A NOTE ON LINEAR TIME SIMULATION
OF DETERMINISTIC
TWO-WAY PUSHDOWN AUTOMATA

by

Neil D. Jones

DAIMI PB-75
April 1977

Institute of Mathematics University of Aarhus | |

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C -~ Denmark
Phone 06-1283 55

T]
=

Keywords:
two-way pushdown automata

linear time

string matching
pattern matching

random access machines

INTRODUC TION

In [1], Cook showed that any deterministic two-way pushdown automaton
could be simulated by a uniform-cost random access machine in time 0{(n)

for inputs of length n. The result was of interest because such a machine

is a natural model for a variety of backtracking algorithms, particularly

as used in pattern matching problems. The linear time result was surprising
because of the fact that such machines may run as many as 2" steps before
halting; similar problems with '"combinatorial explosions' are well known

to occur in applications of backtracking. Cook's result inspired the devel-
opment of a number of efficient pattern matching algorithms, for example

those in [2] and [3].

However, it is impractical to use Cook's algorithm directly to do pattern
matching, since it involves a large constant time factor and much storage.
The purpose of this note is to present an alternate, simpler simulation al-
gorithm which inv‘oilves consideration only of the configurations actually
reached by the automaton. It can be expected to run faster and use less sto-
rage (depending on the data structures used), thus bringing Cook's result

a step closer to practical utility.

TERMINOLOGY

LetM=(Q,J, P, &, dg» Z) be a deterministic two-way pushdown
automaton, fixed throughout this paper. Q is the set of states, J the set of

input symbols, P the set of stack symbols including the bottom-of-stack

symbol Z, & the transition function and g the initial state. A configuration
of M is a triple C =(q, i,A) where g is a state, A = " Top(C) is a stack symbol

and 0 < 1< n+1 for input x € T * of length n. An instantaneous description

or ID is a pair (C, Za) where C is a configuration, « € P* and the right—
most symbol of Za is ~TopC).

In one move by 8§ M may change its state, move the input scanning head,
and push, pop or leave the stack unchanged. Alternately, M may either ac-
cept or halt without accepting. A more detailed description of M's operation
may be found in [1].

We define pop(C), push(C), accept(C), halt(C) to be true just in case
configuration C causes the automaton to pop, push, accept or halt, respectively
(in one step). We let NEXT(C) =D just in case C yields an instantaneous des-
cription (D,) in one step (false if pop(C), accept(C) or halt(C) is true).
Further, FOLLOW(C,A) = (t,j,A) just in case I;he ID (C, Z Top(C)) yields
((t,j,2),2) in one step (false unless pop(C) is true). C |— D is true just in
case the ID (C, Top(C)) yields (D, Top(C)) in some number of steps, and
every intermediate ID has at least two symbols in its stack. The reflexive
transitive closure of |— is written —*. The terminator of C is D just in

case C |—* D and pop{(D). Note that D is unique if it exists.

THE ALGORITHM

The algorithm is presented in the style of Algol. Its heart is the re-
cursive procedure SIM(C) whose purpose is to return the terminator of Cj
this is also stored in table entry T[C], to avoid recomputation after the
first call. As long as the automaton does not push, it is simulated step by
step until the terminator is found, or a halt or accept configuration is reached.
Note: We assume for now that looping does not occur. A push configuration
C is handled by a recursive call to calculate the terminator of NEXT(C),
that is the configuration containing the new top symbol which was just pushed.
From this it is easy to find the D such that C |— D.

During the call SIM(C), the stack LIST will contain all the configura-
tions D DZ’ ce ,Dm so that C = D, Dy . = Dm’ stopping when

1?

Dm is a pop, accept or halt configuration, or it is found that the terminator
of Dm has already been computed (i.e. when T[Dm] # 0). The algorithm ends
by storing the terminators of D, ...,D into table T for future reference.
Correctness of the algorithm should bé evident, as it merely simulates the

automaton one step at a time, taking a ''short cut! in case a configuration

is encountered whose terminator has already been computed.

begin configuration LAST;
gonfiguration array T [configuration];
configuration procedure SIM(C); configuration Cy
begin configuration D, E; stack of configuration LIST;
f T[C]# 0 then SIM := T[C]
else begin
D:=C; LIST = EMPTY,
while not (pop(D) or accept(D) or halit{D)) do
begin
push D onto LIST,
A~ e
if push(D) then begin E :

SIM(NEXT(D));

D := FOLLOW(E, Top(D))
end
else D := NEXT(D);
if T[D]# 0 thenD := T[D]

end ;

iiaccept(D) then accept ‘il,f’f fiihalt(D) m }:‘13!_3‘,
T[D] :=D;
while LIST # EMPTY do
begin pop E from LIST; T[E] :=D
endy
SIM :=D
end;
end PROCEDURE SIM;
LAST = SIM(Initial Configuration);

end

Ann

TIME ANALYSIS

To analyze the algorithm's time usage, define the C-call to consist
of all steps between the time SIM js first with called with C as actual pa-
rameter, and the time the first call is completed. Define the C-list to be
the value of LLIST during the C;cal[, just after the first vw loop is

exited. Now we make a few observations.

1. SIM(C) is not called from within the C-call (if so, the automaton is

in a loop).
2. Any SIM(C) call after the C-call takes constant time since T[C] # 0
after the C-call.
3. A configuration D is placed on the C-list only if T[D] = 0.
4, No configuration D appears on two C~lists, To see this, suppose
D is on the C —list and the C

1

begins before the'Cz—caH.

z—list. We may assume the C 1-—call

Case 1

The C_-call finishes before the C,-call begins. Then T[D] becomes

nonzero during the C,~call, so D is not placed on the Cz—list.

1
Case 2

The C 1~ca|l contains the Cz—call.

a) if D is not on the Cl—list before the C,~call starts, then the

2
Cz—-‘c_al_l sets T[D] # 0, and so D will never appear on the Cl—list;
b) otherwise C1 I—* D, (D, Top(D)) yields (Cz,a) in some number

of steps for some &, and C2 |—-—* D. In this case the automaton

is in a loop, with an infinitely growing stack just in case

le] > 1.

5. SIM(C) is called at most a constant number of times. To see this,

note that whenever SIM(C) is called there must be C_ B such that

"’
B is in the C1-Iist and NEXT(B) = C; call thisaC 1,B—-call. if
B-call then B appears on two

there is both a C ,, B-call and a C

1? 2?
lists, a contradiction. Thus the number of SIM(C) calls is at most
the size of {B [NEXT(B) =C } . But it is easy to see that this set

is of size independent of the length of the input string.

6. The time for the C-call is O(size(C~list)}.

Consequently the total time is bounded by
% (time for C~call + time for other SIM(C) calls)

< %‘ O(size(C-list)) + ZC.? constant = 0(n) + 0(n) + constant = 0(n).

A more detailed analysis would surely reveal a smaller time constant
than that of [1] , since the algorithm above examines the smallest possible
number of configurations - namely those which actually occur in the com-
putation. For example, a 3-state automaton accepting {xcyR \ X,y € {a,b} *,
y a subword of x} when given the input bamcanb requires examination of
9(m+n) configurations by the method of | 1] and m+n by ours (both modulo an
additive constant).

In the above we assume that the automaton was nonlooping; now sup-
pose it does loop. Then there must be reachable IDs such that (D,a) yields
(D,uB) in some nonzero number of steps. If we apply the algorithm above,
D will appear on two C-lists if 3 75 €, or twice on the same C-list if 8 =¢.
The converse follows from observation 4 above. Consequently we can re-
cognize loops by storing a truth value ONLIST[D] for each configuration

D. Initially ONLIST is initialized to false for every D. The algorithm is

modified by inserting just before '"push D onto LIST; ! the following:

ArnSoorm

if ONLIST[D] then halt
La oY AN PNAA oo,

else ONLIST[D] := true;
M , mmm

REFERENCES

[1] Cook, S.A, Linear time simulation of deterministic pushdown

automata, Proceedings IFIP Congress 1971, pp. 75-80

North-Holland, Amsterdam (1971).

[2] Morris, J.H., Jr., and Pratt, V.R. A linear pattern matching
algorithm, Technical Report No., 40, Computing Center,

University of California, Berkeley (1970).

[3] Weiner, P. Linear pattern matching algorithms, Conference

Record, IEEE 14 annual Symposium on Switching and Automata

Theory, pp. 1-11(1973).

	20050927110316_Page_1_Image_0001.tiff
	20050927110316_Page_2_Image_0001.tiff
	20050927110316_Page_3_Image_0001.tiff
	20050927110316_Page_4_Image_0001.tiff
	20050927110316_Page_5_Image_0001.tiff
	20050927110316_Page_6_Image_0001.tiff
	20050927110316_Page_7_Image_0001.tiff
	20050927110316_Page_8_Image_0001.tiff

