A Model for and Discussion of

MUL TI-INTERPRETER SYSTEMS

by

Michael J. Manthey

DAIMI PB-73
April 1977

Institute of Mathematics University of Aarhus

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06 -1283 55

=Nl

Silim

A Model for and Discussion of
Multi-Interpreter Systems

by

Michael J. Manthey

Abstract

By a multi-interpreter system is meant a system In
which programs execute by virtue of being interpre-
ted by other programs, which themselves may either
be interpreted (i.e. nested interpreters) or run di-
rectly on the host machine. The model reveals the
anatomy of interpreters and how these differ from
procedures, and exhibits links to protection domains

and multi-processor architectures.

A Model for and Discussion of Multi-Interpreter Systems

1. INTRODUCTION

The purpose of this paper is to present a model for systems containing
multiple interpreted machines. Subsidiary to this goal are the indications
provided of how the model can provide a framework for the implementation

of such systems.

It is not difficult to understand how interpretion as a general implementation
technique has come to lie in relative disuse after its brief flowering in the

mid-fifties:
(i) interpreters were slow (even by that day's standards);
(i) they are still slow (e.g. LISP, SNOBOL, APL);

(ii7) they introduce yet another 'machine! for which primary (e. g.
compilers) and support software must be constructed and

maintained,

(iv) they outlived their usefulness as the most baroque features
(which interpreters were designed to hide) of the early ma-
chines were eliminated through the successive hardware ge-~

nerations.

If, however, we reexamine these truisms in the light of contemporary de-
velopments, both hardware and software, we find the following, respect-

ively:

(i) Interpreters can be slow, but don't have to be. This is de-
monstrated by the fact that most computers are now implemen-

ted via micro-programs i.e. interpreters.

(ii) To be sure, LISP, SNOBOL., and APL., to mention the best
known examples, are slow, but compared to what? The fact

of the matter is that it is now recognized that the speed with

which a program produces 'answers! is dependent not on
execution speed alone, but also the human time required
to formulate the problem in machine-solvable form. The
popularity of the above mentioned interpretive languages
is without doubt due to users'! recognition of how they can
best invest their time.

(iii) The fact that each new interpreter (i; e. "machine!') ! which is
introduced into a system requires its own support software is
indeed a problem |B]. If a way is not found to 'connect! the new
machine with the existing one, then editors, file system, ope-
rating system etc. must be constructed for the new machine,
which then executes oblivious to the host system; [This is
effectively what was done for 1401 emulation on the 360's,
except that all the support software for 1401's already ex~—
isted.] On the other hand, if one could ensure that new
machines could avail themselves freely of the host system's
other software (which in general executes on other machines),

then the problem yields to two subproblems:

a. presuming the new machines are primarily 'language!
machines i.e. designed specifically to be a good host
for some particular language, is.it possiblie to, produce

the many compilers that will be needed for these machines,

b. is it possible to produce a general linkage which
will allow invocaiion of safiware which runs on other
machines ?
Given contemporary compiler-generation technology and the
fact that producing code for a custom-tailored language machine
is extremely straightforward, (a) does not present insurmouniable

problems. The solution to subproblem (b) is presented later.

(iv) Thus it is incorrect to infer that interpreters have outlived
their usefulness. [Indeed, today's hardware can be considered
to be just as baroque, by today's standards and program - de-
velopment difficulties, as the early machines by their‘s;]Fur‘ther
evidence of this continued usefulness can be found in (1) the reluc-
tance of many manufacturers who are developing multi-interpreter
systems to discuss the techniques involved, and (2) the implica- -

tions of widespread adoption of general interpreter-based software,

namely a sudden fluidity in the software markeiplace

as users discover that it is possible to change mainframes
without leaving masses of expensive software behind them.
This is an argument for higher~level languages and not
interpreters, but language-machines (as opposed to much

other system software) seem to ease the portability problem.

The discussion to this point has been based on what could be called every-
man's knowledge and familiarity of interpreters. If we now assume the exist—
ence of a computer system based on the harmonious coexistence of multiple
interpreters, then the following phenomena, to be discussed in greater de-

tail in the body of this paper, are discernible:

1. Generalized interpreter hiararchies (i.e. nests of interpreters)
require the retention of activation records beyond the point in
time when execution leaves their context. Hand in glove with this

is the striking resemblance between the generalized cross—-inter—

preter procedure invocation and the concept of 'domain change! {21, 22, 23]

in the context of filing and protection systems. It is therefore na—
tural to equate activation records with segments, thus removing
retention management and gaprbage collection to the realm of the file
system, whose job is already and precisely retention and garbage

collection.

2. The nature of the generalized cross-interpreter call is such that
automatic parallel processing at the procedure level is a very na-
tural extension. There is furthermore no constraint on these multiple

physical processors that they be functionally identical. Thus there

is a good possibility for building siructured systems which exploit the low

price of LS| micro-processors.

3. A layered approach to program development can in some cases be
better realized through interpretative hierarchies than through pro-
cedure hierarchies, since access to primitives at the next lower level
is both supplied and limited by the set of !instructions! which each
interpreter in the hierarchy is prepared to execute. Thus protection
against invalid calls is independent of the lexical structure

of the global context (as practiced by Burroughs in the B6700 [-5])',‘

the built-in hardware protection, and the file system,

not to mention project-programming standards. The resul-
ting protection resembles, more than anything else, the
result of building a system out of Simula classes e. g.
Hoare [4].

4, The admission of retention as the standard discipline encourages
both data and the applicable procedures being gathered together
in that natural grouping, the activation record. This in turn
leads to the accessing of data being viewed exclusively as the
activation of access procedures. From the points of view of both
protection and delayed binding, such would be a desirable devel-

opment.

2. INTERPRETER NESTS

In this section, we derive some of the characteristics of interpreters. In
order to ensure that these characteristics are universally applicable to all
interpreters, we consider the general case of a series of interpreters

nested within each other. Of course, as is well known from actual practice,
deep nests of interpreters can be impractically slow, but there are neverthe-
less situations where modestly deep nests (depth = two or three) can be useful.

[Examples of several such situations are presented in section 4. 2. |

We begin with an intuitive example: consider a program FRED which runs on
an X-machine which runs ona Y-machine which runs the H-machine, the
hardware machine. In other words, FRED is formulated in X-code instruc-
tions, the X-machine program is formulated in Y-code instructions, and the
Y-machine program is formulated in terms of the hardware H-machine's in-
structions. Assume now, for the sake of simplicity, that X-code, Y-code,

and H-code all consist of only two instructions, Feichinstruction and Execute-
instruction, though the effect of each pair is presumably different for each

machine.

Fred's program counter (PC) points to an instruction h of algorithm FRED,
the interpretation of which involves the execution of a Fetch (Fx) followed

by an Execute (Ex) by the X-machine. In like fashion, Fx requires the exe-

cution of the instructions Fy and Ey, which in turn require the execution of
FH and EH' Fl—! and EH are in fact the only directly executable instructions
which exist in our example, and therefore represent the only instructions
with which execution can begin. Thus by assuming that F’CH points to an I:I—I

we get Figure la. After execution of this first F PCH points to E the

’ ’
execution of which completes the (interpretive) ei:ecution of Fy, whi‘jh in
turn implies the start of execution of Fx (Figure 1b). Figures 1c and 1d show
other steps on the way to the execution of 11 in the program FRED. Finally,
as shown in Figure le, we are on the verge of having completely executed I1:
execution of the final EH completes execution of the final Ey, which completes
execution of the final Ex’ which completes execution of Iy
This example demonstrates two points:

1. The speed of execution of the instructions of FRED is exponentially
proportional to the depth of the nest. The only (trivial) exceptions
to this law occur when each instruction at a given level is fully exe-
cuted (including PC maintenance) by a single instruction at ;:he next

lower level,

2. Control in a nest emanates from the bottom upwards, and not, as
would seem more 'natural!, from the top downwards. To put it
another way, the control relationship between e.g. I1 and Fx is
not that of a procedure call on Fx’ but something else entirely. This
subtle but important point finds several practical applications as
will be seen later. Furthermore the example as it stands can be
viewed as the 'dead start! of the nest, which as pointed out earlier
can only begin with the direct execution of H-machine instiructions,

See Figure 2.

2.1 The Anatomy of the Hierarchy

It should be immediately clear from the example that the existence of multiple
levels of interpretation carries with it a division of both function and access.
In the case of function, each level (i.e. each interpreter) has available those
instructions which the interpreter beneath it is willing to execute, and only

those. Thus a wall, protective of function, is erected between reach level.

[*painoexs ag o1 uol1onuisul
IXaU 9y} jo 149| 8yl o} siutod IOnL R TR ENE
(9AlIRIULY, ‘saul| pailop 2yl ‘suollonJdisul jo

uolinoaxa palajdwos Ajdw] saul| pljos 8yl - 1SaN Ja1aJdualu] ue ul uojinoex3y *| °*bBid
() P
IOQ
mc_somrc o « o aulyoew
=isoy E o m_ - Ih_ — —isoy
aujyoew-A : auyoew- A
l/
I//
//VA
aulydeW=-¥ = auysRW=-¥%
// \ -
~ - -
~. P -
// \\ -
S -7 L -7 a3y-
~ \\
S b7 a3y
(@) (q) (®)
Hog Hog
H ﬁ “ " aulyoew I P q o aujyoew IU&
3 «— HyeHg — = —-1soy o — 3 - 4 ~-1soy
AN o] A_ suiyoew
. \ / \ /> \ S ~1s04
A 3 BUIYDBUW= A \H_ SUlyoBW-=A . 7
AN ’ ’ AN L _
N ! 7 N aujyorw-A
~ \\ « s =
Y 7z
«Ah_\ suUIYOBW=X = UYORW =¥

Fig. 2. Real-World Analogy to the Bottom-Up Conirol Regime

- The juggler at the top of the 'pyramid!, being the only
one able to move his hands, corresponds to the executing
algorithm. Bottom-up contrcl is illustrated by the fact
that only the bottom juggler (corresponding to the host
machine) can walk (execute). The analogy succeeds also
for Cross-~Interpreter Return but not for €all (unless

a skyhook is used to set up the pyramid). [See Section 3.]

In the case of access, the situation is considerably murkier, and is treated

in the following paragraphs.

A program can be considered as a collection of activation records [7] repre-
senting the environment in which the program and its currently active proce-
dures operate. Johnston [6] expresses the data access environment of a

given activation record as being reducible to a single value called the environ-
ment pointer (ep). In like manner, the precise point of execution within the
algorithm is abstracted to a single value, the instruction pointer (iJ:l). ip is
commonly viewed as equivalent to PC, but it also includes ephemeral states
and residual control [26]in the controlling machine. The pair (ep,ip) there-
fore represents the entire state of a given procedure activation. At any given
point in time, there are an arbitrary number of (ep, 19_) pairs in existence,

one representing the current point of execution in the algorithm, and the others
representing previously active but currently passive procedure activations.
We express the totality of these pairs at a given point in time as (EP, IP).

(It is important to distinguish between EP, which is a constantly changing
collection of ep's, and an ep, which represents a collection of variables which

once allocated remains essentially static in its composition.)

Given that an interpreter is a program, it can be represented at some point in
time as (EP, IP), and in particular its total data environment as EP. We now
return our attention to the example and ask "where is Fred!s PC?!" i.e. in

which of EP, EP EP and EP, , can PC

—Fred? — X’ —Y’ H Fred
sense, it might be in any or all of the listed environments, and perhaps more

be found ? In a very general

than one simultaneously. However, in a more structured system there are

really only two likely candidates: EP ~ed and EP We find it most fruitful to

—F x*
consider PCFr‘ed € EPy., and if in fact PC - oy € EPrreg 28 well, then this

latter is a copy of that maintained by the underlying machine, in this case the
X-machine T. It is easy to find existing hardware machines which demonstrate
all possible combinations of this e.g. the PC exists solely as a (user) program
register, that it is totally invisible to the user program, etc., Such variations
have been introduced by designhers to achieve certain hardware and/or archi-

tectural design goals, and each variation has its advantages. However, what

1 We have restricted this discussion to the PC. A machine!s STATUS

when present, is viewed analogously and therefore will not be
discussed further,

we are interested in determining is a useful canonical form for an inter-

preter, and from there to determine the global (i.e. system-wide) effects

of same.

Having now isolated the PC at any one level to the EP of the immediately
underlying level, we are now in a position to state a great deal more about
interpreters and their nests. For some arbitrary program P on machine M

we have

P: [eps, ippyl,

where ep instead of EP (etc.) are specified since we are interested in the

current point of execution at time t.

Consider as an example a program BOB which runs on a hardware machine
H:

BOB: [epgop o) t

If BOB invokes a procedure Q we have

BOB:Q: [ep, _igH]to +5 (6, > 0)

Note that SPoop n ggq is not empty T. If we introduce ep* to denote all ob-

jects potentially available through a given ep (e.g. globals) then Q € (—BE*Bob

or Q€ EP5ob* It is possible that Q itself is the only connection between
—e-F—)*Bob and __ejg_‘*g, in which case BOB calls Q to achieve either changes in

ep*

mon case, however, is that EProp N ep - contains in addition to Q some data

Q or ep - (most useful in systems allowing general goto's). The most com-
object whose value is changed as a result of Q!'s execution.

Assuming therefore that 9£Bob

yielded some non-trivial result, then upon return to BOB we have

N epq # @ and that the execution of Q has

1t The set operations N, <, U when operating on ep's are interpreted
as operating on the (possible) common variables of the two ep's.

10

BOB: [eph iEH]tO 0, (6,>6,)

where the "' denotes that some of the variables in SPeob have received new va-
lues. At this point, we will drop the time designation, since we are dealing with
sequential programs and since we assume that time is increasing monotonically.

We now consider the situation where H is in fact not a '"real" hardware machine,

but is implemented by an interpreter called J (e. g. H is microprogrammed on
a J-machine). Thus we have

H: [ep,,, Ip]

The state of BOB's ip is completely dependent on the state of H as a whole,

and thus we can substitute this last equation in the preceding one, yielding
BOB: [epl .,[epp ip,l]

Clearly, if J itself is being interpreted by K, then .i_Ed can be replaced in the
same fashion, ad infinitum until the true hardware execution level is reached,
i e.

B08: [eply oy, [epppy Loy [-- [epyy ippgo,]--- 1111

2.2 Contemplation

If we now contemplate this last expression, there are several observations we
can make,

1; —iEhost cannot by definition be further decomposed, which corresponds
nicely with the traditional view of the ip as a simple integer program
counter and nothing more. It is also appropriate to the common situa-
tion where the true host hardware is simple in the extreme. A more
practical viewpoint however is that the location of the —iPhost level
is a design decision reached by concluding that any additional ip
fine structure is irrelevant to the task at hand e.g. none of the in-

terpreters below this level are explicitly ""invocable!!,

2.

11

It is useful to postulate an abstracted pointer to the program's code,
¢p, which is not PC but merely a reference to where the code is to

be found. The distinction between ep and cp is necessary if the dual
requirements of reentrancy and protection are to be fulfilled; - Thus

it ismost often found in newer systems and most often blurred in
older ones, where Cp “ep or at best cp © 39_* . However, the opposite
extreme, cp N _@_g* = @ must somehow also be avoided, since otherwise
there is no way for the code to reference the g_p_ it is to manipulate;
This conflict is resolved by the code'!s assuming a particular mapping
(e.q. linear or tree-structured) which can be expressed in terms of
integers. Since integers are not tainted by differing name environ-
ments, it is only required that the ep supplied to the code con-

form to the same mapping which is assumed by the code. The
breakdown of this mapping is commonly called a 'bug! i.e. the

code is manipulating the ep, but the ep's structure does not
corespond to that assumed by the code. This state of affairs
manifests itself as either "wrong answers!! or a machine seman-

tic error, or both.

Expanding on the above, it is the interpreter which ties the code
to the program ep. It fetches instructions and (integer) addresses
(or address displacements) from cp and applies the resulting ef-
fect to g_p_; Thus the activating call on an interpreter must include

access to both ep . Therefore, cp belongs

and cp
program program
in the realm of the interpreter, and not in that of the program,
and the temptation to write P: [ep, _iR, cp] as the characterization

of an incarnate program should be resisted,

The state of (e.g.}BOB is contained in two places, EPBob nd

E’H; EE?Bobholds the variables generated by the execution of
BOB's code‘, and _Ii')__‘i‘holds (generally speaking) the variables

determining the next instruction to be executed. In analogy with
the ""where is PCF‘Ped” problem, a related phenomenon is the

pushed-down values of PC (i.e. the "return! stack), which are

12

most often kept in the program's EP. This information is totally
incomprehensible within the context of this EP, and one carefully
avoids manipulating it. That such an allocation is so common today
is probably due to the fact that (hardware) machines have histo-
rically been restricted by economics to have minimal ep's, and
therefore the program's ep was a very convenient place to stash
such information. However, in the context of our discussion

there is no longer any reason to continue to mix such apples and

oranges together, i.e. the return stack belongs in the interpreter's

EP.

13

3. THE CROSS-INTERPRETER CALL

In any computer system, a useful requirement to place on any given
program is that its caller need not know anything about the environment

in which the called program runs. In a system with multiple interpreters,
this means that the caller need not know what machine the program runs
on, nor anything about the depth of the possible nest. To achieve this, we
have chosen to expand Landin's closure model [9]. Figure 3 illustrates
the earlier example of program FRED, and should be interpreted as the
static [i.e. pr‘e—invocation] data structure describing FRED's necessary
environs. The job of a Cross-Interpreter Call of FRED is to erect the
data structure shown in Figure 4, The important features of Figure 4 are (1)
the closure is unchanged i.e. contains no information about this particular
activation of FRED and thus can be reused in other calls, and (2) the cp's
and PC's of each level are referenced solely through the local environment

of the next lower level.

An algorithm for accomplishing the cross—interpreter call appears in Figure 5
and it should be noted that any member of a nest may validly invoke it. It should
be emphasized that this code body is in principle not a procedure, since 'cal-~
ling" it as such would result in an endless loop of calling itself to !"call!' jt-
self. Rather, this code must operate outside of the semantic space it manipu-
lates, and is '"god-given'' as far as all other entities in the system are con-
cerned. Other examples of god-given operations are the acquisition and re-
turn of resources, and, inthe last.analysis, the reading and writing of physical
storage. Thus that set of operations made available by the host machine is
identical to the set of god given operations. Some of these operations may be
'wired into! the host machine, while others are composed of sequences of such

hardware primitives, but their appearance to the upper levels is the same.

3. 1 L inkage Mechanisms

Note that the Cross~Interpreter Call mechanism described in Figure 4 says
nothing about the way Fred'!s caller passes its parameters to Fred. Since
the process of transferring parameters can become arbitrarily complicated,
it is important that this complexity not be a part of a basic system operation.
Furthermore, the option of different parameter passing conventions would

thereby be excluded.

——t* 'X-machine" (X~code)

—=T* IlHost-machine! (H-code)

FRED global

1 i -
segment address environment

segment address®]
code for al-
gorithm Fred

[other
information|

N X-machine global

segment address”| environment

&~
segment address \ code for
X-machine

=1 Uy_machine! (Y~code)

[other
information]

N Y-machine global

o .
segment address environment

segment address code for
Y-machine

[other <
information]

Host-machine

1

Fig. 3. FRED's Static (ep, ip) Structure - Hard links

between the levels will be established via the
Cross-~Iinterpreter Call mechanism, and are
here considered to be strings to be mediated
via the File system.

FRED global

£4 -
environment

6"‘\\\
code for al~
\ gorithm Fred
~ (X~code)
f T activation “]
record “\
~: focal
\ environment
X-machine global
L H
] environment
\ code for
X-machine
* {(Y-code)

*
f .“ °
activation

record "\ PCered

local

vee

environment

Y-machine global

environment

\ code for
Y-machine

(H~code)

L4
. . &1
activation

record T PC'X

.
.
.

local

environment

X Host-machine
T 1

ot

PC

Fig. 4. FRED's Dynamic (ep, ip) Structure

- All pointers are transformed by the
Cross~interpreter Call into segment
addresses.

16

Cross Interpreter Call (closure) =
comment erect the data structure of Figure 4;
local actrec, locenv, codeptr;
comment set up environs for the procedure described by closurel,
setuplocalenvironment; comment locenv now points to the new local environment;

setupactivationrecord; comment actrec now points to the new activation record;

comment set up the environs for alil the interpreters required by the called procedure;
while ip.closure # hostmachine do
begin
codeptr := cp.closure;
closure := ip.closure;
setuplocalenvironment;
locenv. cpslot := codepir;
locenv. pcslot := 0; comment there must be a system-wide convention for this value;
setupactivationrecord,

end

comment finally, save the caller's state and transfer to the callee;
savecurrentstate (restarthostPC, hostregister 1, hostregister2);
hostregister 1 := actrec;
hostregister2 := locenv;

hostPC := 0; comment op. Cit,

comment at this point, the deepest interpreter in the nest starts running
on the host, and consonant with the bottom-up control regime, the
upper interpreter levels are started, until finally the calied pro-

cedure begins 'execution'.

Fig. 5. An Algorithm for Cross-=Interpreter Call - The procedures

setuplocalenvironment, setupactivationrecord, and savecurrentstate
are considered local to the algorithm. This algorithm handles only a
normal procedure call without parameters. See the text for a dis-
cussion of other possibilities.

17

The most straightforward conventions apply when parameters need no evalua-
tion in the callee's environment, and hence the caller can arrange to acquire
what will later be Fred's activation record and compute all parameters. A
reference to this activation record is then an additional parameter to the
Cross~Interpreter Call. If however Fred must cooperate in the evaluation of
its own parameters, then the calier must still acquire a resource, in this
case a means for them to synchronize with each other. Fred is then set up
and able to participate in the dialogue. Whether this dialogue is viewed as
inter-process communication or a co-routine relationship is dependent partly
on philosophy, and partly on the linkage mechanism actually used. L.ampson
et al [10] and Kahn and MacQueen [25] describe general linkage mechanisms

which are applicable to these problems.
§

As an example of the power of generalized linkage mechanisms, it is possible
to subsume the ordinary procedure call by viewing it as a primitive form of
synchronization between the caller and the callee, wherein the caller 'waits!
on a common event variable until the callee signals via same that it is finished.
This arrangement allows the caller, if it so wishes, to spawn a number of
procedures as (more or less) independent processes, and itself to continue

to execute. A second example is the above mentioned co-routine based para-

meter passing protocol.

In closing, we take up the subject of returning from the callee to the caller.

At each level of the nest, superfluous resources must be released (e.g. memory,
via appropriate god-given operations) before executing a Cross~Interpreter
Return, and this sequence of actions is repeated at each level of the nest.

When 'control! arrives at the bottom of the nest, the state of the caller's

host machine is retrieved from the place where the Cross-Interpreter Call
saved it, and when this information is restored to the host machine, the cal-

ler will resume executing at the point immediately following the call (in the

case of a simple procedure call). This simple restart is a consequence of

the bottom-up control regime mentioned in the introduction.

The problem of the callee's returning a value (e.g. Fred is a function pro-
cedure), like that of passing parameters, is the responsibility of the caller

and the callee and not of the Cross-interpreter Return.

18

The reader should not form the impression, however, that all procedure
calls and returns in a multi-interpreter system are accomplished via the
god-given cross—interpreter call/return mechanisms. Clearly, for those
procedures which run on identical nests, this would entail excessive and
unnecessary overhead. If such procedures are compiled as a unit, for
example, then the compiler has sufficient information to generate code for
the language!'!s 'internal! procedure linkage. It is only in the case when a
procedure is 'external'! that it is necessary to use the system-~defined
linkage. Whether this linkage is then to an identical or completely different

ip environment is, for better or worse, unimportant.

3. 2 Multiprocessing and Multiprogramming

The focus of this section is the ip field of a procedure's closure. This field

can in theory have three types of values:

1. a (file system) name of an interpreter program
2. a (possibly generic) name of some physical (host) processor
3. a pointer to the activation record of some interpreter

We have heretofore only discussed the first of these, with the result that
each time a given machine was required, a new incarnation of it was created
via its closure. This can be accepted without discussion except in the case
where the given machine is the host-machine, in which case we are in ge~
neral specifying a multiprogramming of the host. If we did not wish this to
happen, then one possibility is to interpret the ip name in the closure not
as a software machine, but as a hardware machine. In this case, it would
be the job of the cross~interpreter call to determine if the name is that of
one of the (currently unallocated) host processors available to the system,
and if so to activate the nest on that processor. There is no reason, based
on our discussion, for these additional host processors to be either physi-
cally or functionally identical to the single 'host! currently executing the

cross-—interpreter call,

The result of this logic is the possibility for systems having a large number
of physical processors, some being functional copies of other, others being
fundamentally different. Contemporary hardware developments make such a

system economically possible, while the cross-interpreter call mechanism

19

suggests an automatic means of allocating the individual processors. Such
a system, when based on a generalized transfer mechanism, displays true
parallelism at the procedure level, a type of parallelism which is neither

as fine-grained as that of pipelined processors nor as coarse as that of a
ljob!.

Returning to our main thread of discussion, the third possibility for the ip
field of a closure is a pointer to the activation record of some interpreter. The
very existence of an activation record means that the interpreter is already .
incarnate, and thus an attempt to graft a new nest upon it is in fact a request
for multiprogramming. If such a possibility is admitted, then the cross-inter-
preter call must interrogate the incarnation concerning its willingness to

permit multiprogramming.

It should be apparent that this kind of handshaking could become rather involved,
especially since at least one of the parties to the conversation is the (pre-
sumably primitive) host machine. The only case where this possibility might
find application is if the callee is an encapsulation of some existing system

(e.g. IBM 360/370, DEC PDP-10 etc.), but even here it is not immediately
apparent that a software-based multi-incarnation system would not be easier

to deal with. The only exception to this logic is the case where the already
incarnate machine is a host-level processor, and what is perhaps the ultimate

in generality is achieved by allowing this possibility.

3.3 Input/Output

The ability to have multiple but functionally dissimilar physical processors has
special relevance to input/output. On the one hand, I/O by its very nature
invokes the presence of a second parallel process; the true parallelism of

this process to the calling process has been made increasingly visible in contem-
porary systems by the introduction of ever more sophisticated and independent
data channels, sometimes even as distinct physical processors. On the

other hand, there has been a software need to refiect the underlying syn-
chronization mechanisms in this mutual cooperation, which need is difficult

to accomplish in practice. The use of a general cross-interpreter procedure

call of the type described in § 3.1 supplies the necessary synchronization

mechanisms while still allowing the 1/O to be carried out by a separate pro-

cessor.

20

3.4 Virtual Machines

It is natural to assume that the concept of a virtual machine [18]
is closely connected to that of an interpreter. In this section we analyze vir-
tual machine architectures using the machinery developed in the preceding

sections.

A virtual machine can be considered a copy of the same machine which all

other software on a system runs on i.e. there is only one interpreter per se

in the system, but for each virtual machine which is erected, there exists an
additional incarnation of the interpreter. The simple case of the activation of

a single virtual machine is shown in Figure 6. The virtual machine is super-
vised by the Virtual Machine Monitor (VMM) whose job it is to maintain the
virtual machine's illusion that it is a real machine. This means that VMM is
most frequently activated by the execution on the virtual machine of instructions
which are normally considered 'privileged' e.g. /O, page/segment table
updates, etc. When such an instruction is attempted, the virtual machine must
activate some code in the VMM (and in the VMM ;’::Z_E}which provides the necessary

simulation of same.
Thus the sequence of events in the life of a virtual machine is

1. A cross-interpreter call to the 'user program' from the VMM, which yields

a new incarnation of the system machine.;
2, Start of execution of the user program.

3. VMM is activated by the virtual machine when certain privileged

instructions are attempted.

4, Control returns to the virtual machine when VMM completes

each instruction simulation.

5. Continued execution of the user program. (Steps 3, 4, 5

are repeated an arbitrary number of times.)

6. The user program 'returns!' to its caller (the VMM) and the

virtual machine is destroyed.

21

SWINA dwes ayl adeys pue ‘jusuodwod puey-143| 9y} se
9JNIONJIS SWEeS 9yl 9ABY SOUIYOBW |BN1JIA (9A]SJNDS J—UoU)

|BUOI1IPPY — UOITBAII0Y SUIUDBW [BNTJI/A B JO 2Jnidnuis 8yl * 9614

sulyoew 1soy pawwedboddoudiw ay |

suUlYOBW |WB}ISAS, UOWWOD 8y L

Jabeuepy aulyoe |entdiN SulL

x/02€ ixX/04E

weJdbo Jd

Jasn

1Heod

udniay

aulyoBW ||BN1JIA, dYL

‘sJdosn a|diljnuw Yiim
weisAs buljedado ue
uans sdeydad ‘wedb

~odJd Adeudilque Uy

22

Items 3 and 4 above are a distinct (external) transfer of control from one
interpreter regime to another. The question, however, of what kind of
transfer of control is used is a design choice. One possibility is to view
the interaction as a co-routine relationship which fits nicely with the fact
that control is passed to an already existing environment. On the other
hand, if this environment is such that all the relevant information is in some
sense global, then a procedure call from the virtual machine {program) to

a routine in (EE’iE)VMM is sufficient.

An important development for virtual machines is the possibility of their
recursive activation [18, 19], i.e. the possibility of creating 'nests' of vir-
tual machines, each of which supports the virtual machine 'above! it. The
additional criterion is placed on such nesting that all virtual machines in the
'nest! execute equally fast. Figure 7 shows that such a 'nest! of virtual ma-
chines is not a nest in our sense of the word, and therefore the exponential
drop in speed associated with interpretation nests applies only in exceptional

cases.

In closing, we note that our model concerns itself with environments and
the flow of control between them. Therefore, data structures internal to the
processes (such as the f and ¢ maps treated by Popek and Goldberg [17])

lie outside the present discussion.

3.5 Dynamic Machines

We define a dynamic machine to be one whose repertoire of instructions as

seen by the interpreted program changes in time. Such a machine is there-~
fore useful when designing an interpreter for a language which allows the
dynamic definition of new data types and (in particular) new operations on

these types.

When a new operator is introduced (usually on a block boundary) in a lan-
guage, its effect is defined by a procedure written in that language. The
question now is to decide to which target machine the procedure should be
translated. The traditional approach has been to execute the procedure on
the same target machine as the rest of the program, but clearly some exe-
cution speed is lost by introducing this additional level of interpretation. The
advantage of the scheme is its simplicity: nothing new is expected of either

compiler or machine.

23

*,1s9u, ay3
10 jwo1l04q, 8y |

1S0H

*SOUIUDBW [BNTJIN SAISJNdad Buliuawa|d

—-w} Jol siseq |enidoouocd oyl Bulbueyd 1NOYIIM JBaYylo Uoed
WO UL JUSJBLLIP AJdA ©q ||B 108} Ul P|NOD Saulyoew X/0LE
anlssoo0Nns oY) eyl si jujod BuUl||91 @Yl *SIUBWUOJIA

~ua (di¢ds) Buluaip Ul saunpadoJd Jo S8lJas B JO Uoljen
~110® 9y] SB pamalAn S} WIW/ ;1SowWo}10q; aYyl 01 3oeq Aem
oYl ||B S|9N8| JOMO| 9A|SSIDOONS 1B S}|NB} SOSNBD [9N9|
;1SOWJa1N0,; 9yl 1B 1|Ne} B 9JaYym 9Sed 9y *pPJOM 3yl 4O
asuUas JNo Ul 158U anljaJdddalu]l ue 10U S| S1Yj 1By} 210N —

SOUIUDBN |BNIJI/ 10 1SON]; OAISJINDSJ B JO 9JN1dNUAIS oyl * y 61 -

X/0.LE

WIAN

~

1%X/02€ 1X/04€

s O
\\ ®6¢/../¢
» -
& e
%
WA + wedb WA + wedb
s o 00
~oJd Jdosn -ocJd Jesn

udniau/j1ed udniad/||ed

udniad/||eo
—

— g

Y

wedboud

Jasn

24

A second approach to the problem is to execute the operation-procedure on
some other, presumably faster, machine. This other machine can then be

e.g. the language's target machine's machine, some other machine which
offers appropriate advantages, or the host machine. If the operator proce-
dure is to run directly on the host machine, then it is important to realize
that it in general should not exist as a (host-) instruction, but rather as a
Callable procedure. The reason for this is that if it is an instruction, then

it is available for execution only at the bottom of whatever nest it appears

in. This in turn means that the access path to it is through all the layers of
the nest i.e. the top level executes instruction NEW, which is interpreted

at the next level by executing NEW!, which the next level interprets by exe-
cuting NEw" etc. until finally the bottommost level is reached and the new
operation can actually be carried out on the host. If on the other hand NEW - .
exists as a procedure, a Call on it filters down through the nest just as NEW
did, but ends in a call of the function. Thus the trade-off is between the over-
head of the Call mechanism and the overhead of modifying and executing multiple
layers of interpretation. It is important to realize that these are the only pos-
sibilities, and that there is no way to cheat by somehow executing directly on
the host from some arbitrary level (vague claims in the trade press notwith-

standing).

If the operator procedure is executed on some machine which is not a member
of the nest, then a procedure invocation is the only choice, and the environ-
mental modifications which must take place are heavily dependent on the de-
gree to which the binding of the new god-given operation to the machine which
will execute it is delayed. In the simplest case, separately compiled instruc-
tions are disallowed, thus enabling the language compiler to assign a unique
cardinal value to each. A new version of the new instructions' common target
machine is then compiled, and a reference to its closure is made available in
the original program's EP. Finally, the language's target machine must have
an instruction with two parameters: the aforementioned closure and the ex-
tended operation's cardinal value. The latter is used by the language target
machine as a parameter (together with the current program gg) in a Cross-~
Interpreter Call on the former. L.ess simple cases (e.g. where a more de-
layed binding is allowed or multiple 'external! machines are required) are

correspondingly more complicated and perhaps deserve further research.

25

This discussion of dynamic machines is based on the Call mechanism intro-
duced earlier, which in turn is based on the information contained in the
extended closure. We have chosen this method because of its simplicity.
The apparatus introduced in [11] contains dynamic machines more clearly,
but is correspondingly less efficient. Furthermore, this is the only instance
we have found in our investigations where the extended closure is in some

sense insufficient.

26

4. OVERALL SYSTEM CONSIDERATIONS

In this section we consider the more global implications of a system built on

the principles described in the two preceding sections.

4, 1 Storage Management

We mentioned in the introduction that an activation record should be allocated
as a segment. An immediate implication of this is that a general multi-inter -
preter system will require a large number of segments, but that in most cases
the maximum segment size need not be great. Of much greater interest than
their number and size, however, is how these segments are organized. The
goal of any such organization is to minimize, for reasons of both protection
and efficiency, the number of segments available at any given time to a com-
putation. A means of doing this is to exploit the well-known locality of compu-
tations i.e. the range of memory access is usually a small subset of the total
possible at any given instant. Thus the locality of execution is associated with
the activation records of the interpreters in the nest plus the activation records
of the program at the top of the nest. The contents of these activation records
are closely connected to the static structure of each of the programs, and thus
what we desire of our segment organization scheme is the recognition of this

static aspect.

Fortunately, a segment management scheme which models the static locality
of data access is available: the domain concept [20, 21, 22, 23]. Domains
were originally introduced as a protection mechanism, but it has since been
realized that they can also be viewed as the staiic component of a program's
working set. A computation moves from one access domain to another either
via a jump or a domain !"call" (in which case the domains can be recursively
nested). A domain corresponds to a segment, which in general may contain
other domains (segment descriptors). There is such a natural correspondence
between this data structure and that of a program's activation recards that
one can profitably view procedure invocation as being replaced by domain in-
vocation. The locality of the computation becomes explicit therefore in every
domain change, with resultant gains by the resource management functions
of the system. The conclusion we make on the basis of this discussion is that
the necessary glue to hold a multi-interpreter system together is provided by
the domain concept, and that it is therefore wise to view the cross-~interpreter

call as an augmented domain-change operation.

27

With these considerations in mind, as well as those of Section 3. 2, a
natural analogy arises to domain-based multi-processor systems such as
Hydra [22], in which connection it should be noted that the structural

theory is identical to the present paper's (LNS~ ep, process~ EF).

4, 2 Structure

We have, in the preceding sections,devoted our attention to nests of inter-
preters, the primary reason being to ensure that any conclusions regarding
degenerate nests (depth = 1) were properly drawn. Because of the exponential
rise in execution time with increasing nest depth, it is important to be aware
of the trade-offs involved in choosing between a procedure structure and an

interpreter structure for a given application.

The traditional use of interpretative execution is to implement programming
languages whose level of abstraction is far above that of the host machine.
Thus an abstract machine suitable for the language is designed and implemented
via an interpreter, thereby reducing the complexity of the compiler to a ma-
nhageable level. The result of this approach, besides implementation conve-
nience, is usually a trade-off between speed and memory (see Table 1). It is
also iHuminating to examine those cases where there is improvement both in

speed and memory.

The procedure call and Ifetch mechanisms can be viewed as duals of each
other, in that the environment where further instructions are executed
is different for each instruction invocation!'. In the case of procedure call,

the PC is saved and changed, and the current EP is augmented to in-

clude the ep of the newly entered procedure. In trlxaeRc(:)aC:e of an ifetch, the PC
is updated and execution 'proceeds' in the already existing ep of the inter-
preter. Given that augmentation of the ep is a more complicated operation

than merely fetching the next instruction, we can see that the Ifetch mechanism
is fundamentally simpler than that of a procedure call. This advantage and

the fact that the ep's of the nest-components are set up once and for all at
nest-activation time (and are therefore essentially static) are countered by the
Ifetch at each level being interpreted by the next lower level and therefore

plaagued by exponential slowness.

28

*1%91 8y} Ul pauoliusaw se ‘ubjsep pue S|SA|

~BUB |Ni8JBD 0} 9NpP aJe S1iNSad 0021 9 9241 ‘uoileiuswa|dw]

Jamots 1ng 1oedwod adow B spialA Ajjensn uolieriadduaiu]

salbaleJls uoliejuSWS | duw| sebenbue™ snolJeN JO S1inNsoy | 9|qeL

¢ . . ‘n uollelaJddusaiu] jogoD pue
[z ‘1] veunim (i) §°0-80°0 S0 0021 € boposoJoin | UBUIJo fOdN
26 °0 6°0-870 ll~ddd 9p0d papeady
Le] 11ea 0°1 0°L ll-dQd apod auljiybledrs uedJiJo o
£’ L7 °0 li-dad | Je19udusiul g1 -av.Lls
lot] *1® 12 UIIOD
0°L 0°t li-dad 3po2d aul|1ybledJis l-8vl1lsS
€ ~ 28 °0 BAON| Jaladdusiul apod—Q
[S1] a19n gl z°l eAON 9po> papesd
0"l 0°l 1=7YeIN saujlnoJqns _umwo_o, 1409
59Us UB1O K peodg weubodd | 9Z1S wedbodd U lYyoeW yoreouddyy a6enbue
109fqO anlie|ay]| 10alqo anlie|oayY 1SOH uolieiuawajdu]

29

Thus the key to producing an interpreter which can compete in speed with

a direct host machine implementation is to minimize the Ifetches at each
level. This means that (1) the primitive operations at each level must be
carefully chosen to get the maximum yield for each Ifetch, and (2) no opera-
tion which can be performed at a lower level should be performed at a higher
level. It is particularly the latter which is decisive, and the fact that the

B 1700 [24] host can perform varying length arithmetic means that the inter-
preter need only pass such operations down to the next level. Thus the
lanomolous' results obtained by Burroughs are explainable by application of
the above iwo optimization principles. Nevertheless, it is doubtful that nests
of depth > 2 ever can yield greater speed than direct host execution, and the

problem of trading speed off against memory thus again rears its head.

A more fruitful application of nests is where the primary goal of execution is
not computation but rather control. A good example of this is job control lan-
guages. The abstract machines for such languages contain instructions con-
cerning sequencing through job steps and manipulating the job's EP at a very
high level. The most important goal of such a language is to supply the kind
of sequencing required by real-life jobs, and the raw speed of accomplishing
this is less of a factor at the macroscopic job~level. The fact that such faci-
lities as arithmetic and conditional statements, loops, local storage, general
parameterization, and multi-job synchronization are usually unavailable in
job control languages hangs together with the viewing of the problem through
procedure-glasses. An interpreter, and not procedures, is the natural ve-
hicle for the implementation of more fiexible and usable job control languages
(e.g. ICL!'s System Control Language [14]). This approach, at a nesting
level of one or two, should offer the same (slow) speed, but permit better fa-

cilities and a cleaner structure.

Our final example of the use of nests concerns the "idle loop!" in a multi~
programmed operating system. One would ideally choose to executie a synchro-
nous Wait until some process appears in the Ready queue, but this leads back
to the original problem of the Ready queue'!s already being empty. If the system
is highly structured, finding a suitable ep in which to idle can thus be a nasty
problem. The traditional solution is to define an Idle process which appears
only when this situation arises; such a process provides the problematicél

ep but involves extra bookkeeping to keep it out of the way when the Ready

queue is not empty. An alternative solution is to provide the Wait function as

30

an (interpreted) instruction instead of as a procedure. This device moves

the idle-loop from the operating system'!s EP to the interpreter's EP where
(given the latter's simplicity with respect to the former!'s) it is more con-
venient to idle. More significantly, the body of the Wait function, by virtue

of its being a single 'instruction', is automatically a critical region with
respect to the level at which it was invoked (another consequence of the
bottom-up control regime). This fact, coupled with the static nature of an
interpreter's EP, makes the earlier analogy to Simula classes and monitors
even more relevant, and suggests the implementation of monitors, or their equi-
valent, as internpreted functions. In summary, it would seem that the inter-
pretation of operating system primitives at a lower level offers new means for

structuring the solutions to traditional operating system problems.

31

5. CONCLUSIONS

We have presented a model for multi-interpreter systems which describes
the control structures necessary to allow programs which run on one ma-
chine to invoke programs which run on other machines. These machines may
be host-level processors or defined by programs which run on still other
machines. The expansion of the model to describe systems with multiple
(not necessarily identical) physical processors is straightforward, and the
extent of parallelism obtainable depends on the generality of the linkage me-
chanism chosen. In either case, a domain-oriented storage management

systems Is a natural symbiosis.

Interpreter-based systems display structural attributes which are different
from procedure-based systems and offer therefore implementation advantages
when code-compactness is important, when a more suitable level of abstrac-
tion is required (e.g. for code gener'ation), when computation per se is not
the primary goal of execution, and when exception conditions arise which
are philosophically incompatible with the EP. in which they occur (the 'idie-

loop! problem).

This paper has not addressed the problems of common data formats which arise
immediately in multi-interpreter systems, nor (the implementation of) less
general but philosophically compatible systems. The interested reader is re-

ferred to Derrett [12] and Lynning [13] for further discussion of these matters.

6. ACKNOWLEDGEMENTS

| would like to acknowledge Nigel Derrett!s sine qua non midwifery of these

ideas; and Nick Shelness! very helpful discussions of protection domains.

32

REFERENCES

[1]

[2]
[3]
[4]

[5]

[6]

[7]

(8]

[9]

[10]

[11]

Wilner, W. T., The Design of the B1700. Fall Joint Computer Con-
ference, AFIPS, 1972. pp. 489-497.

Wilner, W, T., B1700 Memory Utilization. ibid pp. 579-586.
Bell, J.R., Threaded Code. CACM 16, 6, June 1973.

Hoare, C.A.R., Monitors - An Operating System Structuring Concept.
CACM 17, 10, October 1974,

Organick, E.l., Computer Systems Organization - The BS700/B67OO

Series. Academic Press, New York, 1973.

Johnston, J.B., The Contour Model of Block Structured Processes.
Proc. of a Symposium on Data Structures in Programming

L anguages, Ed. Tou and Wegner, ACM/SIGPLAN, February 1971.

Wegner, P., Programming L.anguages, Information Structures, and

Machine Organization. McGraw-Hill, New York 1968. pp. 8-23.

Rosin, R.F., Contemporary Concepts of Microprogramming and

Emulation., Computing Surveys 1,4 p. 208-210, 1969,

Landin, P.J., The Mechanical Evaluation of Expressions. Computer
Journal 6, pp. 308-320. 1964,

Lampson, B.W., Mitchell, J.G., Satherwaite, E.H., On the Transfer
of Control Between Contexts. L.ecture Notes in Computer Science,

Ed. Hartmanis and Goos. Vol. 19, (Programming Symposium in
Paris, April 9-11, 1974,)

Manthey, M. J., Nested Interpreters and System Structure. DAIMI PB-51,
September 1975. Computer Science Dept., Aarhus University,

Denmark.

33

[12] Derrett, N.P. and Manthey, M. J., Multi-Interpreter Systems.
DAIMI PB-55, January 1976. Computer Science Dept., Aarhus

University, Denmark.

[13] Lynning, E., A Multi-Emulation System. DAIMI PB-62, July 1976.

Computer Science Dept., Aarhus University, Denmark.

[14] Barron, D.W., Job Control on the ICL 1900 Series. Computer Bulletin.
March 1976.

[15] Veie, O.C., The Implementation of High L.evel Languages on Mini-
computers -~ A Case Study of BCPL on the NOVA. Computer

Science Dept., Aarhus University, Denmark 1977.

[16] Colin, A.J.T., Shorey, K., and Teasdale, W. The translation and
Interpretation of STAB-12. Software-Practice and Experience.

Vol. 5, p. 123-138, 1975,

[17] Popek, G.J. and Goldberg, R.P., Formal Requirements for Virtualizable
Third Generation Architectures. CACM 17, 7, July 1974,

[18] Goldberg, R.P., Architecture of Virtual Machines. National Computer
Conference AFIPS 1973. pp. 308-318,

[19] Buzen, J.P. and Gagliardi, U.O., The Evolution of Virtual Machine
Architecture. ibid. pp. 291-299,

[20] Fabry, R.S., Capability-Based Addressing. CACM 17, 7, July 1974,

[21] Dennis, J.B. and van Horn, E.C., Programming Semantics for Multi-

programmed Computer Systems. CACM 9, 3, March 1966,

[22] Wulf, W. et al. HYDRA - The Kernel of a Multiprocessing Operating
System. CACM 17, 6, June 1974,

[23] Needham, R.M. and Wilkes, M. V., Domains of Protection and the

Management of Processes. Computer Journal 17, 2,

34

[24] salisbury, A.B., Microprogrammable Computer .Architectures.

Elsevier 1976.

[25] Kahn, G. and MacQueen, D., Coroutines and Networks of Parallel
Processes. IRIA Report 202, Nov. 1976,

[26] Rosin, R.F., Frieder, G., and Eckhouse, R. A Research Environ-

ment for Microprogramming and Emulation. CACM 15, 8.

August 1972.

