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ABSTRACT

This paper continues the study of ETOL forms and good EOL. forms
done by Maurer, Salomaa and Wood. |t is proven that binary very com-
plete ETOL forms exist, good synchronized ETOL forms exist and that

no propagating or synchronized ETOL form can be very complete.



INTRODUCTION

Maurer, Salomaa, and Wood introduced in [ 1] and [2] the notion of
EOL and ETOL forms and their interpretations. An ETOL form F defines
a family of ETOL systems G (F) which are "structurally! similar and a
family of languages &£ (F), namely those languages generated by systems
in G(F). In [3] Maurer, Salomaa and Wood study good and complete EOL
forms. Many of the theorems in [3] are trivially valid for ETOL forms as
well as for EOL forms but they will not appear in this paper. In this paper
we show that in céontr‘ast to what is the case for EOL forms, there exist
good synchronized ETOL forms. Finally we show that, (as for EOL forms)
there exist binary vomplete (short for very complete) ETOL forms and that

no propagating or synchronized ETOL form is vomplete.



DEFINITIONS AND BASIC RESULTS

We follow the definitions of ETOL. forms and interpretations given in
[ 1], [2], and [3]. EOL forms will not be defined explicitly. We can con-

sider an EOL. form as an ETOL form with one table.

Definition

An ETOL system (or Nn—=ETOL. system) is an (n+3)-tuple

G = (V,E,P1,. .. ,F’n,S), where nz 1, V is an alphabet, 2 < V is the terminal

alphabet, S € V~Z is the start symbol. For alli, 1< i<n, P;is a finite

set of pairs (A,q) with A € VV and g € V¥ such that for each A € V at least one

such pair is in Pi' The elements (A,q) are called rules or productions and

are usually written Ag ¢ or just A2 g. The sets F’i are called tables.
i

Definition LetG = (V,Z),PP . ,F’n,S) be an n-ETOL. system. For words

2

we wprite x F? Yy or X= V. :>+(and =%) are the transitive (and reflexive) closure

_ _ . . i<
3 A1A ...Am and vy QIQZ...ng with Ai -Pogi in Pj for 1< i< m and some F’J.

J
of =. The language generated by G is

L(G) ={x€eZ* | s=*x}.

Notice that in contrast to the usual definition of ETOL. systems, the start symbol

cannot be a tepminal.

Definition LetG =(V,Z,P,,... yP,,S) be an n-ETOL. system. For a word
X, | x| denotes the length of x and Alph(x) denotes the minimal alphabet such
that x € Alph(x)*. For all 1< i< n let maxr‘(Pi) = max| | | A2 ain F’i} ,

and let maxr(G) = max{ maxr(P,) | 1=1i= n}. A symbol B € V is reachable




(from S) if S =% gBpB for some words @, € V*. G is peduced if each
B € \V is reachable. G is separated if for all productions A =+ q in P1, ‘e ’Pn

@€ (V-£)* if A€T and @ € T U (V-Z)¥ otherwise. G Is propagating if for
all productions A »+ ¢ in P1,. .. ,Pna;é e, the empty word. G is synchro-
nized if, for all a € Z, a="a impliesa¢ Z*. G is short, if for all Pi’

Ada € P, implies || < 2. Finally G is binary if each rule in Py, P

is one of the forms A2 e, A»a, A+B, A+*BC, a-+ A, where a¢€ X and

A,B,C € V-I.

Definition An ETOL form (or n—-ETOL form) is an ETOL. system

F = (V,E,PP...,PH,S). An ETOL system G = (V',E',P{,...,P'[],S‘)

is an interpretation of F (modulo u), G<JF(u), or simply GIF, if u is

a substitution defined on Vv . satisfying (i)-(v):

(i) p(A) s VI-Z! for A€ V-,
(ii) pla)eT'foracy,
(iii)  pla) n p(B) = @ for any symbols g # B,
(iv)  forall 1=i<n, Plcu(P,), where
RIP) = {(AL,a") € V'x V'* | AT€ u(A), ' € pla) for some

A€ V,o € V¥ such that A » ¢ € Pi},

(v) S'e us).

The family of ETOL systems generated by F, denoted § (F), is:

¢ (F)={c | cdF}.
The family of languages generated by F, denoted £ (F), is:

£(F) ={LG) | e G(F).

Since an ETOL form is an ETOL system, and conversely, we will allow

ourselves to use the term ""form!" in the rest of this paper.



Definition Two ETOL forms l:'] and F?2 are equivalent if L(F 1) = L(Fz)

and form equivalent if & (F 1) =L (F

The following lemmata are either contained in [ 2] or are a slight modification

of some in [ 2].

Lemma 1 LetF =(V,% Py ,Pm,S) be an ETOL. form and
F!'=(v,Z ',F"1, cen ’Pll*n’sl)<‘ F(u). Then for each derivation

-1 -1 -1

. , .
o g'! X g‘ gl x inF'Yop (XO);:? poo (%) 2 F:;‘» uo(x) isa
iy ia Ty iy is e

derivation in F.
Lemma 2 For all ETOL forms F a form equivalent reduced ETOL form F'

can be consiructed,

Because of this lemma we will always assume the forms In this paper to be

reduced.
Lemma 3 LetF = (V’E’PI’ ce.,P,S) and F=(vU _\7,2,51,. .. ,_FSm,S)
with V NV = @. If there are integers kiyKgyeoo,k , such that (a) holds

if and only if (b) holds for some i, then £(F) = £(F).

(a) AEV, A > X > Xy xtev*,andx.qiv* for 1< j < t.
[=) P !
2 la !

<

(b)  t=ky, iy=iy=... =i =i, A+ x inP, xjéi’/+for~1f;j<t,

t

A—bx1 inE{, and x.

x. for 1< j<t.
j=1 j .




Definition LetF be an ETOL. form and & a family of languages. We call F

F-complete or complete for & if £(F) =3, if & is the family of ETOL. languages,

then we simply call F complete instead of ETOL~complete. We call F good,
if for each ETOL form F with £(F) < £(F) an ETOL form F' exists such that
F1<lF and £(F') = £(F). F is called bad if it is not good. F is called vomplete

(short for very complete) if it is complete and good.




RESULTS

Most of the theorems on good EOL. forms in [3] are easily shown to
be valid for ETOL forms as well. Properties which are different for EOL
and ETOL forms are related to synchronization. There are two "canonicall!
ways to synchronize an ETOL form. The first is to introduce a marked ver-
sion of the terminals and make these new nonterminals and then change the
production by marking the terminals and add a' + a, a » N, N+ N to all
tables for all terminals a. N is a new nonterminal. The second, which has no
counterpart in the EOL case, is to add a new table consisting of the produc-
tions a'»+ a, a-» N, NN, A+ N for terminals a and nonterminals A.
a-+N, N~ N is added to the rest of tables. The following lemma and theorem

show different properties for synchronized EOL and ETOL forms.

Lemma 4 The synchronized ETOL form
F=({s,a,N},{al,{s+sSs; a#+N; N+N},{S+a; a+N; N+N},s)

generates no nonempty finite languages.

Proof Immediate.

All synchronized EOL. forms generating nonempty languages generate finite
nonempty languages. This is used to prove that no good synchronized EOL
form exists (Th. 2.6 in [3]). The following theorem shows that good syn-
chronized ETOL forms exist. Surprisingly enough the form shown to exist

generates finite languages only!



Theorem 5 The synchronized ETOL form

F =({s,a,N},{a},{s+3; a»N;N-N},{S *a; a=+N; NN},S) is good.

Proof £(F) consists of all nonempty finite languages consisting of single
letter words. Let F! be an arbitrary ETOL form such that £(F') € £ (F).
Assume L(F!) =2 = {a1, - ,an} and let ASF__, denote the family of languages
‘)QF‘ ={L(G) |cIF! u), ula) = {a} for all a € T} . Since the languages in

£(F!') consist of singletons £ (F') can be characterized by:

Les(FY)
if and only if there existn € 8, and finite substitution
4 on h such that
(1)  wpla)# @ for all a inn,
(2) @) Nu(b) =@ for all a7 b inn, and
(3) L= p.
acn
Because of this characterization it suffices to show that there exists an
interpretation F of F such that the corresponding 39-'-:- equals ASF,.

LetK = f\ n. K denotes the set of symbols in 2, which occur in all lan-
neyg

guages of ;S)F'. Let R be the relation on & defined as follows: (a,b) € R if
and only if for alln € 8_, and a € n imply b € N. Define R(a), fora € I,
to be the smallest set Q such that a € Q,and (b,c) € R and b € Q imply

c € Q. Let R(M), for M c T, denote a%{/‘ R(a).

AQF‘ can then be characterized by:

nes.,

if and only if

K<hand R(N) =n.




Without loss of generality we can assume that K = {a1, “e ,ak} for some

k< n. Finally let 'ﬁ(ai) = {a(il),a(.z),. .. ,a(ik)} with a. = a(i”. Note that

|
R(K) = K.

Construct the ETOL form F = (\V,X ,P1,PZ,S1)<Q F(u) as follows:

i) v=2uis,s.,...,s}tuintu U {s(”,s(.z),...,s(.ki)}.
1 2 k kei<n | i i

i) P, S, *S5,,y for 1si<Kk,
(1) (1 (1)

Sk?S1 | Skt | Sz | -0 1807
ng)-*S(iJ-H)for' k<i<nand 1=]<k,
s(ikil«v S, for k< i<n,
ai—-bN for 1= i=<n,
N - N.

iy P, S. +a, for 1< i< kK,

s 40 forkci<n, 1<k,

IA
=

ai-bN for 1=

N = N.

iv) for all a € T, u(a) = {a}.
pu(s) = v-z.

From the construction of F it follows that if we define AQ-I__: = {L(G) | Gc<d E(/J,),

pla) = {a}l for a € T} then 8= =90, and therefore £(F) = £(F1). O

Corollary 6 If F is an ETOL form geneprating a nonempty finite language

consisting of single letter words only, then there exists an integer k such
that £(F) equals the family of all finite languages of size at least k and consisting

of single letter words only.




Although there exist good synchronized ETOL. forms the following shows that

no synchronized ETOL form is vomplete.

L_emma 7 LetF = ({S,a} ) {a} R {S -+ a; a- aa} ,S). Then no synchronized

ETOL. form F!' is form equivalent to F.

Proof Assume that F!' is an arbitrary synchronized ETOL form and that

F=(,{al,P, .-, P _,S)dF'withL(F)=L{F)and letS = X, = ... 2 x_=
’ 1 Slm B 1 B =

a4 be a derivation of a4 inF. SinceF is synhchronized h 2 q

we have xJ. eV - {a})#or* 1< i< qg. By renaming the symbols in TR TRERERS

and adding the appropriate productions to the tables _35}, e ’Ern we can obtain

n
an F'<9F such that L(F') = L{F) U {abab} = §a2 | n= 0} U{abab}. This lan-
guage does not belong to £ (F). Consequently £(F) q; S(F). 0

Theorem 8 No synchronized ETOL form is vomplete.

Theorem @ No synchronized and good ETOL. form is complete for EOL.
Proof F in Lemma 7 is an EOL form. M
Theorem 10 There exist complete ETOL forms which are bad.

Proof in [2] it is shown that the synchronized ETOL. form
F=({s,a,N},{al,{s»a| s |Ss; a»N; N+N},{s+35; a=sN; N+N}J,S)

is complete, It follows from Theorem 8 that F is bad. O

Lemma 11 LetF=({S,a,b| ,{a,b},{S +a; a-abbay b+e},S). Then no

propagating ETOL form F!' is form equivalent to F.




Proof Assume £(F') = £(F) and F! propagating. LetF = (V,{a,b},
2 > ! = = M =
Piree. ,Pm,S)<lF such that L{F) =L(F). LetD : S F—"T X0 ]|:’:> . F:3|> X; abba
o 1 3

be a derivation of abba in F such that X 75 abba for i < j. If X, 7—Z afor0=i«j
then by renaming all symbols in Xgr Kqsees ,xj and adding appropriate produc-

tions to P ,F’m for the new symbols, we can obtain F'<t F<Jd F!' such that

g

_ n

L(F") = L(F) U {abcd} = (a2 | n= 0} u {abed}. If x, = a for some 0= k <]
then we can assume that X, % a for 175 k, 1=1<«j. By renaming Xgs Kqae e ,x‘i
and adding productions to ., ... ,P _ for new symbols we can then obtain an

FI1<IF<gF! such that L(F') = L(F) U {d,abcd} UL, where L < {a,b,c,d} *
consists of the words we might be forced to produce from the word abcd.
Since F is propagating abbaabba cannot be derived from abba in F. Therefore
L contains no words of length 8. If an interpretation of F generates a language
L' such that a € L.! (and d) is (are) the only word(s) of length one and abcd € L.
then abcdw € L' (or wabcd € L') for some w of length four. Consequently

L(F") ¢ £(F) and £(F') & £(F). O

Theorem 12 No propagating ETOL form is vomplete.

Theorem 13 No propagating and good ETOL form is complete for EOL.

Proof F in Lemma 10 is an EOL form. |

To prove completeness in the EOL case, we have to show that for an arbitrary
EOL form we can reduce the length of the right hand sides of the productions
below a certain limit without changing the family of languages generated. For
ETOL forms we have to be able to reduce the number of tables as well, The
next theorem shows tHat this is indeed possible, Similar theorems are proven

in [2] for synchronized ETOL forms.



i0

Theorem 14 Given an ETOL form F, a form equivalent 2-ETOL form F! can

be constructed.

Froof LetF = ({Al,...,An} ’{Al"" ,At} ,P1,...,P‘m,An). We con-

siruct a form equivalent 2-ETOL. form F! = (V/, {/—\1, ces ,At} ,P{,P'Z,An) as

follows:

) v={A L LA UALN [ 1sisn, =g mb U N]

i) F"1 consists of the productions:
/ﬁ r,
A AT,
,«:\i[j] - Ai[j+1], 1<j<m 1<i<n

/—\i[m] -+ N,

N -+ N.

iii) P'z consists of the productions:
Ai + N, 1=i<n
N =+ N,

Ai[ﬂ * wa, where A, » @ is a production in P,

I<=isn, 1<j=m.

From the construction it follows easily that A » o & Pj if and only if

A E {;&\1,...,An}, A;: o :1> a, S{."F:D;‘QJ' 2, o where o, § {A1,...,A b o*,

1< i< ].

Therefore L(F) = L{F').
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Now let F<I F(u) be an arbitrary interpretation. We will prove that there

exists an F'<JF!(y') such that L(F) = L(F') and therefore £(F) < £(F!).

LetE=({BI, "Bp}’{81""’Bq}’Pl""’Pm’Bp)' We construct
Ft=(V, {BV .,Bq} , P! ,E'Z,Bp)<1 F'(u') such that L(F') = L(F) as follows:
i) V=§B1,...,Bp}u{5i[j]|1sisp,15j3m}u{N}
i) 5'1 consists of the productions:
B, - Bi[ﬂ,
Bi[j] - Bi[j+1],1Sj<m 1=i<p
Bi[m] 2 N,
N - N.
iii) 5‘2 consists of the productions:
Bi -+ N
N -» N

Bi[ﬂ -+ B3, where Bi -+ B is a production in Ej’

V) A = pA)
wiA LD = {B[1] | B € pA)

HHN) = {N] .
As above it follows easily that L(F) = L(F'). That F'<I F'(u') is as clear.

Now let G'<] F!{n') be an arbitrary interpretation. We will prove that there
exists a G<J F(n) such that L(G!) = L(G) and therefore £(F') < £(F) which will

complete the proof of the theorem.
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LetG!' = (W',Z,T'l,T‘z,S). We construct G = (W,Z, T, Ty,..., T ,S)
as follows:
o owe= U guyay
<i<n !
L =n! .
boom o= (A Al
L) c +vy is a production in Tj’ 1= j<mif and only if

EW €E W¥ and c = D .Y, D Y.
¢ Y n CTI")’1_‘=_1>I’)/2_I_1' T1'yJTz'7

Note that W' = W U \J n'(,aé\i[j]) and Z S W.

Since G'<]J F'(n') we get from Lemma 1 and () above that

-1 -1 -1 -1
¥* 1 1 1 1 . -
(*)n'™ (c) :>1'77 v, :1>| =>1‘77 ('yj) =2>|?7 (y) if c »y in T

Theny, ¢ W*, 1<i<j. Therefore L(G') =L(G). To prove that G F(n)

we have to check points i) through v) in the definition page 5. i), ii), iii), and

v) follow from ti). To prove iv) assume that c »vy is in Tj’ A =?7—1

-1

(c) for some

T<ign,and 6 =7 (y). From (*) above we get

A :>,Ai[1] > Al 2] SOREE ::lAi[j] = 0

1
A i & & P2
which implies that A. 4+ 8 is a production in P, (inF). O

Theorem 15 Given an ETOL. form F a form equivalent short ETOL form F!

can be constpructed.

Proof The proof is very similar to the one in [ 1] for EOL forms.

LetF = (V,E,PI, ces ,Pm,S). If maxr(F) < 2 then F is already short. If
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maxr{F) > 2 then it suffices to show that we can construct a form equivaleni
ETOL form F = (V,E,EI, ce ,Em,s) such that for some i maxr*(-F_’i) + 1=
= maxr(Pi) = maxr(F) and for j# i maxr*(Ej) = max{ maxr*(Pj), 1.

Now let maxr'(l:’i) = maxr(F) > 2. We construct F as follows:

L) V=VU{N}U{B(D),C(D)|p€Pi§

t) P. consists of the productions:
(P, 4 ifla]ﬁZandp:A—baisa

. production in P,

A o glPls(p)

(p) e
B QAI"'AK—T nfoz—Ar..Akfor some k> 2
C(p) a2 A and p : A % @ is a production
k .
in P,
N -+ N !

L) '15J.=PJ.U {B(p)—vl\l\pepi} U {c(p)—lepe Pl uiNaN]

for j# i, 1<j<m.

By using Lemma 3 with ki = 2 and kj = 1 for j 75 i we get that &(F) = £(F).
That maxr(Ei) = maxr(Pi)—1 and maxr(ﬁj) = max{maxr(F’j), 1} for j 75 i is cleap.

O
Theorem 16 Given an ETOL form F a form. equivalent short 2-ETOL form

F! can be constructed.

Proof Immediate from the proofs of Theorems 14 and 15, X
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Theorem 17 The binary 2-ETOL form F =({a,s, {a},{a+»s; 54 5},

{a~s;5+e|als|sS},S)) is vomplete.

Proof Completeness follows from Theorem 5.5 in [ 2].

Given an arbitrary ETOL form F' we can construct a form equivalent ETOL
form F—"1, which is reduced and separated using Lemma 4.1 and 4.2 in [ 2].
Then using the constructions occurring in the proofs of Theorems 14 and 15
we obtain a form equivalent 2-ETOL form F'z which is reduced and binary.
F! must then be an interpretation of F, so F is therefore a good ETOL

2
form. ]
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