ISSN 0105-8517

THE BOBS-SYSTEM

Sgren Henrik Eriksen
Bent Bak Jensen

Bent Bruun Kristensen
Ole Lehrmann Madsen

DAIMI PB - 71
March 1977

AARHUS UNIVERSITY
COMPUTER SCIENCE DEPARTMENT

Ny Munkegade 116 — DK 8000 Aarhus C ~- DENMARK
' Telephone; + 4561283 55 Telex: 64767 aausci dk

THE BOBS-SYSTEM

by

S¢ren Henrik Eriksen *
Bent Baek Jensen **
. Bent Bruun Kristensen * ¥ %

Ole Lehrmann Madsen

The BOBS-System is an LALR(1) parser-generator. This paper is
a user manual for the system: consisting of a general description

of the system, a reference manual, and a summary of parsing termi-
nology. These sections can be read without knowledge of parsing

theory.

Furthermore, the implementation of the system is described. This is
done by giving references to literature containing descriptions of
some of the algorithms used, and by giving abstract algorithms for
other parts of the system. This section requires that the reader is

familiar with LR-parsing.

* A/S Regnecentralen, Aarhus
** KTAS, Kgbenhavn
* %% Department of Computer Science, Institute of Electronic Systems,
Aalborg University Center, DK-9000 Aalborg

CONTENTS

INTRODUCTION

PART I (..ieeen. ceoecccacnons cseccessessencaaan s
1. The history of the BOBS~system
2. Global design of the system

2.1 The parser-generator
2. 1. 1 Specification of the source grammar

2. 1.2 Grammar checks and grammar
transformations

2. 1.3 Construction of the LALR(1)-tables
2. 1. 4 Output from the parser-generator
2.1.5 SLR(1)

2.2 The skeleton compiler
2.2. 1 The semantic interface

2.2.2 The parser part

3. Evaluation
PART Il ittt it ensenncosoosossasans cee e e e
4, User Manual

4, 1 Notation
4,2 Syntax of input to the parser-generator
4,2.1 Metasymbols
4,2.2 Terminals
4,2.3 Stringch
4,2, 4 Grammar-rule
4,2,5 Goalsymbol
4. 2.6 Endcharacter
4, 2.7 Comment
4, 2.8 Options
4.3 Constants
4, 4 Error messages
4. 4,1 System errors
4. 4.2 Erprors according to the input grammar
4.5 Examples on using the parser-generator

5. The Skeleton—-compiler

(SN € SO R) S) G S W W W W N N

© 0O oW O W

10
10
11

11

11

13
14
14
14
14
22

5. 1 Input/output of the Skeleton-compiler
5. 2 Adding semantics
5.2.2 Using NAME, KONST, and STRING
5.2.3 Using the semantic stack
5.3 Error recovery
5. 4 Example
PART Il s.eeven... seces e resssone e eave e cersesenane
6. Program description
6. 1 Description of the Parser-generator
6. 1. 1 The construction of the parse tables
6. 1.2 The LALR(1) lookahead algorithm
6. 2 Description of the Skeleton—-compiler
6.2. 1 The parsing algorithm

6. 2.2 The recovery algorithm

PART IV ittt nseesonnsnss e esentreane cereecoaas
7. Summary of terminology

7.1 Context free grammar

7.2 Parser and parser-generator

7.3 LR(k) grammar

7.4 Practical LR-grammars
REFERENCES ...ccieeeanns tesecscesaas

APPENDIX LR SN B A B B A B B A B Y A A I R I B B R I R Y B I I I I I R S

A 1 The BOBS-System at RECAU
A 2 The BOBS-System at DAIMI
B A (minor) extension to the BOBS-system

23
23
24
24
27
29
39
39
39
40
41

44
4y
48

52
52
54
55
65

71

74

74
75
76

PREFACE to the Third Edition

This third edition is identical to the first and second edition except that
some minor errors have been corrected, appendix B has been added and
section 6. 1. 2 has been replaced by a reference to a more appropriate

source,

INTRODUCTION

This paper is a description of a parser-generator system called the BOBS-

system.

We consider the LR-grammars [3]. These are, in ascending order of
complexity, LR(0), SLR(k), LALR(k), L(m) R(k) and LR(k) as defined in

1, 2].

The BOBS-system is an implementation of a parser-generator in the pro-
gramming language PASCAL [12] for the SLR(1) and LALR(1) grammars.

This paper is divided into four parts: part 1 is a general description of
the system; part 2 is a user manual; in part 3 we describe the program
organization and some algorithms of special interest; and part 4 contains
an introduction to the terminology which we use. (Readers not familiar

with the terminology should read this part first.)

PART I

1. The history of the BOBS-system

The work was started as an undergraduate project in 1971 under the
guidance of Peter Kornerup. The aim of the project was to implement
a parser-generator system for SLR(1)-grammars. This was fulfilled
in March 1972, The first version was implemented in the earliest ver—

sion of the programming language Pascal [6] on a CDC 6400,

A revised version was released in December 1972, and a user manual
7] appeared in March 1973. At the same time a short introductory de-

scription of the system|[8] was published.

During 1973 the system was extended .and modified [9] as a result of our
experiences in using the system. A nhew lexical analyser and a new error-
recovery method were implemented. A new look-ahead algorithm was con-
structed and implemented, extending the system to accept LALR(1)-

grammars.

During 1974 a new user manual was written. In October 1974 this manual

and system description [8] were published in [10].

Since December 1974 a modified version of the system has been distributed
from the University of Texas at Austin by W.F. Burger. This version is
called "BOBSW - A Parser Generator! [11].

In October 1976 a new modified version of the system was finished. First
of all the parser generator has been translated (more or less) mechanically
into standard Pascal [12] » SO that the system is no longer dependent on the
earliest Pascal compiler on the CDC 6400. Next the parser generator has
been extended to handle grammars, whose grammar rules contain empty
productions, without eliminating such productions. A new skeleton compiler
has been implemented. This means new lexical, syntax and error-recovery

algorithms, and implementation of a user semantic stack.

2. Global design of the system

The system consists of {wo programs:

~ the parser-generator,

- the skeleton compiler.

2. 1 The parser-generaior

The parser-generator is divided into the following modules:

-~ Input of the source grammar,
- grammar checks and grammar transformations,

- generation of the LALR(1)-tables.

2. 1. 1 Specification of the source grammar

The source grammar must be specified in a slightly modified BNF {Backus

Naur Form).

2._1. g_C_E_r‘a_mma_r*_ checks and_gr*ammar‘ transformations

It has turned out that the implemented grammar checks and transformations

are very useful when designing a grammar for a language.

The system cannot produce the LLAL.R(1)-tables for an ambiguous grammar

or grammar containing unused nonterminal symbols.

The system performs the following grammar checks:

Test for unused nonterminal symbols:

- the system checks that every nonterminal except the goal-
symbol appears on both the left and the right side of a pro-
duction,

- the system checks that all nhonterminals can be derived from
the goal symbol (the start symbol},

- the system checks that all honterminals can derive a string

only containing terminals,

Test for ambiguity:
-~ the system checks whether any nonterminal is both left and

right recursive. If so, the grammar is ambiguous.
The system can perform the following transformations on the grammar:

- If identical productions exist, the grammar can be modified
by removing the unnecessary productions.

- If any nonterminal can derive the empty siring, the grammar
can be modified by eliminating this production. The
modified grammar generates the same language.

-~ If there exist single productions, the grammar can be
modified by eliminating all such. In a single pro-
duction the left and right side both consist of only
a single nonterminal, and the left side nonterminal

does not appear on the left side of any other production.

2. 1.3 Construction of the LALR(1)-tables

The first step is to construct the LLR(0) parse tables and check whether the
grammar is LR(0) or not. If this fails, the parse tables are extended by
means of LALR(1) lookahead. If this fails too, the system reports the parse
tables In which the lookahead information is insufficient. The user must

then change the grammar.

If the grammar happens to be LALR(1), the parse tables are compressed

through a series of various optimizations.

2. 1, 4 Output from the parser-generator

" g it (i G . St e T P S i SO g G D S G P (S A o S S e S e S P P

The system delivers the following output:

- a listing of the source grammar, exactly as the user has written it.
Any error according to the input syntax is marked;

the results of the above mentioned grammar checks and transfor-

mations;

the modified grammar written in BNF. Each production is assigned

a unique number)

- a description of any parse tables which are not LALR(1);

- an error message table for use by the user when parsing an
erroneous string;
-~ a file containing the parse tables and a file containing the

skeleton compiler (a Pascal program).

In addition there exist several other output facilities, mentioned in Section

4,2.7 but they are of littie interest here.

2. 1.5 SLR(1)
As mentioned in Section 1 the system was originally designed for SLR(1)
grammars. The possibility of using SILLR(1)look-aheads instead of LALR(1)

still exists,

2.2 The skeleton compiler

The second part of the system is a Pascal program, which is delivered as
output from the parser-generator. The unmodified skeleton compiler will
check the syntax of an input string written in the language defined by the
source grammar. However, the user may add semantic actions to the

skeleton compiler.
The skeleton compiler is divided into the following modules:

- the semantic interface
-~ the parser part
- lexical analysis
- syntax analysis

- error recovery.

2.2. 1 The semantic interface

When a reducfion is performed, a procedure "CODE!" is called with the
production (reduction) as a parameter. The user may then decide what
semantic actions to perform. This is done by writing the body of the pro-
cedure '"CODE!". The user may, of course, add new procedures and de-

clarations.

2.2.2 The parser part

——— — 0 S o o o o e S o o S S . S

In this part of the program the user does not have to change anything.

2.2.2.1 Lexical analysis

Characters from the input are read and collected into single logical items

called tokens. A token corresponds to a terminal symbol of the grammar.

2.2. 2.2 Syntax analysis

The syntax analyser uses the parse tables constructed by the generator to

parse the stiring of tokens delivered from the lexical analyser.

2.2.2. 3 Error recovery

If an error is discovered during parsing, an error recovery algorithm is
called. The purpose of the recovery algorithm is to mark the symbol causing
the error detection, to recover from the erroneous situation, and to ini-

tialize a continuation of the parsing.

3. Evaluation

The system has been used in a variety of different projects. A compiler for
the language Pascal [6, 13] has been based on the system. The Pascal
grammar consists of more than 250 productions and the constructed LLALR(1)
tables occupy about 1000 60 bit words on a CDC 6400. Compared with the
Zurich Pascal Compiler (version 6. Sept. 72) the core requirements and

execution time are nearly the same.

Inside the department the system has been used for various compilers and
assemblers. It is also used in a compiler course, in which the students have

to write a small compiler.

At the Danish Data Archive (an institution under the Danish Social Science
Research Council) and at the Institute of Economics, University of Aarhus,
a modified version of the system is used to implement interactive special
purpose languages, which are designed to ease the use of libraries of sta-
tistical programs, the handling of files and the controlling of data bases.
This system consists of about 20 grammars each containing from 160 to 250

productions.

As the work has been moving along,new projects have arisen. Automatic

error recovery in LR-parsing has been studied [14] . Also problems of de-

fining semantics have been studied. One project [15] was to extend the
system with the Oxford semantics [16]. Furthermore the use of attribute

grammars in practical translator writing systems has been studied [17].

We conclude that the system is usable in practice and that experience has
shown that it is easy to modify grammars to become LALR(1), even for

i
users who are not familiar with LR-parsing theory.

PART 11

4, User Manual

4, 1 Notation

The specification of the syntax of input to the parser generator is given
in extended BNF. In this notation a set of additional metasymbols is intro-

duced. These may be used in the specification in the following way:

{ } clauses enclosed in these parantheses are grouped into a single

clause,

* the clause preceeding this symbol may be repeated zero or
more times,

+ the clause preceeding this symbol may be repeated one or
more times,

? the clause preceeding this symbol is optional.

Finally the metasymbol ::= is replaced by the symbol - .

4, 2 Syntax of input to the parser generator

<PARSER - GENERATOR - INPUT> ~
{ <OPTIONLIST> | ?
{ <METASYMBOL - DEFINITION>} ?
{ < TERMINAL - DEF INITION> }
[<STRINGCH - DEFINITION>} ?
{ < GOALSYMBOL - DEFINITION>} ?
{ <COMMENT - DEFINITION>} ?
{ < GRAMMAR -RULE> | <METASYMBOL - DEFINITION>| *
<ENDCH>

4.2. 1 Metasymbols

<METASYMBOL - DEFINITION> +» METASYMBOLS <M 1> <M2> <M3> <M4>
<MT> » M1 = <CH>

<M2> + M2 = <CH>

<M3> 4+ M3 = <CH>

<M&> 4 M4 = <CH>

<CH> is any character other than a letter, a digit or a space.

The metasymbols must be different. The correspondence to the use in BNF is:

M1 works as :i=

M2 works as |

M3 works as < and >

M4 indicates the termination of a sequence of alternatives in a

grammar rule.

Default metasymbols are:

Mi1==, M2=/, M3=<, and M4=;

In the following M1, M2, M3, and M4 denote the current metasymbols.

4.2.2 Terminals

<TERMINAL - DEFINITION> 4 <TERMINAL>* M4

All terminal symbols used in the grammar must be lisied. A terminal symbol
consists of at most 10 characters. The character set has been divided into
two groups:

- letter and digits

- all other characters except space

All the characters forming a terminal must belong to the same set of the
above groups. Terminals consisting of symbols from group 1 must start with
a letter.

No terminal may contain the current M4,

The terminal symbols in the list must be delimited by spaces and/or* end-of-lines.

The following terminals have a special interpretation. If they are used in
the grammar, they must be listed among the other terminals.
EMPTY denotes the empty string.
NAME denotes an identifier.(A sequence of letters and digits
with the first symbol being a letter.)
KONST denotes a constant. (A sequence of letters and digits
with the first symbol being a digit.)
STRING denotes a string constant. (A string is a sequence of

characters surrounded by a string-escape-character. If

10

the string-escape-character is used in the string, it
must be written two times per occurrence.
ERROR denotes an error-symbol. The use of the error-symbol is

explained in Section 5. 3.
4.2.3 Stringch

<STRINGCH -~ DEFINITION> #+ STRINGCH = <CH> M4

Defines the string—escape-character to be the character <CH>. |t must not

be contained in any other terminal symbol., No default value exists.

4, 2.4 Grammar-~rule

<GRAMMAR - RULE> =+ <NONTERMINAL> M1 <ALTERNATIVE>
{ M2 <ALTERNATIVE>} * M4

<ALTERNATIVE> -+ |<NONTERMINAL> | < TERMINAL >}

<NONTERMINAL > -+ M3 a sequence of characters M3

The sequence of characters must not contain the current M3. Spaces are

skipped. A nonterminal may consist of up to 30 characters. Terminals and

nonterminals in a rule must be separated by spaces or end of lines.
If EMPTY is used it must be the only symbol in that alternative.

The terminals in a grammar rule must not contain any of the metasymbols
currently defined.. If they have to, the metasymbols must be redefined. [t
is not necessary for all alternatives to the same lefthandside of a grammar

rule to be defined at the same time, they may be defined later.

4,2.5 Goalsymbol

<GOALSYMBOL. - DEFINITION> # GOALSYMBOL. = <NONTERMINAL> M4

Defines the nonterminal to be the goalsymbol of the grammar. If this command

is not present,the first nonterminal met among the grammar rules is assumed
to be the goalsymbol.

11

The parser generator always adds the following grammar rule (production

no. 0):
<BOBS - GOAL > = <GOALSYMBOL > END-OF -FILE

4, 2.6 Endcharacter

<ENDCH> -» M4

The input to the parser generator must be terminated by the currently defined
M4,

4.2.7 Comment

<COMMENT > » COMMENT = <COMMENT - BEGIN> M4 <COMMENT -END> M4
<COMMENT - BEGIN> -+ < TERMINAL >
<COMMENT ~ END> = a sequence of characters

< TERMINAL > must be defined in the < TERMINAL - DEFINITION> (4. 2. 2).
The sequence of characters of <COMMENT - END> must not include the

current M4, Spaces are skipped.

In the input string to be parsed the following is considered to be a com-

ment:

<COMMENT - BEGIN> any sequence of characters (except <COMMENT - END>)
<COMMENT - END >

See also Section 5, 1.

4. 2.8 Options

<OPTIONLIST> = OPTIONS (<OPTION - NUMBER >
{, <OPTION - NUMBER> } ¥)

<OPTION - NUMBER > is an integer. Most of the options are for test purposes

only, and some may cause an error in the generated parser. The options are

12

implemented as switches, which means that if the same number isused twice,

the option is returned to the original position.

For most users, the rest of this section is of no interest, and may be

skipped.
The following numbers are valid:

1 The internal representations of the terminal symbols are printed.
2 The LR(0) tables are printed.

3 The terminal symbols may be collected in sets where all terminals in
such a set are given the same internal value. Let T1,T2,...,TN be
terminals. If in the list of terminals (4. 2.2) you write:

T1 T2 M1 T3 M1 ... M1 TN M1
then T1,T2,..., TN are all given the same internal value. There
must be exactly one space between a terminal and M1. In all outputs,

T1,T2,..., TN-1 will appear as TN.

4 The length of the terminal symbols may be greater than 10 characters.

All characters are significant but only the 10 first appear in output.

5 The terminal symbols may consist of characters from both character
groups (see chapter 4. 2. 2). The terminal symbols must be separated
by blanks or an end-of-line. (The lexical analyser in the skeleton

compiler must be modified for these terminals.)
6 The internal values of the nonterminal symbacls are printed.

7 The SLLR(1) lookahead symbols for each nonterminal are printed.

(Caution: option 27 must be used.)

12 The inadequate L_R(0) tables are printed.
14 The internal form of the LR(0) tables is printed,
15 The internal form of the LLR(0) tables and the generated lookback tables

are printed.
16 The internal array "PROD!" is printed.
17 The internal array "TILSTAND!" is printed.

18 The terminal heads and tails which a nonterminal can produce are

printed.

19
20
21

22

23

24

25

27

28
29
30
31

32

13

Test information of "WHRECURS! is printed.
The bit matrix of the grammar is printed.
Test information of "LLOOKBACK!" is printed.

The largest lookahead set is not removed from a lookahead

table. (The table is treated like a lookahead-error table.)

The internal form of the productions is printed before the grammar

is modified.

The internal form of the productions is printed after the grammar

is modified.
No attempt is made to test for left and right recursion.

The grammar is treated as an SI_R(1) grammar instead of an

L_LALR(1) grammar. In this case one has to use option 31 too.
No attempt is made to remove the single productions.

Tables which have the same tail are not folded together.
The LLR(0) items are printed in a readable form.

The empty siring is eliminated from the grammar.

Files PARSIN and PARSOUT (see appendix A) are ignored.
Only parse tables are produced (on file TABLES).

33, 34 See appendix B.

4,3 Constants

The following constants define the maximum sizes of the data structures

in the parser-generator.

Most of the constants are totally internal to the program and should only

be changed with care.

14

CONST1
CONST2
CONST3
CONST4
CONESTS
CONST?
CONSTS
CONSTO
CONSTI10
CONST11
CONST12
CONST 13
CONST 14
CONST 16
CONSTI18

4, 4 Error

Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum
Maximum

Maximum

number of productions.

number of terminal and nonterminal symbols,

size of array FCQ.

size of array RHS.

number of elements in a basis set of an LR(0) table.
size of final parse tables.

number of lookahead elements for a nonterminal.
size of array STACK in procedure LRO.

number of parse tables.

number of nonterminals.

number of terminals.

Equal CONST2 DIV (SETMAX+1) + 17

Maximum
Maximum

Maximum

messages

size of a parse table. ,
size of array L. in procedure LALR LOOKAKEAD.

number of options.

Two types of error messages can occur;

- system errors

— errors according to the grammar.

4, 4,1 System errors

One of the data structures in the parser generator has caused an error.

The appropriate constant must be changed in the parser generator.

There might be errors:

- in input to the parser generator,

- according to the grammar checks and grammar transformations,

- in the parse tables, which are not LALR(1).

4.5 Examples on using the Parser Generator

Following are two examples. First a complete example of input of a grammar

and the produced output. The second example shows a grammar which is not

LALR(1). See also the appendix.

) CONST SETMAX = 58 in the CDC version.

15

Example 4. 1.

Input to the parser generator:

METASYMBOLS Ml=# M2=$ M3z M4="?
DECLLARE IF THEN ELSE FI wWHILE DO OD
READ WRITE () EOL [1 = <> 4 = /7 # (%!
e § 9 ¢ 1= EMPTY KONST NAME ERROR STRING 7
STRINGCH= 1?2
GOALSYMBOL=PROGRAM 7
COMMENT= (% ? #) ?
"PROGRAM! # MDECLARATION" NSTATEMENT~-SEQ'M, 7
"DECLARATIONY # DECLARE MVARLISTH 5 2
MVARLIST" # “VARLISTM™ , HNITEMM § WITEMH 7
"ITEMY # NAME § NAME [WCONSTANT™ : MCONSTANTY] ?
"STATEMENT-SEQ" # YSTATEMENT~SEQ" § "STATEMENT® $ WSTATEMENTY 72
NSTATEMENTY # EMPTY
$ WVARIABLEW 1= uwgxpn
$ IF VEXP" THEN "STATEMENT~SEQ" ELSE "STATEMENT=SEQ" FI
$ WHILE "EXPY DO #STATEMENT=SEQ" 0D
$ IF “EXP" THEN "STATEMENT=-SEQ" FI
$ READ("VARIABLE™) $ WRITE(“OUTPUT") $ EOL ?
HOUTPUT" # YEXPM $ STRING ?
WEXP! # UMAEXPH WRELOP!™ MAEXPW $ HAEXPMN 7
MAEXPY # BAEXPNM WADDOPM UTERMY § WTERMW 7
"TERMM # WTERMN UMULTOPM NPRIMARY'" § "PRIMARYM 7

"PRIMARY!" # NWVARTABLEM™ & MCONSTANTI' § { “EXPY y 7
"WARIABLE" # NAME $ NAME ["EXPn] 7

WRELOP" # = § <> 7

YADDOPH # + § =~ 72

"MULTOP™ # # 8§ , 7?

"CONSTANT" # KONST § + KONST $ = KONST ?
"PROGRAM! # ERROR 7

"DECLARATION" # DECLARE ERROR § 7
WSTATEMENT" # ERROR ?

HEXPH # ERROR ?

?

-

16

Qutput of the parser generator:

spdpdedrde gt A L IST OF INPUT wWITH POSSIRLE ERRORMESSAGES drdtdbde it ar 464 b g dp 3

METASYMBOILS Ml=# M2=% M3=" M4=?
DECLARE IF THEN ELSE FI WHILE DO OD
READ WRITE () EOL [1 = &> & = / # (&1
e 5 9o 1 ixm EMPTY KONST NAME ERROR STRING ?
STRINGCH= 17
GOALSYMBOL=PROGRAM ?
COMMENT= (% 72 %) ?
UYPROGRAMY # UDECLARATION' USTATEMENT-SEQH,. 7
UWDECLARATION' # DECLARE “VARLIST" 5 7
NVARLIST!™ # MWVARLISTY o, UITEMM § WITEM® 7
NITEMM # NAME $ NAME ["CONSTANTM" : WCONSTANTH] 2
HSTATEMENT=-SEQ'" # YSTATEMENT=SEQY 35 MSTATEMENT® $ HSTATEMENTY
USTATEMENTY # EMPTY
UYWVARTABLEY 1= HEXPY
IF BEXPY THEN HMSTATEMENT=SEQ" ELSE "STATEMENT=-SEQ" FI
WHILE “EXP"™ DO "STATEMENT=-SEQ" 0D
IF WEXPY THEN "STATEMENT~-SEQM FI
READ(“VARIABLE®) $ WRITE("“OUTPUT") $ EoL ?
NOQUTRUTH # MEXPY" § STRING ?
HEXPH # VAEXPY VRELOPY nAEXPH & nAEXPH ?
WAEXPY # MAEXPHW HADDQOPHM NTERM! § BTERMM 7
UWTERMI # UWTERMIE UMULTORPH MPRIMARYM $ UPRIMARY! 7
HPRIMARYY # WVARTABLE™ % "CONSTANT® $ (WEXPH) 7
HYARTIABLE' # NAME $ NAME [W“EXP® 1 7
URELQP! # = § <> 7
BADDOPY # ¢ § = 7
HMULTOPY # % & / 7
HCONSTANT® # KONST % + KONST § = KONST ?
HPROGRAM® # ERROR 7
UDECLLARATION" # DECLARE ERROR 3§ 7
UWSTATEMENTH # ERROR 7
BEXPIY # FERROR ?
?

R R PR

?

$H3E 41 A0SR AR AR AR 4 A AR RS St AR St ae b ar bbb dr END QF LT ST 4645 36 48 30 4 6 38 45 95 0k 6 36 4 45 906 46 45 45 35 38 46 35 35 48 36 28 48

B A S B e S e g R et GRAMMARCHECKS

IT HAS BEEN CHECKED THAT ALL NONTERMINALS
EXCEPT THE GOALSYMBOL APPEAR IN BOTH
LEFT AND RIGHTSIDE OF A PRODUCTION

IT HAS BEEN CHECKED THAT THERE
EXISTS NO IDENTICAL PRODUCTIONS

THE GRAMMER HAS BEEN CHECKED FOR
SIMPLE CHAINS

IT HAS BEEN CHECKED THAT ALL NONTERMINALS CAN
PRODUCE A STRING OF ONLY TERMINAL SYMBOLS

IT HAS BEEN CHECKED THAT NO NONTERMINAL
1S BOTH LEFT AND RIGHT RECURSIVE

36 30 3 45 35 3 0 35 38 38 238 96 48 95 30 45 38 45 3 1 25 3 25 96 25 35 38 46

17

9 3b 48 45 5k 3 36 3 Ak 0 3R G0 AE B L AR B AE R e dp b dr e At b THE GRAMMAR 295 45 36 35 35 55 45 35 45 46 46 45 35 36 46 38 98 46 25 45 45 45 35 46 26 48 55 48 3¢

1 <PROGRAM> ::= <DECLARATION> <STATEMENT=SEQ> .
e / ERROR

3 <DECLARATION> ::= DECLARE <VARLIST> 3
4 / DECLARE ERROR 3

<STATEMENT~SEQ> 3§ <STATEMENT>

5 <STATEMENT-SEQ> $1i=
6 / <STATEMENT>

7 <SVARLIST> si= <VARLIST> ¢ <ITEM>

8 / <ITEM>

9 <ITEM> ::t= NAME

10 / NAME [<CONSTANT> t <CONSTANT>]
11 <CONSTANT> 1= KONST

12 / + KONST

13 / = KONST

14 <STATEMENT> i1:= EMPTY

15 / <VARIARLE> = <EXP>

16 / IF <EXP> THEN <STATEMENT~SEQ> ELSE <STATEMENT=SEQ> FI
17 / WHILE <EXP>» DO <STATEMENT=~SEQ> OD
18 / IF <EXP> THEN <STATEMENT=SEQ> FI
19 / READ { <VARIABLE>»)

20 / WRITE (<OQUTPUT>)

21 / EO0L

22 / ERROR

23 <VARIABLE> f:= NAME

24 / NAME [<EXP> 1]

25 <EXP> 1= <AEXP> <RELOP> <AEXP>

26 / <AEXP>

27 / ERROR

28 <QUTRUT> 1= <EXP>

29 / STRING

30 <AEXP> 1i1= <AEXP> <ADDOP> <TFRM>»

31 / <TERM>»

32 <RELOP> 113 =

33 / <>

34 <ADDOP> 1=

35 / -

36 <TERM>» ::= <TERM> <MULTOP> <PRIMARY>

37 / <PRIMARY>

38 <MULTOP> 1= &

39 l 7/

40 <PRIMARY> ::= <VARIABLE>

4] / <COMNSTANT>

42 / (<EXP>»)

36 36 35 36 4% 45 38 38 4 3k 46 38 3k 30 45 46 Jb 48 45 48 4E 36 28 95 46 90 30 30 Sk 10 45 30 35 98 25 35 25 95 35 40 40 8 36 38 30 30 36 95 26 20 35 35 35 95 45 36 25 48 25 35 48 25 35 35 25 4F 35 95 48 3 45 25 %

18

"8k 3% 3 38 38 55 30 b 48 2 48 38 38 30 30 36 4k 40 45 30 56 38 30 46 36 36 30 0 35 38 45 3P 354 38 30 35 38 46 35 08 3 95 45 36 45 48 86 35 28 35 48 90 46 46 36 48 48 46 96 48 48 35 48 46 46 46 98 8 48
THE GRAMMAR IS LALRI1

***#*%**%%%%*#%%%*%%%%%*%*%*%*%*%%%%*%%%*%%*%#%%%%%*%*%%*##%%%%*%%*%**

B dr it AR AR A A R RS EBR COMPILER ERROR MESSAGES 464h 484k 36 3% 48 55 46 45 48 46 36 45 35 8 35 25 36 36 3¢ 4 %

ERRORNG 0 #% SPECIAL ERROR ##
ERRORNO 3 EXPECTED SYMBOL:

1 ERRQR DECLARE

2 ERROR NAME

3 KONST + -

4 ¢ KONST

5 3 :

6 ¢]

T H

8 § ’

9 NAME

10 ¢ ERROR { NAME KONST *

11 ¢ { NAME KONST + -

12)

13 1@ (

14 : STRING ERROR (NAME KONST
* -

15 DO

16 THEN

17 ¢ S

18 ¢ ELSE FI 3

19 ¢ FI H

20 ¢ oD 5

21 ¢ . §

2e ~EOF =

35 36 $b 35 25 3 3F 35 45 5 35 35 $b 30 47 38 38 36 36 4% 4 38 47 3% 35 38 38 A6 36 48 38 3% 35 3F 45 40 46 35 25 4F 38 38 35 4F 48 38 3% A0 35 4F 06 35 35 48 55 35 35 96 35 3 36 4b 35 A0 90 2k J0 4F 3 30 48 48 38

19

Example 4.2

The symbol F1 has been removed from productions 16 and 18, This makes
the grammar non LALR(1). Only the grammar and the non LALR tables are

shown.

There are two tables (or states) which are not LALR(1). In the first table
the symbols ELSE and ; cause the errors. For instance if the next symbol
on input is ELSE, the parser cannot decide whether it should reduce by

production 18 or continue reading according to production 16.

In the second table it is ; which gives problems.

20

36 36 3 A 3 46 A5 45 A6 3 4b 38 0 30 30 e ar R AR ke R dr et ¥ THE GRAMMAR 4548 3842 35 35 35 30 35 38 36 52 35 35 35 46 3% 98 45 35 18 35 45 26 3% 36 45 4% 46 46

1 <PROGRAM> <DECLARATION> <STATEMENT-SEQ> .

2]
~ 6

ERROR
3 <DECLARATION> :t:= DECLARE <VARLIST> 3
4 / DECLARE ERROR ¢
5 <STATEMENT=SEQ> ti= <STATEMENT~SFQ> 3 <STATEMENT>
6 / <STATEMENT>
7 <VARLIST> ::= <VARLIST> s+ <ITEM>
& / LSITEM>
9 <ITEM> 1= NAME
10 / NAME [<CONSTANT> ! <CONSTANT>)
11 SCONSTANT> ::= KONST
12 / + KONST
13 / = KONST

14 <STATEMENT> !i= EMPTY

15 / <VARIABLE> 1= <EXP>

16 / 1IF <EXP> THEN <STATEMENT~SEQ> ELSE <STATEMENT=SEQ>
17 / WHILE <EXP> DO <STATEMENT-SEQ> 0D
18 / IF <EXP> THEN <STATEMENT=-SEQ>
19 / READ (<VARIABLE>)

20 / WRITE (<OUTPUT>)

21 / EOL

22 / ERROR

23 <VARTIABLE> t:= NAME

24 / NAME [<EXP>]

25 <EXP> !t= <AEXP> <RELOP> <AEXP>

26 / <AEXP>

27 / ERROR

28 <OUTPUT> :131= <EXP>

29 / STRING

30 SAEXP>» 3:1= <AEXP> <ADDOP> <TERM>»

31 / <TERM>

32 <RELOP> iz =

33 / <>

34 <ADDOP> :1:1= »+

35 /-

36 <TERM> :1:t= <TERM> <MULTOP> <PRIMARY>

37 / <PRIMARY>

38 <MULTOP> 1315 #

39 /7

40 <PRIMARY> $i= <VARIABLE>

41 / <CONSTANT>

42 /(<EXP>)

46 4k 38 3 46 4b 3k 90 3 b 48 38 38 4F 48 30 36 36 38 A8 45 48 26 4k 36 3% 3 48 30 35 38 38 45 30 35 3 38 A A5 47 58 38 48 26 48 46 8 45 36 38 38 6 30 48 35 2k 35 36 98 4 25 45 45 35 35 3 26 26 45 36 46 34 26

21

Har bttt it A L TST OF NON=LALRL STATES %tk 4h4rr et 3t 40 38 35 36 35 35 38 4 46 34 36 4

IN EACH OF THE FOLLOWING STATES THE
SETS OF SYMBOLS ARE NOT DISJOINT

P e e S oy W R D UR SE1 I en W W 65> e G ey BN mm T moe VIR W R B WO wwy ST SHR JER WD WD SR WOY OO0 ME3 WAS BN €W SR OFI e von O Bvm DD S5 S DN WD ey 0P W WD wm KT R ES e

READING CONTINUES IF THE NEXT INPUTSYMBOL
IS ONE OF THE FOLLOWING 3

SYMBOL PRODUCTION SYMBOL NO
ELSE 16 5
H 5 2

REDUCTION NO 18 IS PERFORMED IF THE NEXT INPUTSYMROL
IS ONE OF THE FOLLOWING @
ELSE
oD

1

D G N S we B WY 0D A R N B0 A wn me w9 s O G P o BT ew DR o M0 nn MG BT T e RO Gw G I GXF SO COR WY WK NN Mo eon NP WD TN 0N END R RS p G0 MM SN e YD W BH KD

READING CONTINUES IF THE NEXT INPUTSYMBOL
IS ONE OF THE FOLLOWING :
SYMBOL : PRODUCTION SYMBOL NO
H 5 2

REDUCTION NO 16 IS PERFORMED IF THE NEXT INPUTSYMBOL
IS ONE OF THE FOLLOWING ¢
ELSE
op

®

§

A6 4F 4% 26 46 38 5k 3k 48 4 25 2 3 3 30 46 30 b 3 30 400k END OF NON”LALRI STATES A% 36 98 3k 3k 28 38 A6 A6 9 25 47 30 3b 38 38 SR g6 3 b 3b

%%#%**###%#**%%%%%%%%%%%*%%%%**###%%%#%##%*%%**%*%*%%*%%%*%*%%**%%**%

THE GRAMMAR IS NOT LALRI]
THE PROGRAM STOPS

%*%*%%%%***%*%%%%%%*%*%%%%*%%%%%**%%%***%**#*#%%*%%##%#%#%*%ﬂ%%**%%%%*%

22

5. The Skeleton Compiler

When using the parser-~generator, the Skeleton-compiler must reside on

file PARSIN. The parser~generator then delivers the Skeleton-compiler with
initialized constants on the file PARSOUT. The parse tables associated

with the user's grammar are delivered on the file TABLES. It would have
been more handy to incorporate the parse tables in the Skeleton-compiler

as a set of initializations, but this is however not possible in Standard

PASCAL.

The Sketleton—-compiler consists of
~ PROCEDURE PARSER,
- PROCEDURE CODE, and

- some global declarations.

The procedure PARSER is the major part of the Skeleton-compiler. It
consists of procedures for doing:

- Lexical analysis,

- Context-free syntax analysis (parsing), and

- Error recovery.

We shall not discuss these procedures here, but the reader is referred to
section 5. 1 for a specification of how the input string to the lexical analyser
must look. The use of the special tokens NAME, KONST, and STRING is

explained in section 5. 2. 2. Error recovery is treated in section 5. 3.

The procedure CODE is an almost empty procedure which has to be written

by the user. CODE is called from the parser each time a reduction is performed
during the parsing of a string. In this way CODE will act as an interface be-
tween the parser and the semantic part of a compiler based on the Skeleton-

compiler.

Among the global declarations is a stack which may be used by the user

(see section 5. 2. 3).

23

5. 1 Input/Output of the Skeleton—compiler
Input to the Skeleion-compiler:

- On file INPUT: a string in the language generated by the grammar.
Terminals in this string must be separated by spaces and/or
end-of-lines. However two terminals may be concatenated if they
are not in the same group of characters (see section 4. 2. 2).
Terminals from group 2 may be concatenated if the concatenation
does not together form the head of another terminal. Spaces
and/or end-of-lines are only allowed as separators between terminals
and are considered as blind characters. A comment may appear be-
tween any two terminals. It may be necessary to surround < COMMENT-
BEGIN> by spaces in order to avoid that <COMMENT-BEGIN>
concatenated with the preceeding terminal and/or' the beginning of a

comment forms the head of some terminal.

- On file TABL.ES: the parse tables of the grammar.

Output from the Skeleton—compiler (on file OUTPUT):

- A listing of the input string. Possible syntax errors in the string

are marked (see section 5. 3).
- A snapshot of the parse. Contains a general print-out of the

steps in the parse of the actual input string. It is intended as

an aid to the user and may be removed.

5.2 Adding Semantics

As mentioned, the procedure CODE is called from the parser each time a
reduction is performed. CODE has as parameter the number of the applied
production. The productions are numbered according to the listing produced

by the parser-generator (see section 2. 1.4),

Inside CODE, an appropriate action must be taken for each production in

the grammar.

Besides filling out the body of CODE, the user is free to add new global

declarations (procedures, variables, etc.).

24

As the parsing method is LR, the reductions will be performed in the order
of a so-called right-parse. It is fundamental for using the BOBS-system,
that the notion of a right-parse is understood. A definition of a right-parse
is given in part 1VV. The snapshot of the parse may be an aid in understanding

the order of the reductions.

5:2: 2 Using NAME, KONST, and STRING
I the symbols NAME, KONST, and STRING are used on the right side of a
production, then the user can get the string of characters actually comprising

the NAME, KONST, or STRING. This is done by means of:

PROCEDURE GETSTRING (NO: INTEGER;
VAR STR: STRING; VAR LENGTH: INTEGER);

where STRING = PACKED ARRAY]| 1..STRINGMAX]| OF CHAR;

Suppose CODE is called with the number of the production

><O—*><1 Xi...Xn

If Xi is NAME, KONST, or STRING, then

GETSTRING(i,S,L) or GETSTRING(=(n-i+1),S,L)
will deliver the corresponding string of characters in S[1],...,S[L].
(s{L+1],...,S[STRINGMAX] are undefined.)

If Xi is neither NAME, KONST, nor STRING, then the call of GETSTRING

will deliver an arbitrary string(usually the empty string).

5. 2.3 Using the Semantic Stack

In order fully to understand this section, the user must have some knowledge

of how an LLR-parser works. The essence of this is given in part V.

A stack is a useful tool when implementing the semantics of a language,
especially if the language contains constructions, which may be nested.
For this reason, the Skeleton-compiler contains a stack which operates in

parallel with the parse stack:

25

ATTSTACK: ARRAY[STACKINX] OF ATTRIBUTES;
ATTRIBUTES = RECORD ... END;

The user may define fields in record ATTRIBUTES. A field in this record

will be calied an attribute, and the entire record an attribute record.

During parsing each symbol on the parse stack has a corresponding atiribute
record on ATTSTACK. When a reduction is performed and CODE is called,
the topmost elements of ATTSTACK correspond to the symbols on the right

side of the applied production.

In CODE the values of these attribute records of the right-side symbols
may then be used in the semantic action. The semantic action of the applied
production should define the value of the attribute record of the left-side

symbol,

In order to access the relevant atiribute records, CODE is supplied with

two parameters:
OLDTOP,NEWTOP: STACKINX;

OLDTOPR is the index in ATTSTACK of the topmost element before the re-
duction (at entry to CODE). NEWTOP is the index of the topmost element after
the reduction is performed (after exit from CODE). If the right side of the
applied production has the length N, then OLDTOP = NEWTOP+N-1.

NEWTOP is furthermore the index of the attribute record which will correspond
to the left side of the applied production. |.e. the atiribute record of the

first symbo! on the right side will be used (after modifications done by the

user) as the attribute record of the left side.
Let the applied production be
A X, X, ... X

1772 n

At entry to CODE the situation is:

26

ATTSTACK:
/ / ~ N ~
/ / Ko | Xy leen | X
/
T *
NEWTOP OLDTOP
S
X, (i=1,2,...,n) denotes the attribute record of X+ Then
ATTSTACK[NEWTOP+i-1] or
ATTSTACK|[OLDTOP-n+i|
is the attribute record of Xi. ifi =1, then

ATTSTACK[NEWTOP] or
ATTSTACK|[OLDTOP-n+1]

is also the attribute record of A.

Lastly we would like to make some remarks concerning some relevant

theoretical models for specifying semantics.

Attribute grammars [21], Syntax Directed Translation Schemes [20],

and Attributed Translations [22] may all be implemented by using the
ATTSTACK.

However only certain restricted classes of these models are efficient to

implement,

The following models should be siraightforward to implement:

attribute grammars using only synthesized atiributes [21]
postfix simple syntax directed translation schemes [20]
generalized syntax directied iransiation schemes with transiation
elements which are not only string-valued and with the siring
trénslation grammars being postfix and simple [20]

attributed polish transiation grammars using only synthesized
attributes [22].

27

The latter two models are in principle identical and are a combination of
the first two alternatives. Informally the semantic action of a production
in these models is:
— on basis of the attribute records of the right-side symbols do:
— ouiput some symbols,
~- define the value of the attribute record of the left-side

symbol,

‘Translation schemes which are not postfix (polish) and/or simple, may also
be implemented. This requires that the attribute record contains pointers
to the translation elements, which have to be built in the form of a tree;

for a further study see Aho & Ullmann [20, chapter 9].

The implementation of inherited attributes or translations is inefficient in
the BOBS-~system. The only way to do it is to build the entire syntax tree

and then perform the evaluation of the attribuies.

However in practice it suffices to keep the inherited (or context) information
(e.g. a symbol table) in global variables, and update this information appro-

priately.

We conclude this section by advocating the following mode!l for specifying the
semantics:
- make the grammar postfix, i.e. code only has to be outputted
at the time of a reduction,
- define a suitable set of (synthesized) attributes for each
nonterminal,
- definé a set of global variables for collecting declarative

information (i.e. a symbol table).

5.3 Error Recovery

The parser will take error action if the user specifies a string which is not
in the language generated by the grammar. The error will be detected at the
earliest possible point: that is,the part of the input string which has been

read up till this point will constitute.a correct prefix of some string in the

28

language where the next symbol read is not a valid continuation of the already
read part. The symbol at which an error is detected will be marked with a

t and a number. The number refers to the error message table which is part

of the output from the parser generator (see 2. 1.4). The number indicates

in the error message table a set of terminals that would have been valid con-

tinuations at that point of the input string. Noie that the set of terminals does

not always contain all valid continuations,

When an error has been detected, the parser tries io continue parsing. This

can be done in the following way:

Let A ¢ be a production. Assume that an error happens in a part of the
input which later may reduce to ¢ and then to A. We then have recognized
part of . Let o =q@' " where @! is recognized (&' may be empty). The
parse stack then contains ¢ @' d , for some ¢ and 6. This means that §
and some of the input symbols (if there were no errors) could reduce to g
and then a'g" to A. A possible way of recovering would be {o assume that
a'' has been recognized. This can approximately be done by deleting § from

the stack and skip symbols on input until meeting one which may follow .

In practice the parser is simultaneously looking for several right sides of
different productions which may reduce to different nonterminals. For this
reason the user must specify the so-called error productions in order to in-

dicate the nonterminals that the recovery algorithm should iry io reduce to.

An error production has the form
A=q error f
where error is a special terminal (see Section 4.2.2), and e and 8 are

(possibly empty strings) of nonterminals and terminals.

Let A 2oy be another A-production. Let the stack at a given time during the
parse contain ¢ o & for some ¢ and . Assume that § and some terminal
string x may reduce to vy and then gy to A. Assume that x is a prefix

of some terminal string which is a valid continuation on input with the above

stack.

Suppose that an error appears in this situation, i.e. the next input symbol is

not a valid continuation. The parser will then replace y by error 8 in the

29

following way:
- 0 is deleted from the stack
- the symbol error is read
- input symbols are skipped until meeting one which may begin §.
If B is the empty siring one skips to a symbol which may follow

A after o error is reduced to A.

As A =g error § is a usual production. CODE will be called with the humber
of the error production. In this way the user is informed when syntax ‘errors

appear.

In general more than one error production may be applicable. In this case the

parser will choose the one which gives rise to fewest skips on input.

As error productions are normal productions they may give rise to LR-con-
flicts which of course must be eliminated.

in order to obtain a successful recovery the user must specify a reasonable
set of error productions. All parts of the grammar should be covered as

should different levels in nested consiructions.

In general, an error production A <4« error f only makes sense if g is a
prefix of some other production with A as leftside, and 8 should in a similar

way be a postfix. It is often sufficient to let & and/or‘ B be the empty string.

5.4 Examples

Here is an example of using the skeleton-compiler and tables as produced

by the parser generator in example 4. 1.

Example 5. 1.

(*BOBS EXAMPLES)
DECLARE A+B:
1=1§% Bi=0%
WHILE A <> (#THIS IS A COMMENT#) 10
DO
At=A+18 BizB++A3}
0D3
WRITE(B) .

30 Output from the Skeleton-compiler. Note, a syntax error is marked.

(#BOBS EXAMPLE#)
DECLARE AoBj}

At=13 Bi=03
WHILE A <> (#THIS IS A COMMENT#) 10
DO
At=A+13 BizBe+A}
A 4
0D3
WRITE(B) .
SNAPSHOT:
PRODUCTION: &
LEXICAL: (s LEXICAL: DO LEXICAL: WRITE
LEXICAL: DECLARE| PRODUCTION: 11 LEXICAL: ¢
LEXICAL: A SYMB1 10 LEXICAL: B
LEXICAL: PRODUCTION: 41 LEXICAL:)
PRODUCTION: 9 PRODUCTION: 37 PRODUCTION: 23
SYMB1 A PRODUCTIONS 31 SYMB] R
PRODUCTION: 8 PRODUCTION: 25 PRODUCTION: 40
LEXICAL: B LEXICAL: A PRODUCTION: 37
LEXICAL: 3 LEXICAL: := PRODUCTION: 31
PRODUCTION: 9 PRODUCTION: 23 PRODUCTION: 26
SYMB1 B SYMBL A PRODUCTION: 28
PRODUCTION: 7 LEXICAL: A LEXICAL? .
LEXICAL? A LEXICALS « PRODUCTION: 20
PRODUCTION: 3 PRODUCTION: 23 PRODUCTION: 5
LEXICAL: := SYMBL A LEXICAL?
PRODUCTION: 23 PRODUCTION: 40 PRODUCTION: 1
SYMB1 A PRODUCTION: 37 LEXICAL:
LEXICAL: 1 PRODUCTION: 31
LEXICALS 3 LEXICAL: 1
PRODUCTION: 11 PRODUCTION: 34
SYMB1 1 LEXICALY 3
PRODUCTION:! 41 PRODUCTION: 11
PRODUCTION: 37 SYMB1 1
PRODUCTION: 31 PRODUCTION: 41
PRODUCTION: 26 PRODUCTION: 37
PRODUCTION: 15 PRODUCTION: 30
PRODUCTION: 6 PRODUCTION: 26
LEXICAL: B PRODUCTION: 15
LEXICAL! 1= PRODUCTION: 6
PRODUCTION: 23 LEXICAL: B
SYMB] B LEXICAL: =
LEXICAL: 0 PRODUCTION: 23
LEXICAL: 3 SYMBL B
PRODUCTION: 11 LEXICAL: B
SYMRL 0 LEXICAL:Y +#
PRODUCTION: 41 PRODUCTION: 23
PRODUCTION: 37 symsl B
PRODUCTION: 31 PRODUCTION: 40
PRODUCTION: 26 PRODUCTION: 37
PRODUCTION: 15 PRODUCTION: 31
PRODUCTION: 5 tgééﬁéiioﬁ- 34
t?iiﬁﬁt; A TLE LEXICAL: A <===SYNTAXERROR <===SKIPPED
LEXICAL: <> LEXICAL? 3
PRODUCTION: 23 PRODUCTION: 27
SYMB1 A PRODUCTION: 15
PRODUCTION: 40 PRODUCTION: 5
PRODUCTION: 37 LEXICAL: OD
PRODUCTION: 31 PRODUCTION: 14
LEXICAL S (% PRODUCTION: 5
LEXICAL® 10 LEXICAL: 3
PRODUCTION: 33 PRODUCTIONS 17

Example 5. 2

This example shows how a simple translation can be implemented.

We define a small language with simple control structures, assign-
ments, expressions and Algol like blocks with declaration of variables.
A variable must be declared before it is used and double declarations
in a block may not appear. All language constructs are translated

into an equivalent one. The major transformations are : variables

are added the nesting depth of the block in which they are declared,
expressions are transformed to postfix polish, the control structures
are extended with line numbers indicating possible jumps. The

grammar has been transformed in order to make the translation polish.

The following pages contain

a listing of the grammar,

- all global label, const, type, and var declarations of
the skeleton compiler, including the ones added for the
semantic example,

- the part of the procedure CODE which has been added

for the semantic example, and

- an example of a translation.

32

34 26 3b 4% 3k 40 36 e 3k A% 37 30 30 48 48 25 48 38 48 30 8 3k 4 3k 20 3E 4E 40 48 38

1 <PROGRAM> 33
<START>
3 <BLOCK>

4 <BLOCKDEC>

THE GRAMMAR #3047 36 36 36 36 35 48 2 25 45 48 46 3 46 3 30 30 36 2

<SETART> <BLOCK> .

<BLOCKDEC> <STATEMENTSEQ> END

117 <BEGIN> <DECLARATION>

5 <STATEMENTSEQ> t:1= <STATEMENTSEQ> § <STATEMENT>
6 / <STATEMENT>

7 <BEGIN> si= BEGIN

8 <DECLARATION> (3= <DECID> § <DECI ARATION>

9 / EMPTY

10 <PDECID> :t= DECLARE NAME

11 <STATEMENT> $:i1= <IFTHEN» <STATEMENTSEGQ> FI
12 / <WHILECLAUSE> <STATEMENTSEQ> 0D
13 / <BLOCK>

14 / <VAR> 1= <EXP>

15 <TFTHEN> t:= <IFCLAUSE> <STATEMENTSEG> ELSE
16 <SWHILECLAUSE> 1:= <WHILE> <EXP> DO

17 <VAR> !:= NAME

18 <EXP>2 1:z: <EXP> + <TERM>

19 / <TERM>
20 <IFCLAUSE> iz <IF> <EXP> THEN

21 <IF» t= IF
22 <WHILE> $i1= WHILE
23 <TERM> $:1= <TERM»>» % <PRIMARY>
24 / <PRIMARY>»
25 <PRIMARY> 1= KONST

26 / <VAR>

27 / { <EXP>»)

Ak 25 38 47 45 38 46 48 47 35 26 4R 4k 3 36 36 3k 3b 35 0 40 Sk 4b 48 07 4F 28 30 35 36 30 0 36 35 95 46 35 3F 35 45 45 Sk 46 35 48 30 30 4F 3b 30 38 30 4k 40 25 3F SE R b SR AP AP 4

33

RECAU PASCAL VERe. 2¢2/1=28 77/06/01e 1329451
000006

000006 (* *)
000006 (#* 8 0B S « SYSTEHM)
000006 (# *)
000006 (# SKELETON COMPILER)
000006 (¥ i)
000006 (# VERSION MARCH 1977 *)
000006

000006 PROGRAM BOBS({INPUTOQUTPUT, TABLES) §
000464

000464 LABEL 10% (#EXIT LABEL=#)
000464 CONST

000464 STACKMAX=503 (#STZE QF ATTSTACK AND PARSESTACK #)
000464 STRINGMAX=100% (* SIZE OF ATTRIBUTE STRING #)
000464 CHBUFMAX=200% (% SIZE OF ARRAY CHBUF #)

000464 MINCH=81AY; MAXCH=t31§ (#FIRST/LAST CHARACTER IN TYPE CHAR#)
000464 TEST=TRUES (% IF TRUE THEN SNAPSHOTS ARE GENERATED®)
000464 (## CONSTANT DEFINITIONS OF THE USER)

000464 CODEMAX=1003

000464 BNMAX=103%

000464 SYMBMAX=1003%

000464 TYPE

000464 CHBUF INK=0e o CHBUFMAXS

000464 STACKINX=0ae STACKMAXS

000464 STRING=PACKED ARRAY[1aeSTRINGMAX] OF CHARS

000464 (% TYPE DEFINITIONS THE USER #)

000464 ATTRIBUTES®=RZCORD

000464 CHBUFP! CHBUFINXS (+#USED BY PROCEDURE GETSTRING #)
000464 REMEMBERs WHILESTART : INTEGER

000464 END$

000464 OPKIND=0e.23

000464 ORPERATION=RECORD

000464 OP:ALFAS

000464 CASE K:OPKIND OF

000464 1: (ARG:INTEGER) 3

000464 2{IDISTRINGIBNIO, BNMAX)

000464 END S

000464 VAR

000464 ATTSTACK: ARRAY[STACKINX] OF ATTRIBUTESS

000715 CHBUF: ARRAY[CHBUFINX] OF CHAR3

00l226 CHBUFI: CHBUFINXS

061227 OK3: BOOLEANS

001230 TARLES: TEXTS

001457 SNAPSHOTS: TEXTS

001706 (#CHBUF s CHBUFIs FIELD CHBUFP OF ATTRIBUTESs TABLES AND OK
001706 (#SHOULD NOT BE CHANGED 8Y THE USER)

001706 (# VAR DECLARATIONS OF THE USER #)

001706 DISPFLAY: ARRAY[0,.BNMAX] OF INTEGERS

001721 BLOCKNO: INTEGERS

001722 SYMBOLTABLE: ARRAY[0..SYMBMAX] OF

001722 RECORD

0ol7z2e IDENT: STRINGS

001722 LEVEL $ INTEGER

001722 END S

004051 SYMBNO: INTEGERS

004052 CODEARRAY:ARRAY[1+.CODEMAX] OF OPERATIONS

006476 CODEINK:0..CODEMAXS

006477

006477 (# K] =)
000004 (%3] +%)

34

RECAU PASCAL VER. Zed/1—g8 T7/06/01e 13629a5]1

000004 (#%F*)
000004 PROCEDURE CODE(OLDTOPRPNEWTOP: STACKINX$: PROD! INTEGER) S
000006 VAR STR: STRINGS

000020 TolsViINTEGEKS
000023

000023 PROCEDURE PRINTOUTS

000003 VAR It INTEGER3

000004 BEGIN WRITELN(OUTPUT)

000007 FOR It=1 TO CODEINX DO

000011 WITH CODEARRAY[IJ DO

000020 BEGIN WRITE(L:5.' §,0P);
000036 CASE K OF

000043 0: WRITELNS

000045 1t WRITELN(ARG:3) s
000054 2t WRITELN(ID:10sRN:3)
000066 END

000073 END

000073 END

000103 ,

000103 PROCEDURE GENO (OPCODE I ALFA) 3
000004 BEGIN CODEINX:=CODEINX+13

000012 WITH CODEARRAY[CODEINX] DO
000017 BEGIN

000017 OP:=0PCODES Ki=03

0000620 END3

000020 END S

000023

000023 PROCEDURE GENL (OPCODE ! ALFA3ARGUMENT ¢ INTEGER) 3
000005 BEGIN CODEINX:=CODEINX+13

000013 WITH CODEARRAY[CODEINX]1 DO
000017 BEGIN

000017 OP:1=0PCODES Ki=1l3

000020 ARGt =ARGUMENT 3

000021 END3

000021 END 3

000026

000026 PROCEDURE GEN2 (OPCODE?! ALFA3IDF:STRINGSLEVEL:INTEGER) 3
000020 BEGIN CODEINX:=CODEINX+1;

000017 WITH CODEARRAY[CODEINX] DO
000023 BEGIN

000023 OP:=0RCODES Ki=2;

000024 ID:=10F3 BN:=LEVELS

000033 END3

000033 ENDS

000040

000040 PROCEDURE GENBACKWARD (OPCODE tALFASINMIND:BOOLEAN) §
000005 BEGIN

000005 WITH ATTSTACKINEWTOP] DO
000014 BEGIN

000014 WITH CODEARRAY[REMEMBER] DO
000021 BEGIN Ki=13

000022 0P :=0PCODE 3

000022 ARG3I=CODEINX+13

000024 END 3

000024 IF INMIND THEN

000024 BEGIN

000024 CODEINX:=CODEINX+13

000027 REMEMBER : =CODETNX3

000027 END$

000027 END 3

RECAU PASCAIl. VER.

000027
000034
000034
000016
000017
000017
000017
000034
000046
000063
000065
000066
000075
000102
000105
000105
000115
000115
000016
000020
000014
000031
000035
000044
000064
000076
000076

ENDS

PROCED
VAR T:
BEGIN
=D
WHIL

THEN
ElL.SE
BEG

END
END3

PROCED
VAR T
REGIN

WHT

2e2/1=32

URE DECLAREID(ID: STRING)

INTEGERS

ISPLAYIBLOCKNG=173+13%

E (ID<>SYMBOLTABLELI1.TDENT)
IF (ID=SYMBOLTABLE[I].IDENT) AND

35

TT/07/18¢ 114753,

AND (TI<SYHMBNO) DO T:=sT+13
{T<=SYMBNO)

WRITELN(Y *oIDs¢ ALREADY DECLAREDY)

IN SYMBNO:=SYMBNO+13

SYMBOLTABLELISYMBNOJIDENT:=ID3S
SYMBOLTABLE[SYMBNO].LEVEL :=BLOCKNOS
GENZ ('*DECLARE *sIDJBLOCKNO) $

°
4

URE USEID(ID:STRING)
JIINTEGERS
I:=SYMBNOS

LE (ID<>SYMBOLTABLELI),IDENT)

WITH SYMBOLTABLELI] DO
IF ID=IDENT THEN GENZ2(fVAR

END 3

(G =-%)

ELSE WRITELN(OUTPUTs !

toIDs?

AND (I>0) DO T:=7~13

Yo IDS LEVEL)
IS NOT DECLARED?Y) 3

36

RECAU PASCAL VER. Z2¢2/1=28 T7T/06/01e 132951

000147 (#BL i) (wBF¥)

000147 REGIN (#CQDg»)

000147

0001647 CASE PRQD oF

000014 01 (% START PRODUCTION ADDED BY BORS #) 3

000015 12 (% <PROGRAM>::=<START> <BLOCK> , #)

000015 HEGIN

000015 GENO(FENDPROGRAM®) §

000017 PRINTOQUT S

pooozl END 3§

000022 i (% <START> si1= EMPTY)

000022 BEGIN

000027 BLOCKNO:!=013

000023 SYMBNQ =03

000024 CODEINX:=03

000025 GENO (' PROGRAM)3

000027 END S

000030 3i (% <BLOCK> 1i= <BLOCKDEC> <STATEMENTSEQ> END)
000030 BEGIN

000030 GENO (PEND)3

000032 BLCCKNO:=BLOCKNO=13

000034 SYMBNQ:=DISPLAY[BLOCKNQOTS

000037 END 3

000040 4t (% <BLOCKDEC> t:= <BEGIN> <DECLARATION> W)
000040 GENO (*CQDE)3

000043 58 (% <STATEMENTSEQ> ::= <STATEMENTSEQ> 3 <STATEMENT>) 3
000044 6f (# <STATEMENTSEQ> :1:= <STATEMENT> #)3%

000045 73 (% <HBEGIN> i¢= BEGIN #)

000045 BREGIN

000045 GENUL{'BLOCK v)§

000047 DISPLAYIBLOCKNO] :=SYMRNOS

000053 BLOCKNO:=BLLOCKNO+13

000054 END §

000055 82 (% <DECLARATION> :1:= <DFCID> 3 <DECLARATION>)3
000056 91 (% <DECLARATION> ::= EMPTY #)3

000057 10¢ (% <DECID> ::= DECLARE NAME)

000057 BEGIN

000057 GETSTRING(2eSTReL) 5

0000672 FOR T3=L+1 TO STRINGMAX DO STR[Il:=¢? MR
pooloz DECLAREID(STR) 3

000104 END S

000108 1le (% <STATEMENT> t:= <IFTHEN> <STATEMENTSEQ> FI #)
000105 BEGIN

000105 GENBACKWARD (YEILSF toFALSE) S

0o0ll2 GENO(*FT ")}

000114 END3S

000115 12% (* <STATEMENT> $:= <WHILECLAUSE> <STATEMENTSEQ> 0D i)
00011s REGIN

000115 GENBACKWARD (*DO "o FALSE) §

00012z GENL (v0OD P ATTSTACKINEWTOPR] s WHILESTART) ¢
000131 END S ,

000132 131 (% <STATEMENT> $:= <BLOCK> #)3

37

RECAU PASCAL VER. 2e2/1-28 T7/06/01« 13290510
000133 (#%F*)

000133 145 (% <STATEMENT> t:iz= <VAR> $= <EXP> #)
000133 GENQ (*STORE LB R

000136 15¢ (% <IFTHEN> si= <IFCLAUSE> <STATEMENTSEQ> ELSE #)
000136 GENRBACKWARD (* THEN "o TRUE) §

000143 16¢ (% <WHILECLAUSE> 1= <WHILE> <EXP> DQ)
000143 GENBACKWARD (t*WHILE "o TRUE) §

000150 173 (% <VAR> 3t NAME #)

000150 BEGIN

000150 GETSTRING(1eSTReL) 3

000153 FOR T:=L+]1 TO STRINGMAX DO STRIIJs=¢ 3
000173 USEID(STR) 3

000175 ENDS

000176 18 (% <EXP> t3= <EXP> + <TERM>)

000176 GENO (*PLUS ')

000201 198 (% <EXP> 13z <TERM> #)}%

000202 20t (% <JFCLAUSE> iz <IF> <EXP> THEN #)
000207 GENHACKWARD (v IF te TRUE) §

000207 21 (% <IF> s1:1= IF %)

000207 BEGIN CODEINX:=CODEINX+]S

000213 ATTSTACKINEWTOP] REMEMBER :=CODFINXS
000217 END§

000217 22t (% <WHILE> t:i= WHILE *#)

000217 HEGIN CODEINXi1=CODEINX+13$

000223 WITH ATTSTACKIMEWTOPI DO

000227 BEGIN

000227 WHILESTART :=CODETNXS

000230 REMEMBER:=CODEINXS

000230 ENDS

000230 END S

000231 235 (% <TERM> 2:= <TERM> % <PRIMARY> %)
000231 GENO (YMULT) §

000234 24 (% <TERM> tt= <PRIMARY> #)3

000235 2Hhe (% <PRIMARY> t:= KONST i)

000235 BEGIN

000235 GETSTRING(19STRsL) 3

000240 Viz(s

000241 FOR Tt=1 TO L DO Vi=y#]0+0RD(STRITI])=ORD(70Y) 3
000260 GENL(YLIT teV) 3

000263 ENDS

000264 261 (% <PRIMARY> 113 <VAR> #)

000264 GENO (7LLOAD)3

000267 2T (% <PRIMARY> ::= (<EXF>) #)%§

Qo027¢ END 3

000324 ENDS (#CODE)

000364 '

000364 (#5|.=%)

38

BEGIN
DECLARE A3 DECLARE B3

=105 Bi=A3

IF A+8 THEN

BEGIN DECLARE A

A=t
END
ELSE
REGIN DECLARE B3
WHILE A DO Bi=zaA+]
END
F1
END
1 PROGRAM
2 BLOCK
3 NECLARE A
4 DECLARE B3
5 CODE
6 VAR A
7 LIT 10
8 STORE
9 VAR B
10 VAR A
11 LOAD
12 STORE
13 IF 19
14 VAR A
15 LOAD
16 VAR 3
17 LOAD
18 PLUS
19 THEN 28
20 BLLOCK
2l DECLARE A
22 CODF
23 VAR A
24 VAR B
25 LOAD
26 STORE
eT END
25 ELSE 44
29 Bl.OCK
30 DECLARE]
31 CODE
32 WHILE 35
33 VAR A
34 L.OAD
35 Do 42
36 VAR s
37 VAR A
38 LOAD
39 LIT 1
40 PLUS
41 STORE
47 O 32
43 END
44 F1
45 END
46 ENDPROGRAM

39

PART I11

6. Program Description

In this section the program organization is outlined and algorithms and data

structures of special interest are described in detail.

The description is not of any interest to the ordinary user of the system and
may be skipped. No important information for the normal use of the system

is contained in this part.

The present description is addressed to users (or just readers) who are

specially interested in a detailed description of:

- the program organization
- the methods behind the algorithms, or

- the actual appearance of the algorithms.
The reader is assumed to be familiar with the terminology and the concepts
in consideration are assumed to be well known o the reader. References
[1, 2, 3, 4, 5, 18, 19, 20] may be helpful to provide the necessary back-
ground.

The description consisis of two parts:

- a description of the parser-generator,

- a description of the skeleton compiler.

6. 1 Description of the Parser-Generator

The parser-generator program may be described as three separate modules:

- the input module,
which transforms an external grammar specification into an
internal representation,

- the grammar transformation module,
which consists of a set of routines, each performing either

a grammar check or a grammar transformation - or both,

40

- the parse table construction module

which builds the parse tables according to the specified grammar.

The parse tables are organized as a directed cyclic graph where

the nodes are linked lists. The information part of a given list

is either a sequence of grammar symbols or a sequence of references

to graph nodes.

6. 1.1 The Construction of the Parse Tables

The construction of the parse tables consists of a sequence of steps:

the construction of the LR(0) tables; (which is a realization of

the method described in [2]);

the extension to LALR(1)-tables which supplies any inadequate
table among the LR(0)-tables with LALR(1)-lookahead information,
which may solve the existing conflict. A table supplied in this way
is called a lookahead table,

SLR(1) lookahead information may be sufficient to solve a conflict

and may then be used;

the construction of special lookback tables, defined in [1].
The tables are constructed on the basis of the grammar and the
_R(0) tables: one lookback table for each nonterminal symbol.
This construction method deviates from the one given in [1]

but includes automatically most of the optimizations of the look-

back tables, also given in [1];

the optimization of the lookback tables, described in [1, 4],
which involves the addition of an "In Any Case' condition for the

most popular destination table in a lookback table;

the optimization of the parse tables which removes the information
concerning the transitions on nonterminal symbols, given in [1]
When the [ookback tables are added to the parse tables this infor-

mation becomes redundant.

The optimization of the lookahead tables, first described in [4],

which involves the addition of an ""In Any Casel!! condition for

41-43

the most popular destination table in a: lookahead table;

- the optimization of (unaltered) LR(0) tables which merges
tables having identical bottom-most subsets. The tables
are modified to share the common part. This optimization
may be regarded as a variant of the method using top~-most sub-

sets, given in [4].

6.1.2 The LAL.R(1) L.ookahead Algorithm

A description of the LALR(1) algorithm may be found in [23].

44

6. 2 Description of the Skeleton Compiler

This program consists logically of two parts:

- The semantic interface,
which consists of a list of predefined siructures and auxiliary routines
which may be useful to the user. Furthermore these define the means by

which the user and the parser may interact, (see section 5. 2)

- The parser,
which primarily consisis of a parsing algorithm working on the parse
tables constructed by the parser generator program. This parsing

algorithm is described in the next section.

The lexical analyzer is an independent part of the parser. lf runs on tables

which are also built up by the parser generator program.

The parser includes an error recovery routine based on the parse

tables. This routine is described in detail in section 6. 2. 2.

6.2. 1 The Parsing Algorithm

In addition to the parse tables, the parsing algorithm uses a parse stack. A

picture is a special parse situation which we may define as follows:
Assume that the parse tables are constructed on the basis of a CF G,
G =(N,2,P,S). Let t, be aparse table, (k€ [0,i]), and X ENUT,

(k€ [1,i=1]), and X. =a, anda €L, (k€ [1,n])and 1< j<n.

The general picture, Pj’ is then:

t0X1t1X2tz ><iti aj+1aj+2 ces @y
parse stack
The initial picture, PO, is:
t a,8, «.. a
0 172 n

45

and the final picture, Pn, is:

The picture Pj’ 0 <« j, denotes the situation where the symbol aJ. (and a parse
table ti) has just been shifted into the stack. The parse tables ti_1 and t;
which are also on the stack mean that there exists a transition path on the
symbol aJ. from table ti—l to table ti' This fact may be generalized to any
sequence on the stack of the form tk—lxktk'

Assuming that the string CRC PR an is in L(G) the parsing algorithm runs
through the sequence of pictures

Pgs Py caes Ps

0’ n

Between any two pictures in this sequence the stack may increase and de-
crease according to intermediate parse situations. The parsing algorithm

may be specified as:

P = PO;

WHIL.E input not exhausted DO

BEGIN
IF — lookahead (P) THEN recover (P);
P := successor (P);

END;
The routines involved behave as follows:

- L_ookahead,

determines if there exists a picture Pi as a successor {0 Pi' The

+
calculation process may involve a sequence of :ooth reductions of the parse
stack and shifts onto the parse stack. In this context a shift is due to a re-
duction of an empty production, Pi is not touched if the stack is extended into
an area on top of the original stack. The differences between the original

picture and the succeeding picture are contained in this area.

46

The picture Pi may be depicted as follows:

PSEUDO
% % (ORIGINAL

VALID

The three indices into the siack all indicate the actual top of the stack.
In the lookahead routine the stack may change as described above. Thus

the stack situation during the computation may appear as:

__ PSEUDO
7 e ORIGINAL

% e VALID

As stated the original picture F’i must be protected. The area In question
is indicated by the index ORIGINAL, which remains fixedduring the look-

ahead computation.

The hatched area of the above illustration shows the part of the stack
which is being used in the computations at this moment. The area situated
beitween ORIGINAL and PSEUDO contains a part of stack which might have
been placed in the unhatched area upwards from VALID (thus causing the
destruction of the original stack). The special case (which in fact is the
common case) when this area between ORIGINAL and PSEUDO is empty, is

perceived according to the following illustration:

<. ORIGINAL

% < PSEUDO

//E;/// VALID

47

The area (in both the latter figures) below VALID is the part of the original

stack which is still in use at the moment,

We note that the index PSEUDO may both increase and decrease, whereas

VALID may only decrease.

When the lookahead routine terminates it leaves a stack situation similar to

one of the illustrations.

During the lookahead computation adequate information about the possible
sequence of reductions (mentioned above) is queued up for use in the succes-

sor proutine.

-~ Successor,
delivers the information about the possible reduction sequence to the

semantic interface part of the program. .

On the basis of the extra information in the area on the top of the parse stack

a succeeding stack is built, resulting in the picture Pi+1'

The transformation of the intermediate stack to the succeeding picture may

be depicted:

LLLL T PSEUDO

I N <«— { ORIGINAL

S I VALID
1=

(The transformation of the alternative intermediate stack situation is

trivial.) All three indices are reset to the resulting top of the stack.

- Recover,

transforms the picture Pi into another picture F’I'< ysuch that
L.ookahead (PL) is TRUE. Recover involves the construction of another
stack and the deletion of a number of input symbols. The routine is described

in detail in the next section.

48

A somewhat different description of the parsing principle applied above is

given in [19].

©.2.2 The necovery Algorithm

The recovery algorithm is invoked when parsing a siring not in LL(G).
However having detected an error several possibilities of reaction exist.

A safe but normally insufficient reaction is to stop the parsing and inform
the user about the discovered error. A tempting reaction is to try to correct
the input string, i.e. to transform the epproneous input string into an
error-free string. However in general the correction scheme is extremely
complicated. An appealing compromise is the recovery principle in which the
parser establishes a situation such that a major part of the remaining input
string may also be inspected to discover any additional errors. The process
may involve both the restructuring of the parse stack and the deletion of

symbols from the input string.

6.2.2. 1 Description of the Algorithm

The reéovery algorithm is activated from the parsing algorithm when

lookahead (Pj) is FALSE for some j. Let Pj be

t0><1t1 xiti aj+1aj+2 an

The recovery method complies with an outline given in [18] and works by
applying error productions. An error production has the form A -+ 4 error g8

where error is a special symbol.

In the algorithm the remaining input symbols are inspected one symbol at a
time. For each symbol a sequence of stack situations is inspected, which is
constructed from the original stack by popping one stack element at a time.
For each such stack situation the special error symbol is inserted as the
first symbol on input. This artificial picture is now inspected. If a successor
to this picture exists, to which, furthermore, another successor exists then
a straightforward way of recovering from the error situation has appeared.
(Involving the described deletion of input symbols and popping of stack ele-

ments,)

The method may be formalized in the following algorithm: (based on Pj)

FOR k:=j+ 1 TO nDO
FOR | := i DOWNTO 0 DO
BEGIN
Ik

LET P?
error

BE t0><]t1 ><|t| error ak...an

IF lookahead (F’l’k) THEN
error
BEGIN

I,k
P! := successor (P?
k a error

(%) IF lookahead (PL) THEN
BEGIN

)

delete symbols aj,a
EXIT TO success;
END;
END;
END;

success: (¥successful picture: Pl‘<*)

ET B

Note: A straightforward improvement of the algorithm is to extend the

49

check performed at (*) to include 2-3 symbols instead of only a single sym-

bol.

The detection of an error is caused by a picture PJ.: tO .o xiti aj+1
where ><i = aj.
The existence of Pj implies 3 y € Z ¥ such that

*

S:>r~m X,...Xiy (1
*
= ~m a1 e aJ. Y

The recovery method involves a specification of k and | (j<«k=n ,

0< 1= i) and thereby the picture

50

Ik

error : tO .s ><|tl error a ... a_ with the property that
|
lookahead (P"%) = TrUE (2)
error

and assuming that

P! := successor (P"k)
Kk error
the property that
lookahead (P}‘<) = TRUE. (3)

Inspecting the method step by step a sequence of conclusions may be stated

based on the results above;

(1) implies that for a given < i, 3 s(0< s<j)and 32 € T * such that
*
S:>r‘m XT"'XIXI+1"'xiy
\ %
:}r‘m ><1 X! zy
*
=¥ aj...a_zy
(2) may be interpreted to mean that there exist x = x!! x! € 2* m

(0 <m <) and an error production A - error B such that

* 1
S Sr‘mx‘l XmAx
1
2 ~m ><1 ><m><m+1 XI error g x
=% X, ... X, error x!" x!
rm "1 |
=% a. ... a_ errorx
rm 1 s
+* f1 =
wher'egﬂpmx and q xm+1 cee Xy
(3) implies that at least one of the potential error productions, say

A - g error g, is legal when the symbol . is included. Hence
Aw=wt w!= a Vv such that

S =% X, ... X Aw!
rm "1 m

= X eee X error g w!
rm 1 |

5% X ... X, error wit w!
rm 1 1

=% 3 a_ error a, v
rm-1 °°° “g Kk

x .

w! and g = X |

rm m+1ooo

51

We may now summarize the results, The parsing algorithm has gone

through the parse situations

t0><1t1...t!><l as+1...aj...ak...an
and
t0><1t1...t|><|...ti><i aj_H...ak...an
at which the error Is detected.
This situation is transformed into
tOXTtI tIXI error ak an
The effect of the recovery method is to discard the symbols X X

+1 7 7

from the stack and to delete the symbols a, I from the input string.

jt+1 k=1
Recalling that
*
><|_H ><i :bpm agyq .- aj
the total effect is to discard the symbol siring SRR a_1 The string

is replaced by the special symbol error which is part of a string derivable

from the language construct A.

Now the philosophy behind the recovery method may be expressed as:
While parsing the string ay ... a,an error is detected. The error is

located In the partial string a ee. @ which is supposed to reduce to a part of

s+1 k-1
the language construct A. A part of the string has been reduced into

XI+1 .o ><i and a part remains on input. Both these parts are discarded.

\ . . .
The succeeding picture F’k : to .o XP tp ak e an may be interpreted
as an element of the picture sequence evaluated from the initial picture
1.
PO.ItO a1...aser~r*or~ak...an.

Pictures among the successors of the picture P"(may cause new erropr de-

tections.

52

PART IV

7. Summary of terminology

In this section we shall give a short summary of the notion of a context—
free grammar, some parsing terminology, and an introduction to LR~
par‘sér‘ construction. For a more detailed and explanatory treatment see
Aho & Ullman [20].

Let M be a set of symbols, then M* denotes the set of all strings of

symbols from M, furthermore it includes the empty string (denoted by e).

Example 7. 1

Let A = {0, 1} , then

A* ={e,0,1,00,01, 10, 11,000, 001, .

7.1 Context free grammar

A context-free grammar (CFG) is a 4-tuple G = (N,Z,P,S), where

(1) N is a finite set of nonterminal symbols.

(2) X is a finite set of terminal symbols.

(3) P is a finite set of productions each on the form:
Ay
where A is inN and g is in (NU Z)*.
(4) S is a distinguished symbol in N called the start symbol

(or goal symbol). O

A sentential form of a grammar G is defined recursively as follows:

(1) S is a sentential form.
(2) If By is a sentential form, and B »+ § is a production
in P, then ady is a sentential form. We say that o By
directly derives o0y and denote this by:
oBy = ady O

53

A sentential form containing no nonterminals is called a sentence generated
by G.

The language generated by a grammar G, denoted L(G), is the set of sen-

tences generated by G. l.e. a grammar G defines a language of strings of

its terminal symbols. O

We use the following conventions

Qs Bs Yy Oy seee are in (N y 9%,
a, by, ¢, d, are in g
V, X, ¥y Zy, Wy sees are in y*
A, B, C, «¢ ... are in N

Let ¢,B8 be sentential forms. We say that o derives B (and denote it by
o =* B if and only if:

o =8 or

there exist sentential forms
')’0;’)/1,---,‘}/n , n=z1 and
o =Y B =Y such that
Yo7V

Y17Yo

Y127

The sequence:

’)/O:>71:>’)/2=> . e ’)/n_.l:>)/n

is called a derivation of 8 from a.

it

A derivation is called a rightmost derivation if, in each step yi =Y ie10

is always the rightmost nonterminal in yi which is replaced by means of a

*

production. The symbols Zem Crm ? indicate rightmost derivations.

A nonterminal E is called left recursive if and only if E= g = * E 4! for

some ¢, '. Right recursive is defined in a similar way.

O
A grammar G is ambiguous if and only if some sentence w in L(G) has more

than one distinct rightmost derivation. O

54

Example 7.2

Consider the grammar
GO = ({E7T’p} ,{+7 *’(’)’a}?@?E)’

where 9P consists of
E-E+T
E-T
TT %P
TP
P~ (E)
P-a

An example of a rightmost derivation in Go is:
E :>r~m E+ T
E+T %P
E+T % a
E+P %a
E+a % a
T+a xa
P+a % a
ata=xa O

rm
rm
rm
rm
rm

rm

S R VR R R N VN

rm

7.2 Parser and parser-generator

A parser. for a grammar G is a device which, given a string w in
T *, checks whether this string is in L(G) and, if so, ouiputs a possible

derivation of w from S. Note that a siring may have more than one de—

O

rivation.

A parser-generator is a device which, given a grammar G as input, produces

a parser for G.

In practice a parser-generator will only accept a restricted class of grammars.
A general system would be quite inefficient and not useable for practical
purposes. At present the biggest and most natural class of grammars for which
useable parser-generators/parsers can be consiructed is the class of LR-

grammars (in particular LALR(1)). We note that an ambiguous grammar is not

an LLR-grammar. O

55

7.3 LR(K) grammar

An LR-parser works by constructing a rightmost derivation backwards.
The output of the parser is the reversed sequence of productions used

in the rightmost derivation of the input string. This reversed sequence of
productions is called a right parse. A sentential form is in the following

always a rightmost sentential form.

x
rm

most sentential form which may appear during a parse of x w. B is called

IfsﬁimaA W= Bw= x W, where x, w € 5*, then g 8 w is a right-

the handle of ¢ B w, and A » g is called the handle production.

Given a sentential form, the purpose of the parser is to determine the

handle production.

In general the whole sentential form must be available in order to determine
the handle production. This is not desirable in practice as the input string
may be very long. An LLR(k) grammar has the property that the handle
production of each sentential form can be uniquely determined by scanning
the sentential form from Left to right, producing a Right parse, but only

looking ahead at most k-symbols beyond the right end of the handle.

Let G be an LR(k) grammar and let o B w be a sentential form with handle pro-
duction A » g. If ¢ B y is another sentential form, and if the first k symbols
of w are identical with the first k symbols of y, then A - g must also be

the handle production of o 8 v.
This may be formalized in the following definitions:

Definition
LetG=(3, N, P, S), and g € (NU 3%, then
FIRST, (o) = {x€x* | q=%xw | x| =k or
a="x | x| <k}

| x | is the length of the stringx, | e | =0 |

56

Definition

LetG=(N, 5, P, S)beaCFG. LetG'=(NU {S'}, 5, PU {S'5S}, S!)

be its augmented grammar. G is LLR(k), k > 0, if the three conditions

1. S'@im aAw = g Bw,

2. S'mimyBx =2 y&x = g BY, and

3. FIRST, (w) = FIRSTk(y),

imply that o =y, A=B, and x =y 0

There are various technical reasons for using a new start symbol

S!, and a new production S! » S, See Aho and Ullman [20].

7.3. 1 Shift-reduce parser

In the following we shall only consider LR(1) grammars. An LR-
parser belongs to a class of parsers which all work in a similar way.
Below we describe these parsers.

The parser uses a stack called the parse stack.

It works as follows:

Initially the stack is empty and input consists of the string w:

stack input

Let w be divided into xay with x,y inZ* and a in XZ. At a given
point during the parse the x part has been read and processed and the
remainder of the input is ay. The parse stack will then contain a string

o in(NUZZ)¥*, such that

nay 2% w

57

and such that ¢¢ a y is a sentential form in the right most derivation of

w from S. Productions used in reducing x to @ have been outputted. The
situation is:

stack input

ay

The parser determines its next step on the basis of ¢ and a (i.‘e. not

using information about y). There are four different cases:

- shift: read a and shift it onto the stack.

stack input

- reduce: perform a reduction, that is & ay has the form
‘ vybay and B -+ 0 is a production and

vyBay =.m? day is a step in the rightmost
derivation of w from S. The production
B » 0 is outputted, and the situation is:

stack input

Y B ay

- accept: the stack only contains the start symbol S, and input

is empty.

- error: none of the above cases is applicable; w is not in L(G).

O

58

To summarize, the parser shifts input symbols onto the stack, until a
handle appears on top of the stack. It then performs a reduction. If
no errors occur, this proces is continued until the start symbol
appears on the stack. Parsers working in this way are called shift-

reduce parsers.

Example 7.3

Consider a parse of the stringa + a % a in example 7. 2.

. Action . Stack Input Output
at+a *a
shift
a +a % a
reduce
P +a % a P-a
reduce
T +a ¥ a TP
reduce
E +a % a E-T
shift
E + a % a
shift
E+a ¥ a
reduce -
IE+ P ¥ a P - a

reduce

shift

shift

reduce

reduce

reduce

accept

IE+T
[E+ T %

{[E+T*a

{E+ T

* a TP

a
P-a
T>T * P
E-E+T

60

7.3.2 Construction of LR~-parsers

In practice the LLR-parser does not just 'look at! the stack and the
next input symbol to decide what to do next. The parser keeps track
of those productions which are possible candidates for a reduction
during the parse. This is done using tables, which specify the next
move at each state of the parse. These tables are constructed by
the parser generator.

Let A o 51 @2 be a production. Consider the derivation

*

v X a
rm Ys

S:imaAaya @B1Bzay:> ?mafwxay =

wherea€ 3, yES* or a=e, y=e.

During a parseofvxay, g 51 will appear on the stack at some
stage with x a y on input. When x has been reduced to Bz, then

A - 51 Bz is the handle production and a is the next input symbol,

In general with OLB] on the stack we know nothing about the input.

But if part of the input is reduced to By and a is the next input symbol,
then A - B4 Bz is the handle production. This information that

A - By By is a future candidate for a reduction when the stack con-

tains g 61 is remembered in the following way:

a By is called a viable prefix and we say that [A~ g, . B, al

is an LLR(1}) ~item (or just LR-item) which is valid for ¢ By

In general a viable prefix has a lot of valid LR(1) -items. The set of

valid LLR(1)-items for a viable prefix aBy is

\/1 ((X,B1) ={[Bss'. 8", b] | B - &' 8" is a production, and
Sﬂ?myBZ:yé'é“z=qB1 8" z, and
b € FIRST, (2) }

For a viable prefix g By V1(@ Bl) contains sufficient information

to decide what parsing action to take if g By is on the stack,

l_et o By be on the stack, let x be the next input symbol and let
[A > Bie By a] be in \/1(a B4). There are five cases, dependent on
By *

61

1. By = Xy
l. e. the first symbol of Bz is identical to the input symbol,

and the parser has to do a shift. The next state of the parse

is described by V1(QB1 x), and [A - Bqx B'Z’ al € V1(OLB1 x).

2. Bp,=YBL,VYETD, VFX

A - BiBy is no longer a candidate for a reduction.

3. B,=Bgs, BEN.

A = 61 By is still a candidate for a reduction, but we must
first recognize a production of the form B - §. If and when
part of the input has been reduced to B, then the next state
of the parse is described by V, (4 8, B) and

[A - By B. gh, al € V1(a[31 B). It also follows that
{[B».8,b]]| B-sisaproduction, and

b€ FIRST, (8h a) } =V, (ap,).

4, By =€ (the empty string), x = a

We may reduce by A - B4 » and return to the state V(g) ,
with g on the stack and shift A on the stack. The next state
to consider is then V(g A).

5. By, =e , x # a.

A - B4 is no longer a candidate for a reduction.

O

For an LLR(1) - grammar there are no conflicts between different items

of V., (a 51) in deciding whether to shift or reduce.

For a non LR(1) grammar there will exist a viable prefix ¢ such that

V1(cp) contains two items of the form

[A-B,. ag,, b], [B~g.,2al, a€7,
or two different items of the form

[A-o.,al, [B-sg.,al,aczufe}.

In both cases there is a conflict on the input symbol a. V1 (cp) is said

to be inconsistent.

62

For a given set of LR~items ‘\/1

action function PA, and the successor-function SUCC.

Definition

Let o be a viable prefix of a sential form of an LR(1) grammar

G=(N, I, P, S). Let x € % U {e}. The parsing action function

PA (V1(q), x) takes one of the values

- shift, if an item [A > g,. xsz,a]€ V),
- reduce A - g, if an item [A-g., x| € V1(q),
- accept, ifx=eand [S' 5., e] € V1(oc), or

- error, if none of the above cases are applicable.

Definition

Let T= V1(cp) be a set of LR~items for an LR(1) grammar
G=(N, 5, P, S). Let xéNU . Tl= V1(cpx) = SUCC(T,x) is

the set of items computed in the following way:

1. The basis of T! is computed by
If [A =q. xB, alisinT,
then [A »gx. B8, al is in T

2. The closure of T! is computed by
2.1 If [A>qg. BB, a]isinT!,
B-g isinPandb € FIRSST1 (ga),
then [B » .58, b is in T

2.2 Repeat step 2. 1 until ho more new items can be added

to T,

() we define two functions - the parsing

63

As there are only a finite number of LLR-items for a given grammar G,
it is possible to compute in advance all the sets of LR~items which
may appear during a parse. This is in fact done by the parser
generatorn.

The canonical collection of sets of LR-items may be computed by

the following algorithm,

Algorithm
LetG=(N, 5, P, S) be aCFG. Let G' = (NU {S'}, %, PU {53}, S')
be the augmented grammar. The canonical collection of sets of
LR~items G is computed by
1. Compute the initial set AO of G.

1.1 [S'-».S,e]is in A

1.2 Compute the closure of AO

2. Compute the succeeding sets of G

2.1 Let A be in (G, and x in NU %,

then compute SUCC(A, x}) and
add it to G,

2.2 Repeat step 2. 1 until no new set

can be added to U,

A set of items in the canonical collectiorn of LR(1)=items will in the
following be called an LR(1)-table (or just an LLR-table). Note that
this term is not that used by Aho & Uliman [20].

7.3.3 LR=-parsing algorithm.

We may now formulate the parsing algorithm using LR-tables.

Besides the symbols being stacked, the LLR-tables will also be

64

stacked in order to find the next l.R-table to be used after a reduc-
tion. If PA(\/1 (aB), a) is reduce A - B, then g A will be the new stack
content and V1((x A) = SUCC (V1 (o), A).

In general the stack contains

T T, T s et s e e e e T

where T0 is the initial LR~table corresponding to the empty stack
and

Ti =V1 (><1 x

Algorithm LR(1) parsing algorithm.

BEGIN

T : = initial LLR-table;

X ¢ = next input symbol;

let the stack initially contain T ;

REPEAT
CASE PA(T, x) OF.
shift ¢ BEGIN shift x onto the stack;
T :=SUCC(T,x);
shift T onto the stack;
X ¢ = next input symbol
END;

reduce A » g : BEGIN output A - B;
pop 2 -

8| symbols off the stack;
T : = LR~table on top of the stack;
shift A onto the stack;
T :=SUcc(T, A)
shift T onto the stack;

END;

65

accept ¢ announce accept;

error : announce error

END CASE;
UNTIL accept OR error;

END;

7.4 Practical LLR-grammars.

For large grammars it turns out that the size of the LR(1)-tables and
the amount of work required to construct them is very large. However,
if one considers a subset of the class of LR(1) grammars then there
exist techniques for constiructing usable LR~parsers. We shall con-

sider two such methods.

In both methods one starts by constructing the sets of canonical

LR(0)-items (LLR(0)-tables) for the given grammar.

An LLR(0) table T may be characterised in the following way, as a

- shift table, if T contains no item of the form [A »g.,e],

- reduce table, if T contains an item of the form [A - 8., e],

and all other items have the form[B - Bi- CBys el.

-~ inadequate table, if T contains either two items of the form
[A6B1. aBz, e:| , [B—>B., e]

or two different items of the form

[Aea., e:| , [B—%B., e].

The parsing action of a shift table and of a reduce table can be
determined independently of the next input symbol. This is not the
case with an inadequate table where there is more than one parsing
action which may be chosen. Inadequate tables correspond to
inconsistent sets of items in the LR(1) case. Consequently a grammar

is LR(0) if and only if none of its LLR(0)~-tables are inadequate.

66

In order to resolve these conflicts, each inadequate table is converted

to a lookahead table. An attempt could then be made to try to resolve

the conflicts by looking at the next input symbol.

Letq B be a viable prefix, let T = Vo(@B) be an inadequate LLR(0)-table.

Let the item [A 2 8.,e] be in T. A lookahead set LA(T,[A+8.,e))c U {e}
is computed. The idea is that if, given a parse state described by T, it is
possible to reduce using the rule A »+ 8, then the next input symbol will be

in LA(T,[A 3 8.,e]). This can be expressed by

LA(T,[A+8.e])2 {a | a'8w is a sentential form with
with Vg(a'8) =T, a € FIRST ;(w)}

Below we describe two types of LLR-grammars which differ in the way LA

is defined.

Having computed LA(T,[A +8.,¢e]), the item [A =+ 8., e] is replaced by
{[A=+8.,a]l | ae LA(T,[A4B.,e]}. By doing this for all items in T
which may lead to a reduce, it is possible to obtain a lookahead

table TI_ from T. The parsing conflicts to T are then resolved if

the parsing action function PA can be uniquely defined on TL'

There exist LR(1)=grammars for which the above way of constructing

LR-tables does not work.

7.4.1 Simple LR(1) grammars.

We now consider one way of defining LA,

Definition

Let T be an LR{0)~table. The set of symbols for which the parsing

action is shift is:

SHIFT(T) = {a€ x| T contains an item of the form
[A*@»] . 3627 e] }

Definition

LetG=(N, &, P, S) be a CFG. Let A €N, then

FOLLOW (A)={acx™ | s=* qgAw, a€ FIRST

1 (w) }

1

Definition

Let G= (N, 2, P, S) be a CFG. G is said to be Simple LR(1) (SLR(1))

if any inadequate LLR(0) table satisfies the following conditions

(1) ¥ [A5g., e]isin T, then

FOLLOW,(A) N SHIFT(T) = @

(2) If [A>qg., e]and [B»B.,e]isin T, then

FOLLOW1(A) n FOLI_OW1(B) =@

If [A->B., e]is an item in an inadequate table T, then FOLLOW, (A)
may be used as LA {T,[A =+ 8.,¢e]).

We can define SLR(1) grammars independently of the LLR(0) tables.
Let G be an SLR(1) grammar, let ¢y Bw be a sentential form with
reduction handle A » g. If o B x is a sentential form and FIRST 1(><)

is in F—‘OI_L_OW1(A), then A -+ B must be the reduction handle for ¢ B X.

The lookahead sets of an SLLR(1) grammar are not minimal. This
is because FOLLLLOW is computed independently of the given inade-

quate state.

7.4.2 Lookahead LLR-grammars.

We shall now consider the case with minimal lookahead sets.

68

If T is an LR(1)-table, then we define
CORE(T) = { [A »q.8,e] | [A»a.B,a] € T for some a }

If T, is an LLR(0)-table for a grammar G, then there exists an LR(1)

table T for G such that T, = CORE(T), and vice versa.

Definition

LetG= (N, 3, P, S) be a CFG. Let GO be the set of LLR(0)-tables
and let 61 be the set of LR(1)-tables. L.et T be in Go, and let T
contain an item of the form [A - B., e]. We define

LALR.'(Ty[A-DB-;e])= {aé Z‘ [A-;B.,a] € —|—|, Tre GP
and CORE(T!) = T}

(N
Definition
LetG=(N, 5, P, S) be aCFG, G is said to be Lookahead LR(1)
(LLAL.R(1)) if any inadequate table T satisfies the following conditions:
() ¥ [A-sp., e] €T, then
LALR (T, [Aa48.,e])n SHIFT(T) =@
(2) H[A>qg., e] and [B>pg., e] € T, then
LALR (T, [Aa.,e)nLALR (T, [B 4 8.,e]) =@
O

The lookahead sets LALR1(T, [A28.,e]) can be computed directly from the
L.R(0)~tables without computing the LR(1)-tables. An algorithm for
doing this is given in [23].

It may be difficult for an unexperienced reader to distinguish between

the various types of grammars.

In practice the following rules seem to apply:

-~ 1t often happens that an LLR(1) grammar which is not
SLR(1) is LALR(1).

- 1t is not very common that a grammar which is not
LALR(1) is in fact LLR(1). Usually such a grammar is

ambiguous.

We end this section with an example of an LALR(1) grammar which
is not SLLR(1).

Example

Consider the grammar

G=({s!',s,A}, {a b, ¢, d, f}, P,S') where P consists of

' S
» aAd
-» afc
- bACc
- bfd
A = f

wnnnon

The LR(0) tables for G are

(» indicates the SUCC function)

69

70

T
S -
st » .S %T1 Te S » afec.
s - ,aAd a
S = .afc !}TZ T7 S = b. Ac '{;TS
S = .bACc b S b, fd
5T T
S - .bfd 77 Ao L f ” 10
T8 S - bA.>c C:—>T9
T, Sl - S, Ty S -» bAc.
A d
T, S a.Ad 3T, T,y S = bf.d T,
S a, fc A =+ f,
T
A s L f ” s
T S =+ bfd.
11
d
T3 S » aA.d —>T4
=
T4 > aAd,
T S f ST
5 atT. C -5 6
A - f.
G is not LR(O) since T5 and T, are inadequate.
G is not SLR(1) since FOLLOW (A) = {c, d}.
G is LALR(1) since LALR (T, [A+f.,e]) = { d}

and LALR (T, [A=f.,e])={c}

71

REFERENCES

[1] DeRemer, F.L.
"Practical Translation for LLR(k) LLanguages"
Ph.D. Thesis, Massachusetts Institute of Technology,
Cambridge (Mass.), Oct. 1969

[2] DeRemer, F.L.
"Simple LLR(k) grammars!"
Comm. ACM 14, 453 - 460 (1971)

[3] Knuth, D.E.
"On the translation of languages from left to right"
Information and Control 8, 607 - 639 (1965)

[4] Lalonde, W.R.
"An Efficient LALR-Parser-Generator!
Tech. Report CSRG-2, University of Toronto

Toronto, Ontario 1971

[5] Horning, J.J. and Lalonde, W.R.
"Empirical Comparison of LR(k) and precedence Parsers!
Tech. Report CSRG-1, University of Toronto
Toronto, Ontario, 1970

[6] Wirth, N.
"The programming LLanguage Pascal!!
Acta Informatica, 1, 35 - 63 (1971)

[7] Jensen, B.B., Madsen, O.L., Kristensen, B.B. and Eriksen, S.H.
"BOBS-System Brugervejledning'
DAIMI PB-10 (in Danish), March 1973
DAIMI, University of Aarhus

[8] Kristensen, B.B., Madsen, O.L., Jensen, B.B. and Eriksen, S.H.
"A Short Description of a Translator Writing System (BOBsS-System)! ’
DAIMI PB-11, February 1973
DAIMI, University of Aarhus

72

[9] Kristensen, B.B., Madsen, O.L., Jensen, B.B. and Eriksen, S.H.
"BOBS-System. Tilfgjelser og @endringer til brugervejledning
DAIMI PB-22 (in Danish), January 1974
DAIMI, University of Aarhus

[10] Kristensen, B.B., Madsen, O.L., Jensen, B.B. and Eriksen, S.H.
"A Short Description of a Translator Writing System (BOBS-System)V
DAIMI PB-41, October 1974
DAIMI, University of Aarhus

[11] Burger, W.F.
"BOBSW - A Parser Generator!
SESL TR-7, December 1974
Department of Computer Science

The University of Texas At Austin

[12] Jensen, K. and Wirth, N.
"Pascal User Manual and Report!

Springer Verlag, 1975

[13] Kristensen, B.B., Madsen, O.L. and Jensen, B.B.
"An Implementation of a Pascal Compiler!"
Unpublished paper, April 1974
DAIMI, University of Aarhus

[14] Kristensen, B.B.
"Erkendelse og korrektion af syntax fejl under LR-parsing"
Masters Thesis (in Danish), May 1974
DAIMI, University of Aarhus

[15] Jensen, B.B.
"An Extension of the BOBS-System to a full Compiler-Compiler Based
on Mathematical Semantics"
Masters Thesis, February 1975
DAIMI, University of Aarhus

73 .

[16] Mosses, P.
"The Mathematical Semantics and Compiler Generation"
Ph.D. Thesis, September 1974
Oxiord University Programming Research Group
Oxford, England

[17] Madsen, O.L.
"On the Use of Attribute Grammars in a Practical Translator
Writing System!
Masters Thesis, July 1975
DAIMI, University of Aarhus

[18] Aho, A.V. and Johnson, S.C.
"LR-Parsing!
Computing surveys 6, 99 — 124 (June 1974)

[19] Eve, J.
"On the Recovery of LLR(1) Parsers from Computed Parsing Tables!"
Computing L_aboratory
The University of Newcastle upon Tyne

England

[20] Aho, A.V. and Ullman, J.D.
"The Theory of Parsing, Translation and Compiling"
Volume 1: Parsing, 1972
Volume 2: Compiling, 1973
Prentice Hall, Englewood Cliffs (N. J.)

[21] Knuth, D.E.
"Semantics of Context Free L anguages"
Mathematical Systems Theory, vol. 2 (1968) 127 - 145

[22] Lewis, P.M., Rosenkrantz, D.J. and Stearns,R. E.
"Attributed Translation"

Journal of Computer and System Sciences 9, 279 - 307 (1974)

[23] Kristensen, B.B., Madsen, O.L.
Mitethods for Computing LLALR(k) L_ookahead"
ACM Transactions on Programming LLanguages 3, 1, 60-82 (1981).

Al

74

Appendix A

This appendix describes how to use the BOBS-system on the CDC
6400 at the Regional EDP-Center (RECAU), and on the DEC-10 at the
Department of Computer Science (DAIMI) both at the University of

Aarhus.

We shall describe the job control cards used to call the system and
the means by which the PASCAL files INPUT, OUTPUT, PARSIN,
PARSOUT and TABIL.ES are interfaced to the file systems of the
respective machines. The parser generator has the following pro-

gram head:

PROGRAM BOBS (PARSIN, PARSOUT, TABLES, INPUT,
OUTPUT);

The skeleton compiler has the following program head:

PROGRAM BOBS (INPUT, OUTPUT, TABLES) ;

The BOBS-system at RECAU

At the time of writing RECAU is using the KRONOS operating system
on a CDC 6400. In the near future it Is planned to change to the ope-
rating system NOS, and to change to a CDC CYBER 173. The BOBS

system should, however, not be affected.

The direct permanent file BOBSSYS/UN = DATBOBS contains the
parser generator. BOBSSYS is a loadable file generated by the PASCAL
compiler. The indirect permanent file PARSIN/UN = DATBOBS

contains the skeleton compiler.

The file names of both the parser generator and skeleton compiler

may be substituted at execute time according to the usual KRONOS rules.

The following is a KRONOS job concomitant to the examples 4. 1
and 5.1. The file DEMGRAM contains the input to the parser generator.
The file DEMSTRG contains the input to the skeleton compiler,

DATZZ«CMB00005T100
USERDATBORS, e
CHARGE s AAUDATKF ¢ BURS .
ATTACHsBORSSYS/UN=DATBORS,
GETsPARSIN/UN=DATBCBS,
GET¢DEMGRAM,

REDUCE"‘D
BOBSSYSs e 9 s DEMGRAM,
REWINDsPARSOUT,
PASCAL 9 I=PARSOUT.
GETsDEMSTRG,
LGOsDEMSTRG.
SAVE 4 PARSOUT,
SAVE s TABLFES,

A2 The BOBS-system at DAIMI

75

*BOBSSYSTEM DEMO EXAMPLE
L

A*

¥PARSER=GENERATOR
#SKELETON COMPILER
#INPUT GRAMMAR

4k

#RUN PARSER=GENFRATOR

k13

RCOMPILE SKELETON COMRILER
#STRING TO HE PARSED
#RUN SKELETON COMPILER
#SAVE SKELFTON COMPILER
#SAVE PARSF TABLES

DAIMI is currently using the TOPS~10 operating system on a PDP-10.

The parser generator is called by the command R BORS,

You will then be asked to specify the following files:

PARSIN =
PARSOUT =
TABLES
INPUT

OoUuTPUT

il

il

(the skeleton compiler, normally SYS : PARSIN)
(the generated skeleton compiler)

(the generated parse tables)

(the input grammar)

(the output listing from the parser generator).

IT you don't specify some of the file names (i.e. just type a NEWLINE),

then you get default names in accordance with the PASCAL system on the

PDP-10.

PARSOUT may be compiled and executed by the PASCAL. system as
a normal PASCAL program. The file TABLES in the program head

must be specified at execute time to be the one containing the parse

tables,

76

Appendix B, A (minor) extension to the BOBS-system

When adding semantics to the BOBS skeleton-compiler it has always
been inconvenient that the user has no control over the numbering of

the productions.

The parser generator is now able to generate a semantic interface

which is a sequence of text lines, one for each production. Each line
has the form:
PRODNO {__JINPUTNO (L ABEL

PRODNO is the number of the pr*o(:i'uction as generated by the
BOBS-system,
INPUTNO is the number of the production obtained through a

consecutive numbering of the productions in the order
as they appear on input,
LABEL is a string of characters which the user may attach

to the production. See below for the way of doing this.

The semantic interface is written as the last information on file TABLES.
When the procedure INITIALIZE has been called in the Skeleton Compiler,
the file TABLES is positioned at the beginning of the semantic interface

(some end-of-lines and blanks appear first).

If INPUTNO is wanted, option 33 must be used.

If LABEL is wanted, option 34 must be used, and an <alternative> in

a < grammar-rule> (cf. 4.2.4) must be

77

; . . +
<alternative> =+ < label> {<nonterminal> | < terminal> }
< label> =+ sequence of characters M1
The '"'sequence of characters! must not contain the current M1. Blanks

are not skipped. No more than 100 chars may appear.

INPUTNO and LABEL. will appear on the grammar listing.

Example

¥ARXXXAX¥ERX A LIST CF INPUT WITH FCSSIBLE ERRORVESSAGES ¥ ¥¥xx¥¥wesxx

OPTIONS {33,34)
METASYMBOLS Mi== M2=/ M3=< M4=3
NAME KONST () + * 3

<E< = PLUS= <E< + <7< / = <T< 3
<P< = ID=NAME / (= KONST/={ <E<)} ¢
<T< = MILT= <T<¢< ¥ <F< / = <Pc ¢

RERXR R RREARRRFFARRILHXREREER OND OF LIST S ¥R RN RF R RN RH R RH VRN L L NE NS N

ERRRRHSRERXREAXLFAFXFARRRRERR THE GRAMMAR X ¥ XX AP ¥ AX N XU X MY XX XXX YRR 04 %0 ¥ A%

1 <E> 38= <FE> 4+ <T>» 4 FLUS
Z2 “ /7 <T> 22

3 <T> $8¢= <T> * «p> g MULT
4 / <F> 27

5 <P> 33= NAME 23 I0

) / KGNST 4 C

7 /<>) 25

R R R i R ki v vV

The semantic interface as written on file tables:

FLUS
MILT

D
C

WD U N
U1 £ NN O N e

	20050927101533_Page_01_Image_0001.tiff
	20050927101533_Page_02_Image_0001.tiff
	20050927101533_Page_03_Image_0001.tiff
	20050927101533_Page_04_Image_0001.tiff
	20050927101533_Page_05_Image_0001.tiff
	20050927101533_Page_06_Image_0001.tiff
	20050927101533_Page_07_Image_0001.tiff
	20050927101533_Page_08_Image_0001.tiff
	20050927101533_Page_09_Image_0001.tiff
	20050927101533_Page_10_Image_0001.tiff
	20050927101533_Page_11_Image_0001.tiff
	20050927101533_Page_12_Image_0001.tiff
	20050927101533_Page_13_Image_0001.tiff
	20050927101533_Page_14_Image_0001.tiff
	20050927101533_Page_15_Image_0001.tiff
	20050927101533_Page_16_Image_0001.tiff
	20050927101533_Page_17_Image_0001.tiff
	20050927101533_Page_18_Image_0001.tiff
	20050927101533_Page_19_Image_0001.tiff
	20050927101533_Page_20_Image_0001.tiff
	20050927101533_Page_21_Image_0001.tiff
	20050927101533_Page_22_Image_0001.tiff
	20050927101533_Page_23_Image_0001.tiff
	20050927101533_Page_24_Image_0001.tiff
	20050927101533_Page_25_Image_0001.tiff
	20050927101533_Page_26_Image_0001.tiff
	20050927101533_Page_27_Image_0001.tiff
	20050927101533_Page_28_Image_0001.tiff
	20050927101533_Page_29_Image_0001.tiff
	20050927101533_Page_30_Image_0001.tiff
	20050927101533_Page_31_Image_0001.tiff
	20050927101533_Page_32_Image_0001.tiff
	20050927101533_Page_33_Image_0001.tiff
	20050927101533_Page_34_Image_0001.tiff
	20050927101533_Page_35_Image_0001.tiff
	20050927101533_Page_36_Image_0001.tiff
	20050927101533_Page_37_Image_0001.tiff
	20050927101533_Page_38_Image_0001.tiff
	20050927101533_Page_39_Image_0001.tiff
	20050927101533_Page_40_Image_0001.tiff
	20050927101533_Page_41_Image_0001.tiff
	20050927101533_Page_42_Image_0001.tiff
	20050927101533_Page_43_Image_0001.tiff
	20050927101533_Page_44_Image_0001.tiff
	20050927101533_Page_45_Image_0001.tiff
	20050927101533_Page_46_Image_0001.tiff
	20050927101533_Page_47_Image_0001.tiff
	20050927101533_Page_48_Image_0001.tiff
	20050927101533_Page_49_Image_0001.tiff
	20050927101533_Page_50_Image_0001.tiff
	20050927101533_Page_51_Image_0001.tiff
	20050927101533_Page_52_Image_0001.tiff
	20050927101533_Page_53_Image_0001.tiff
	20050927101533_Page_54_Image_0001.tiff
	20050927101533_Page_55_Image_0001.tiff
	20050927101533_Page_56_Image_0001.tiff
	20050927101533_Page_57_Image_0001.tiff
	20050927101533_Page_58_Image_0001.tiff
	20050927101533_Page_59_Image_0001.tiff
	20050927101533_Page_60_Image_0001.tiff
	20050927101533_Page_61_Image_0001.tiff
	20050927101533_Page_62_Image_0001.tiff
	20050927101533_Page_63_Image_0001.tiff
	20050927101533_Page_64_Image_0001.tiff
	20050927101533_Page_65_Image_0001.tiff
	20050927101533_Page_66_Image_0001.tiff
	20050927101533_Page_67_Image_0001.tiff
	20050927101533_Page_68_Image_0001.tiff
	20050927101533_Page_69_Image_0001.tiff
	20050927101533_Page_70_Image_0001.tiff
	20050927101533_Page_71_Image_0001.tiff
	20050927101533_Page_72_Image_0001.tiff
	20050927101533_Page_73_Image_0001.tiff
	20050927101533_Page_74_Image_0001.tiff
	20050927101533_Page_75_Image_0001.tiff
	20050927101533_Page_76_Image_0001.tiff
	20050927101533_Page_77_Image_0001.tiff
	20050927101533_Page_78_Image_0001.tiff
	20050927101533_Page_79_Image_0001.tiff

