actually
needed), he can ask the applications program to transmit them.

It is also possible for the routines in the satellite to communicate with
the applications program, because they are able to transmit data blocks back to
the host. These data blocks carry with them an identification, which makes it
possible for the applications program to discover from which routine the
message came.

2.3 The attention handler.

The task of the attention handler is to service those parts of the system,
which can give rise to the automatic activation of routines. These parts are: the
light—pen, the clock, the panel switches, and the joy—stick.

As far as the first three are concerned, the activation of a routine is

ESMERALDA 7

caused by a specific event.
An event can be one of:

1 A specific part of the picture on the screen is detected by the
light—pen.

2) A specific time is reached.

3) One of the panel switches is changed.

We shall use the expression “to hang” a routine (with an associated data
block) on an event. In principle there is a queue for each event. When the
event occurs, all the routines in the event queue are transferred automatically to
the ready queue. Thus a routine which is added to the event queue will be
activated upon occurrence of the event.

As far as the joy—stick is concerned, the attention handling takes place
in a slightly different way. There is no event associated with the joy—stick. The
routines in the joy—stick—queue are transferred to the ready—queue at every
clock—tick, and at the same time the position of the joy—stick is written into the
data blocks associated with these routines.

Hanging a routine on the joy—stick is therefore in principle the same
thing as hanging it on the clock, delayed by one clock—tick.

2.4 The display handler.

The task of the display handler is to draw a picture on the screen in
accordance with a description: a so—called “display file".

This display file is structured in a three—level hierarchy. At the top are
the subpictures, which every picture consists of. They are entities with respect
to moving pictures on the screen. A subpicture can, for instace, be a whole
menu.

Each subpicture consists of a number of atoms. An atom can be a
member of only one subpicture. In the case of the menu, the atoms might be
the individual menu items: the “light buttons”.

An atom is regarded an entity with respect to light—pen detection and
changes in light intensity (blink and so on). An atom’s starting point on the
screen is always relative to the position of the subpicture of which it is a part.

The atoms are composed of lines {vectors) and characters — in the case
of the menu, the atom is composed of the single characters in the menu item

8 ESMERALDA

and perhaps four lines forming a frame around the word.

It is not possible to make selective changes in an atom, but it is possible
to erase the whole content of an atom and redraw it in a changed version. This
will typically be the case, when the user wants to perform “rubber—banding”.

2.5 The scheduler.

The scheduler handles the coordination of the execution of the routines
inserted into the ready—queue. When a routine has finished executing, the
scheduler takes the next element from the ready—queue, and, in the case that it
is a routine, control is transferred to the interpreter, which takes care of the
execution of the routine.

However the ready—queue is also used for other purposes than routine
execution. The system itself uses it to schedule tasks which must not coincide
with the execution of routines, for example releasing of storage, which may
cause compression within the store. In the case of such a system task, the
scheduler itself takes care that it is performed.

2.6 The storage allocator.

The task of the storage allocator is to administer the storage of the
satellite. When space in the store is requested by other parts of the system (for
example in the form of data blocks), the storage allocator will allocate this
space and hand it over to whoever asked for it. The storage allocator also
handles the releasing of space which is no longer needed.

ESMERALDA 9

3 Parallelism.

It should be emphasized that, in principle, the communications handler,
the attention handler, the interpreter, and the display handler run in parallel
(multi-programmed). In fact the display handler really does run in parallel with
the others.

Hence it may appear to the operator at the satellite that many tasks are
being performed simultaneously. For instance the host can transmit a new
routine to the satellite, while routines are being executed which cause pictures
to move continously on the screen. And at any time the operator may use the
joy—stick or the panel switches as well as the light—pen.

Thus the system may be performing useful work even while it is waiting
for action by the operator (e.g. a light—pen hit).

10

ESMERALDA

4 Routines and primitives.

An ESMERALDA routine is in principle a string of calls to a set of
primitives. Each call will normally be followed by a parameter list. A parameter
is an address in the data block associated with the routine during its execution.

The primitives currently available are listed below, together with a short
description of their function.

4.1 Events and routine activation.

activate.

Parameters:

Function:

hangatom.

Parameters:

Function:

hangclock.

Parameters:

routine, data block.

activates the routine. In other words it adds the routine together
with the data block to the ready—queue for subsequent
execution.

routine, data block, atom.

adds the routine together with the data block to the atom's
event—queue, thereby requesting activation of the routine upon
the next light—pen detection of the atom. When this light—pen
detection occurs, the attention handler will automatically write
the (x,y) position, the subpicture, and the atom of the hit into the
first four cells of the data block.

routine, data block, number of clock—ticks.

ESMERALDA 1"

Function: adds the routine together with the data block to the event—queue
of the N'th clock tick, counted from the time the request is
made. (Where N = number of clock ticks)

hangkey.

Parameters: routine, data block, key number, position.

Function: adds the routine together with the data block to the event—queue
of the given combination of key (i.e. panel switch) and position
(up/down).

hangjoystick.

Parameters: routine, data block.

Function: adds the routine together with the data block to the
joy—stick—queue, thereby requesting its activation upon the
occurrence of the next clock tick.

unhangatom.

Parameters: routine, atom, reply variable.

Function: if the routine is in the event—queue of the atom, the first
occurrence of it is removed and a pointer to the data block of
that occurrence is written into the reply variable. Otherwise
nothing is done and the reply is nil.

unhangclock.

Parameters: routine, reply variable.

Function: if the routine is in the event—queue of any clock tick, the first
occurrence of it is removed, and a pointer to the data block is

written into the reply variable. Otherwise nothing is done and
the reply is nil.

12 ESMERALDA

unhangkey.

Parameters: routine, key number, position, reply variable.

Function: if the routine is in the event—queue of the given combination of
key and position, the first occurrence of it is removed and a

pointer to the data block of that occurrence is written into the
reply variable. Otherwise nothing is done and the reply is nil.

4.2 The display file.

newsubpic.

Parameters: reply variable.

Function: a pointer to a new (empty) subpicture is written into the reply
variable.

newatom.

Parameters: size, reply variable.

Function: a pointer to a new (empty) atom is written into the reply variable.

addtosubpic.
Parameters: atom, subpicture.

Function: adds the atom to the subpicture.

removeatom.

Parameters: atom, subpicture.

ESMERALDA 13

Function: if the atom belongs to the subpicture it is removed from it.
Otherwise nothing is done.

display.

Parameters: subpicture.

Function: adds the subpicture to the display file.

undisplay.

Parameters: subpicture.

Function: if the subpicture is in the display file it is removed. Otherwise
nothing is done.

moveto.

Parameters: subpicture, X, v.

Function: moves the subpicture so that its starting point is at (x,y).

moveby.
Parameters: subpicture, X, y.

Function: moves the starting point of the subpicture by the vector (x,y).

transformpic.
Parameters: subpicture, my;, My2, My, My,

Function: transforms the subpicture by left multiplying all the vectors of all
the atoms of the subpicture by the transformation matrix

14

move.
Parameters:

Function:

draw.
Parameters:

Function:

character.
Parameters:

Function:

defineatom.
Parameters:

Function:

reduceatom.
Parameters:

Function:

ESMERALDA

My Ma2
M1 My

atom, X, v.

appends a dark vector (x,y) to the atom.

atom, X, v.

appends a bright vector (x,y) to the atom.

atom, character.

appends the character to the atom.

atom, attributes.
changes the attributes of the atom in accordance with the

parameter. The attributes are light intensity, blink, and line type;
and they are coded into a single word.

atom.

reduces the space occupied by the atom to the least possible.

ESMERALDA

cleanatom.

Parameters:

Function:

15

atom.

erases all the vectors and characters of the atom.

4.3 Flow control.

ifequalgoto.
Parameters:

Function:

iflessgoto.
Parameters:

Function:

gotolabel.
Parameters:

Function:

test.

Parameters:

a, b, offset.
if a = b a jump is performed to the relative code position
specified by the offset (i.e. the next N bytes in the routine are

skipped over, where N = offset, =127 <N <128). Otherwise
nothing is done.

a, b, offset.

if a<b a jump is performed to the relative code position
specified by the offset. Otherwise nothing is done.

offset.

a jump is performed to the relative code position specified by the
offset.

kind.

Function:

exit.

Parameters:

Function:

4.4 Data.

ESMERALDA

if kind = 0 the system is halted. Otherwise the system is put
into a waiting state until a rubout is typed on the teletype. This
primitive has proved useful as a debugging aid.

none.

terminates the execution of the calling routine and gives the
control back to the scheduler. All routines must end with a call to
exit.

getdatablock.

Parameters:

Function:

delete.

Parameters:

Function:

copyto.

Parameters:

Function:

size, reply variable.

a pointer to a new data block is written into the reply variable.

block (either data block, routine, atom, or subpicture).

adds a storage allocator request to the ready—queue, telling it to
release the space occupied by the block.

data block, variable, data.

copies the data to the given variable of the given data block.
Data is an address in the current data block.

ESMERALDA 17

copyfrom.

Parameters: data block, variable, reply variable.

Function: the content of the given variable of the given data block is
written into the reply variable.

plus.

Parameters: a, b, reply variable.

Function: the sum of the variables a and b is written into the reply variable.

minus.

Parameters: a, b, reply variable.

Function: the difference of the variables a and b is written into the reply
variable.

datalength.

Parameters: data block, reply variable.

Function: the size of the data block is written into the reply variable.

time.
Parameters: reply address.

Function: the number of clock ticks since start—up is written into the reply
variable.

18 ESMERALDA

4.5 Communication.

replytohost.

Parameters: identification, data block.

Function: sends the identification and the contents of the data block back
to the host.

texttotty.

Parameters: data block.

Function: types the contents of the data block (interpreted as character
values) on the teletype.

savedisplayfile.

Parameters: none.

Function: sends a coded description of the entire display file back to the

host. This primitive facilitates creation of "hard” copies of a
displayed picture.

ESMERALDA 19

5 An example.

To illustrate the use of ESMERALDA we give the following example.
Assume that we have already created a number of subpictures each consisting
of a number of atoms. We now want to be able to move these subpictures
under the control of the operator.

The way we do this is as follows: the operator selects a subpicture by
pointing to one of its atoms with the light—pen. From now on this subpicture
can be moved using the joy—stick until another subpicture is selected in the
same way. This continues until the button on the top of the joy—stick is
pressed.

In the following descriptions the names in quotation marks are symbolic
names. If a parameter is written in /talics it is a constant, otherwise it is a
variable in the data block.

To implement the conversation, we need a data block, which might look
like this:

"DATA": "HITX"
"HITY”
"HITSUBPIC”
"HITATOM"
“JOYX”
"JOoYY’

and the routines:

"REHANGER": HANGATOM
"REHANGER'
"DATA"
"HITATOM"
EXIT

20 ESMERALDA

and

"MOVER": IFEQUALGOTO
“JOYBUTTON’
7
"STOP'
MOVEBY
"HITSUBPIC”
“JOYX’
"JovYy”
HANGJOYSTICK
"MOVER'
"DATA’

"STOP": EXIT

REHANGER, together with the data block DATA, must be hung onto all
the atoms in the subpictures we want to be able to move.
MOVER, together with DATA, must be hung on the joy—stick.

Let us explain in detail what is going on.

The routines REHANGER and MOVER have been transmitted from the
applications program in the host, and the data block, DATA, has either been
generated by another routine or has been transmitted in the same way as the
routines.

When an atom is selected by the light—pen, the routine REHANGER is
transferred to the ready—queue, and the names of the atom and the subpicture
are written into the first cells of DATA together with the coordinates of the
point which was hit. REHANGER's only task is to hang itself back onto the hit
atom, because the information necessary for the moving operation, namely the
name of the subpicture, has already been written into DATA.

At the next clock—tick, the routine MOVER will automatically be
transferred from the joy—stick—queue to the ready—queue, and the position of
the joy—stick is written by the system into the data block DATA.

The task of the routine MOVER is as follows. If the joy—stick top button
has not been pressed, then the selected subpicture will be moved according to
the (x,y)—position of the joy—stick, and the routine will hang itself back onto
the joy—stick—queue for subsequent execution upon the next clock—tick.

However if the joy—stick top button has been pressed, then the routine
MOVER will do nothing, and consequently not hang itself back onto the

ESMERALDA 21

joy—stick. This will stop the conversation, because the joy—stick will now be
inactive until something else is hung on it.

The routines and the data block are, except for the symbolic form,
shown as they will look in ESMERALDA. Of course it is not our intention that
an applications programmer write his programs this way. There will be an
interface in the host computer to “translate” the routines from a more readable
form to the form which ESMERALDA requires. An interface of this kind called
WIGGIS is provided, but it is beyond the scope of this paper to go into details
of it. Further information can be found in the theses mentioned in the preface.

