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ABSTRACT

This is the second of two papers on the complexity of deciding
membership, emptiness and finiteness of four basic types of LLindenmayer
systems: the EDOL, EOL, EDTOL and ETOL systems. For each problem
and type of system we establish lower bounds on the time or memory re-
quired for solution by Turing machines, using reducibility techniques.
These bounds, combined with the upper bounds of the preceding paper,

show many of these problems to be complete for ¥ or PSPACE.




1.

INTRODUCTION

In this paper we complete the program started in [7], of determi-
ning tight bounds on the complexity of several problems concerning L.
systems. We establish lower bounds in this paper; with the results of
[7] it is shown that most of the problems are complete, either for non-
deterministic polynomial time or for polynomial space. Consequently it
is unlikely that efficient algorithms can be developed to solve them,

We use the terminology of [ 7]. The following table summarizes

the known results (ours and previous ones), with the contexi-free and

context~sensitive cases included for comparison.
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The results of the top and bottom rows and the leftmost column are
known, and may be found in[4],05],[6],09],010],[13],014],(15],[16],[17],

and [ 18],

LetMST™. We say that M is NP -hard if any set in (1P is (polyno-
mially) reducible to M. We use polynomial-time many-~one reducibility -
namely L is reducible to M just in case there is a polynomial-time~
computable function f such that for allx, x €L if and only if f(x) € M.

M is complete for NP if M is NP -hard, and M .is in NP, To show that a
problem M is N¥ - hard it suffices to show that some other problem al-
ready known to be N -hard is reducible to M (this follows since reduci-
bility is transitive). Hardness and completeness can also be defined for

PSPACE, in the same way. An introduction to these topics may be found

in[1].

More refined notions of reducibility are needed to formulate and
study completeness for NSPACE(n), P and N§, but will not be defined

here, since we prove no new results for these classes.




2. SYSTEMS WITHOUT TABLES

Theorem 1 There is an EPDOlL.-system G, such that if L(G) is in

DSPACE (S(n}), then
S(n)

sup >0
00 log n
Proof L={a"be" |nz20} is an EPDOL~language. By Alt and

Mehlhorn [ 2], if L is in DSPACE(S(n)) then S must satisfy the condition

above. v 0
Theorem 2 NONEMPTYZTPO g e hard.
Proof By Stockmeyer & Meyer [ 12] the following problem is

ne - hard:
Given a regular expression R of the form
o (09 ) * + ... + 0P (0% )*

to determine whether L(R) * 0%,

Construct an EPDOL system G =(V, P, Z ... Z:, %) where
1

J . .
v=1{2z |1sisr, 05jsp,+q,-1}, T=V- (2, 2P .., 2P
and P consists of the productions (i =1, ... , r):
ZJi"Z::+1for‘j=0, cee s Pyt O -2, andZ';)i—'-Cli —1—'2?1.

Now L (R) # 0% iff L (G) + @ iff G € NONEMPTY="DPO0L,

Clearly G can be constructed from R in polynomial time, so

NONEMPTYEPPOL (o 0P - hard.




Corollary 3 INFINITEEPPOL (o 1P hard.

Proof Obtain a new grammar G! from G by replacing Z?i tai-1, Z'iOi by
Zli:)i +qi -1 - Z?i ZFi)i.
Then L(G!) is infinite iff L(R) * 0%

[]
Corollary 4 The following problems are NP-complete:
NoNEMPTY PR inFini TEEPOE . nonempTYEO ) inFingTEEO
and their restrictions to propagating systems.
Proof Immediate from the above and theorems of [7 ]

J
Theorem 5 MeEMBEREFO- (g np hard.
Proof Let G=(V, P, w, X) be an EPDOL~-system.

Construct an EPOL~system G' = (VU {g,0}, P!, w, {01})where P! con-
sists of all productions in P, a®0fora¢€ X, 0%g, and g~ g. Now L(G)
contains words of length i iff Oi € L(G').

The theorem follows then by observing that in the proof of Theorem 2

L(R) # @ iff L(G) * @ iff L{G) contains a word of length r.

From this and Theorem 7 of [7 ] we have:

oL EDOL

Corollary 6 MEMBERE and MEMBER are NP - complete.




3.SYSTEMS WITH TABLES

-€
Theorem 7 MEMBERT P10 ¢ NSPACE (n!™%) for any € > 0
Proof Let Z=(K,Z,I",#,0,q,, i qf}) be an arbitrary 1 tape Turing
machine which operates in space n (¥ is an end marker). For any x = ;... @n,

construct the EPDTOL system Gx = (\/n,B’ PR { 0] ) where

v_ = {g,0} U ilAEI“andOSi_<_n+1}UK
1
1

LA
N
0,12 ., anantl
2 N

wo = p # a
For each (p,a) € (K - {qf})xr‘ there will be a table T

in §_ defined as
Py n

follows:

If 6(p,a) = (q,b,R) then

0 + i, i1 ,
Tp’a=§p—'q,a R TR PO lcEl",O<xSn+1}UGp’a

where Gp a contains d = g for every d € \/n other than

p,ao or c' for c € T, 0<i<sntl.

If 6(p,a) = (q,b,C) then

T ={p-’q,a0=¥bo}uici—ici[céf,O<i£n+1}UG

p,a p,a

If 8(p,a) =(q,b,L) then

Tp a={p"Q, ao'*b1} U {Ci-')CH_?]CET, 0<i<nj
2
rvt 1 0
- G .
u fc ClcEF}U 5, a

In addition, B'n contains the table

Tf=iqf-*0} U{ci—volcél", osisnttfufa~rgla€kuig,of -{ql}

It is easily verified that Z yields an 1.D. @ = bO"‘bi—l D bi v bn+1 iff
G derives the string p bn_'+2. . b'.’]-H bo. ...opnTitl Consequently

0 i-1 7 n+1
L.(G) _ §0h+3}

if Z accepts x, and L(G) =@ if Z does not accept x.

Further, |G| = 0(n log n).



= —
Now suppose MEMBER EPDTOL ¢ NSPACE(n1 ) for somece , 0<e< 1.

Let L € NSPACE (n) - NSPACE (n!™%/2)

; such sets are known to exist
by E‘I 1 ] Let Z as above recognize L. in space n. Then we can decide
whether an arbitrary x € 2% is in L by first constructing G as above,
letting n = lxl andy = On+3, and then deciding whether < E, y > €

MEMBER EPDTOL  Now | < G, v >| = 0(nlogn), so this process works

in space0((n logn1—€))= 0(n1_€'(logn)]—e) = O(n1—€n e/z) = O(n1—€/2),

a contradiction.

Corollary 8

None of the following is in NSPACE (n 1—'e‘)

MeMBEREP TR NonemMPTYEPTON  inEmiTeEP TO8 ) MeMmBERE TOL,

NONEMPTYE TOL o NN TEF TO-

forany e > 0:

, or their restrictions to propaga-

ting systems.

Proof
The construction is easily modified so that L(G) is infinite if and only if
Z accepts x, giving the result for lNF—'INlTEEDTOL. The other results

are immediate.

Corrolary 9

Each of the problems just mentioned is complete for polynomial space.

Proof
Each is recognizable in polynomial space by [7]. It is well known that
there is a context-sensitive language LL which is complete for polynomial

space. By the construction above, L < MEMBEREPDTOL,




Remark

The following somewhat simpler consiruction yields the same results

except for MEMBEREPDTOL and MEMBEREPTOL,and may be interesting

in its own right. Given a nondeterministic finite automaton M = (K, Z, 0, A F),
define the EDTOL-system G = (K, { P | a€Z }, dy» K-F), where for

each a € I,

P, ={p?a a,... q |0(pa)=1{ay, a, ..., q_}}

it is easily seen that L.{G) is nonempty and infinite just in case L.(M) ¥ &%,

-
! ) lower bound obtains from the fact that

The NSPACE (n
{R| LR ¥ {0,1}% and R is a regular expression } is known to be

in NSPACE (n) and no smaller class [9]; given any R, a nondeterministic
finite automaton is easily constructed to accept L.(R}, so an EDTOL system
G can be built as just described satisfying L(R) ¥ { 0,1 } * just in case
L(G) ¥ @. If A productions are allowed it is easy to modify G so L(G) = {A}

. . b
just in case L(G) # @, giving the result for MEMBERE TOL.
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