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ABSTRACT

We determine the computational complexity of some decidable
problems concerning several types of Lindenmayer systems. The problems
are membership, emptiness and finiteness; the L systems are the EDOL,
EOL, EDTOL, and ETOL systems. For each problem and type of system
we establish upper bounds on the time or memory required for solution
by Turing machines. This paper contains algorithms achieving the upper

bounds, and a companion paper (PB-70) contains proofs of lower bounds.




INTRODUCTION AND TERMINOLOGY

Recently, considerable interest has been shown in questions con-
cerning the complexity of the membership problem for various types of
L systems. Van Leeuwen showed in [ 12] that there are ETOL systems G
such that L(G) is complete for NP (non’determihistic polynomial time).
Opatrny and Culik showed in [8] that EOL. membership (for fixed grammars)
may be decided deterministically in time n4, and Sudborough gave a (log n)2
space algorithm for the same problem in [10] , based on a construction by
van L.eeuwen [13]. Sudborough also gave a deterministic log n space al-
gorithm for EDOL membership in [ 11], and showed in [ 10] that some linear
languages (and hence some EOL and deterministic ETOL languages) are
complete for nondeterministic log space. In [5], we have shown that each
deterministic ETOL language can be recognized nondeterministically in
log n space, and therefore deterministically in polynomial time. VVitdnyi showed
in [14] that general membership for PDOL systems:and the infiniteness fop
DOL. systems can be decided deterministically in polynomial time.

In this paper we establish upper bounds on the complexity of the
emptiness and finiteness questions of each of the classes ETOL, EOL, and
their deterministic and propagating counterparts, as well as the general
membership problem “(that is, to determine whether x € L(G), if given both
xand G as data). In each case the upper bound is established by exhibiting
an algorithm to solve the problem, and analyzing its time or space require-
ments. The lower bounds will be established in a successor to this paper.

The problems we discuss may all be represented in terms of member-
ship in the following sets. C denotes any of the system classes just mentioned,

and G is a description of an L system, specified later.




C

1. NONEMPTY =
2. INF:INITEC =
3. MEMB ERC =
4, L(G) =

The following table summarizes the results of both papers, and also

contains the complexity of the corresponding problems for context-free

9]

{

| GisinC and L(G)# @}

{ G| GisinC and L(G) is infinite ]

for a fixed grammar G in C

and context-sensitive grammars for the sake of comparison.

{<G,x>| GisinCand xis in L(G)}
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Terminology used in the table

We assume the reader is familiar with the basic concepts concerning

L systems and time- or tape-bounded Turing machines (e.g. see [2, 3]).




In the system class names, D indicates '"deterministic!, P indicates
"propagating! (i.e. the absence of productions with the empty

string on the right side), and T indicates "tables!.

In this paper n will always be the size of the problem under conside-

ration (that is, the number of symbols in G or <G, x>).

DSPACE(S(n)) = {L | L is accepted by some deterministic offline

Turing machine which operates within
space S(n) on all inputs of length n}
NSPACE(S(n)) is defined analogously for nondeterministic machines,

and DTIME(S(n)), NTIME(S(n)) are defined similarly for the time

measure.
§ = DSPACE(logn), h& = NSPACE(log n)
{es] [22]
P = U otiMen®), ne = U NTIME(S)
k=1 k=1
% Kk ® k
PSPACE = |\ DSPACE(n) = {J NSPACE(n")
k=1 k=1
A table entry of the form L H for problem P indicates that
L
a) P is in class U,

b) If L ishf, P, NP or NSPACE(Nn), then some complete problem
(and so any problem) in class L is reducible to P.
c) If L is NSPACE(S(n,¢)), then for any ¢ > 0, P is not in
NSFACE(S(n,¢)).
d) if L is £ , then any algorithm which solves P in DSPACE(S(n))
S(n)

must satisfy sup Too n > 0.
e 09



6. A table entry LU for problem P indicates that P is

complete for class LU (i.e. both a) and b) hold).

Note. In this paper we shall not be concerned with completeness or re-

ducibility.
Note that an upper bound for a problem is automatically an upper bound for
a subproblem. Thus for example the upper bound on EOL. membership also

applies to EPOL and EDOL systems.

Grammar representation

Represent an alphabet V = {vl, Vs ,vp} in the form
V =[VT;V2;...;Vp], where 1 is the binary representation of i, 1< i< p.
This can be naturally extended to sirings and productions. Finally, we
encode an ETOL. system G = (V,P,w,Z) as the string G = [V; P;w;Z] over the
alphabet {\/,0,1,[,;,],7}. Note that we always have p log p'= o( G|).

The works referenced in the introduction, except for [-14], establish
the complexity of the problem of membership in L(G) for fixed G. The
general membership problem can be significantly more complex. The most
extreme case is the EDTOL systems -~ each L(G) may be recognized in
log n space, but deciding whether x € L(G) if both x and G are given requires
essentially linear space (both by nondeterministic algorithms).

In general it appears that problems about propagating systems are
no more complex than for non-propagating systems, although some upper
bound constructions are complicated by the presence of A —-productions, and

lower bound constructions are complicated by their absence.




DETERMINISTIC EJ0L. SYSTEMS

Let G =(V,P,w,Z) be an EDOL system. Throughout this paper we
will let p = #V denote the number of symbols in the alphabet \V. We call
a symbol b dying if b;k , and let Vd denote the set of all dying symbols.

In [14] Vitdnyi gave '"feasible!" algoprithms for the general member-
ship and finiteness problems for DOL systems. His algorithms use the fact
that if w5 x for some r > p|x|, all derivation steps after the first p|x| can
only use productions of the form a + @ where ¢ contains at most one non-dying
symbol. His algorithm yields

Theorem 1 MEMBEREPDOL E P.

The algorithms of [14] do not yield polynomial time algorithms for
non-propagating systems, since they involve directly simulating G's deriva-
tion for p(|x| - |w| + 1) steps. This derivation can produce intermediate
strings whose length is exponential in p if G has many dying letters. Our

EDOL.

algorithm for MEMBER involves a more efficient way to simulate short

derivations, and the construction of an auxiliary propagating sysiem.

Lemma 2 Let G be an EDOL system and x € ©*,
*
The relation g = x in k or fewer steps!' can be decided in time

bounded by a polynomial function of |<G, x>| and k.

Proof It is sufficient to show that the following functions a(i)
(where 0< i< k and a € V) can be computed in polynomial time:

g if a:!?«B and B is a subword of x

a(i) =
# otherwise



Leta€ Vand 0= i< k, and let the unique a-production in P be

a-+b.,b, ... br" It is immediate that

172
o
a if i =0and a is a subword of x;
a(i) = ﬂ b1(i—1)b2(|—1)...br‘(i—-1) if i # 0 and b1(|—1)...br‘(i-—1) is
a subword of x;
k:ﬁ: otherwise
Thus the a(i}'s may be computed in the order i =0,1,...,k; the time

bound is immediate, since only subwords of x are stored. A similar technique

was used in [5]. 0

Define the homomorphism h : V¥ 4+ V¥ by
A ifaceg VCI

h(a) =
a otherwise

From G we may construct the propagating system H = (V, P!, h(w),Z), where

P'={a—*h(a)]a*aisinpandaivd}
Lemma 3 For any k= 0, ¢,8 € V¥
K k
1. = i lies h = h
a2 B imp (o) 2 (B)
K . . K
2. hig) g7 implies o (:5> B for some B such that h(B8) =7y
p . . p
3. o = B if and only if hia) = 8.
G G
Proof Parts 1 and 2 are immediate from the fact that only dying .

letters may be derived from a dying letter. For 3, any letter a in y which is




*
not in h(y) must be dying; and a= X implies a:g)t. O
Theorem 4 MEMBEREDOL € P,
Proof Consider the following algorithm:
1. Accept <G, x> if w é x for some k= p|x| +p.
2. Construct H as above.
3. Determine whether h(w) =¥ h(x); reject if not.

H

4, Find z such that h(w)é z B h(x) and r > p‘x .

H
5. Accept if and only if zg: X

Correctness of the algorithm follows from Lemma 3.

Note in step 4 that z is uniquely determined by h(x) because r > p|x|. We
have | z| = |h(x)| and both z and h(x) consist of monorecursive symbols only
(a is monorecursive iff a >t a, see [ 14]). For monorecursive symbols we
have that a i:§ b and c —5 b implies that a = c. z can therefore be found from
h(x) in polynomial time.

Steps 1 and 5 can be done in polynomial time by Lemma 1, and step 3 is

polynomially bounded by Theorem 1. O

For any word w € V¥, we define Alph{w) to be the smallest A c VV

such that w € A¥*,

EDOL. :

Theorem 5 NONEMPTY Enw.
Proof LetG = (V,P,w,Y) be an EDOL system. Construct a non-

deterministic finite automaton M = (\/, { 0} ,6 ,SO,V—Z) where S, = Alph(w)
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and 6 (a,0) = {avaz, ‘o ,am} just in case a + ajag...a is a production
in P. It is easily seen that L(G) # @ iff I_(M);é 0*. By Stockmeyer and
Meyer [9], this test can be carried out nondeterministically in polynomial

time. Since the construction of M can easily be done in polynomial time, the

theorem follows. ]
Theorem 6 INFINITEFPO € np
Proof Let G =(V,P, w,Y) be an EDOL system, and let

W= wg = Wi .o be its derivation. Consider the sequence
Alph(wo),Alph(w1),.. . . Now L{(G) will be infinite if and only if
|w0] , |w1[ , lw2| y++. grows infinitely and there is a j such that
2P < i< 2Pt and Alph(wj) c 2.

In [ 14] it is shown that we can test the infinity of |w1 |, |w2| o oo
in polynomial time.

To check the j condition, form a connection matrix M, where for each
a,be Vv:

1 ifa- xbyis in P for some x,y € \V ¥

M(a, b) =

0] otherwise

Then M'(a,b) will be 1 if as xby for some x,y € V¥ (using and-or matrix
e 1,2 4 2P+l :

multiplication). We can calculate M ,M“,M ,...,M in polynomial

time by repeated squaring. We may now nondeterministically guess j between

2P and 2 p+1 , and obtain M by multiplying the elements of M1,M2,. .

corresponding to the ones in the binary representation of j. The condition

that Alph(wj)g Y is easily determined from ml. ]




EDOL and

In the following paper we shall see that NONEMFPTY

INFINITEEDOL are NP’ -complete, so this is a best possible upper bound.
PDOL. . _ . ;

Also, note that INFINITE is in P by [14], so one effect of terminal

letters is to increase complexity.

i1
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EOL SYSTEMS

Theorem 7 MEMBEREO € np .,
Proof Let G =(V,P,w,Z) be an EOL system and let
*
D: Yq8qYolpe e V| 11 P Xqeeo X be a derivation. We say that 485 -8

is the productive part of Y1848 Y4 q in D if ai§> X 75 A and Vi —j A are

*
subderivations of D, for 1< i=k+1. Note that if ¢ = 8= X, the productive

part of ¢ is no longer than the productive part of 8 in £ x. Thus any deri-

vation D: w:r‘>>< with r = p - can be decomposed into
D _ * * * P
WSU S VP Uy v, UL PV DX
where [, | = [8,] < |a,| = 1Byl<eve <la | = |B,,|» and &, B, are the

productive parts of Ui V; respectively for 1< i<m. Further, o, £ x by
the same productions as those in D, for each i. We will writey < § if
= = * <j<
v a]az...aq and 9 y1a1y2a2...aqu+1 where Y; € vd for 1<i< gt1.
Clearly o < ug and Bi < Ve
Conversely, suppose we are given a sequence g'gvﬁ I’QZ’BZ’ ooy
p . . =
% »B,, = x such that g,< w and for each i, 1= i< m we have |g¢i| = |/3i| ,
* . .
o = éi for some Gi with g, < 6i’ and Bizéyi_H for some y, with o, <Y1
, *
We can extend the derivation o, g 61 to get w = u;= v, where /31 < 61 < v
soB1 < Vg Similarly 31 =Y, can be extended to V= U, where %y, <Y, <u

‘I’

27
*
soaz< uz. We may continue to yield VZ""’um’Vm so w = y1:>v1:> u2§§
* . * \ ; P\ . p . .
= VvV, withg <v_. Nowa= A implies a= A3 thus B,,= x implies
p
VvV =

*
m= % sows xand x € L(G).

Following is our algorithm based on these remarks. Note that m=< | x]|.




q
if w= x for some q = p then accept;

choose ¢ < w;

for i:=1tomdo
*
begin choose B so || = |B] and @=> 6 for some § with § < 0;

ifB B x then accept;

choose g so 8=y for somey witha <y

This procedure will give a nondeterministic polynomial time membership
q
algorithm provided (1) determination of ¢ = 8 for q =< p and (2) the step

"choose 8 ....!" can be done in polynomial time. Ifa = and

az...ak

29
u
B = b,by...b thena= § for some B < § if and only if aif'“;' 6i for some

b, < 6i’ 1< i< k. If we form the connection matrix M so that M(a,b) = 1 just

in case there is a production a + y with b <y, we see that g X b, B <0 just

in case Mu(a1,b1) =,,., = Mu(ak, bk) = 1, Fuprther if u exists then it can be

chosen less than pk = 2k° log P, Thus M" may be found (if it exists), as in the
EDOL. T X . .

proof of INFINITE ENP, by a nondeterministic polynomial time algorithm.

So (2) can be tested in polynomial time.
q . \ . .
& =3 for some q= p can be determined in polynomial time by guessing

o&o,a1,...,g4q€ V¥ such that ]ggi| < |8}, o =ty aq=m3, and for 1< i < q there

is a word Giwheheaiiéiand a‘i+1<6i' O
; EOL.

Theorem 8 NONEMPTY € DSPACE(nN).

Proof Let G =(V,P,w,Z) be an EOL. system. Define

AO =E’Ai+1 ={a | a+ @ is a production in P and g € Ai* i,
If B € Ai* and 8= 0 then d € Ai"f_P for i> 1. Ther-eforeB:‘> x for some
x€EXT* iff B € Ai* . Since A, ¢ V there are no more than 2" such sets. Thus

L(G)# @ iff w € Afor some i< 2",
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The DSFPACE(n) algorithm will just calculate ’&\0”&1’ ...y storing only the
most recent one (as a bit vector)} and comparing the letters in w against it.
We can stop if | > 2.“; and | can be stored within n bits. a

INFINITEEOL will be shown to be in NSPACE(Nn) in the next section.




b
(¢

SYSTEMS WITH TABLES

ETOL

Theorem 9 MEMBER € NSPACE(n log n).
Proof Let G = (V, {PI’ Poyee- ,Pk} ,W,2) be an ETOL system.

If G is propagating, we can simply simulate a derivation from w stepwise,
accepting if x is found and halting if a word longer than x is obtained. This
uses space n log n, due to the fact that 0(log |§|) bits are required to store
one symbol of V.
If G has A -productions, we simulate the derivation, nondeterministically
guessing at each step of derivations which symbols will yield A, keeping
track of our guesses by marks on G. Thus the state of a derivation can be re<
presented as a pair (o, A) where ¢ is the productive part of the word and A is
the set of letters guessed to yield A .
Define & ﬁ\ B to be true ifg = a

a ...aqand3=y a

192 191Y20 - 8q¥ g1
where y; € A¥ for 1< i< gtl. We write (a,A) = (8,B) just in case |B| < | x|

B
and there is a table P, and stringsy,6 € V* such thatae= y, B < v, and

Alph(d) € B, where A = {a1,a am§ and a.a ...am_—->i 6. Let =3 be the

172 P.

2,...,

transitive, reflexive closure of =.

%
[t is easily seen that w= x if and only if there is an g, A such that

A
o <w and (a,A) =5 (x,®). Construction of an NSPACE(n log n) algorithm
basedron this is straightforward. ]
Corollary 10 MEMBERFD TOL € NSPACE(n log n).
Theorem 11 NONEMPTYETOL ¢ NispACE(n).
Let G =(V, {P],F’z, ce ,Pk} ,W,2) be an ETOL system. If we change

oL

the algorithm for NONEMPTYE to an algorithm working in the same way
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except that we now calculate A

1 from Ai nondeterministically by choosing

a table Pj and then define Ai+1 as {a \ a - g is a production in Pj and

ETOL .

o€ Ai'*} we obtain an algorithm for solving NONEMPTY in NSPACE(nN).

Corollary 12 NONEMPTYEDTOL € NSPACE(Nn).
Theorem 13 iINFINITEEP TOL ¢ NspacE(n).
Proof Let G =(V,P,w,2) be an EDTOL system, and let m be the

length of the longest right hand side of any production in . Suppose G has

a derivation

2p
2, |w|. Then q> 22p, so there must be i <] such that

with | x| = m
(1) \zi\ < \zjl, (2) Alph(zi) =Alph(zj), (3) Alph(wi) =Alph(wj), and

(4) Alph(wq) = Aiph(zq) < Z where z, is the productive part of w, (as defined
in the proof of MEMBEREOL Ene)

LetT,,7,7, be the table sequences such that w= w, SW, 2 X Conditions

(3) and (4) imply that the table sequences T 1Tk-T2(k = ‘0‘, 1,2,...) will yield
strings in T *, and conditions (1) and (2) imply that 7’17k1’2 will yield longer
and longer strings as k grows, so L{G) must be infinite,
Conversely if L(G) is infinite, arbitrarily long words may be derived, so
there must be a derivation satisfying q =2 - 22p, and (1) through (4) as well.
The algorithm proceeds by simulating a derivation D as above, storing
only enough information to determine whether (1) :ﬁ.hr‘Ol‘Jgh (4) are true. D can
be simulated closely enough to recognize (2), (3) and (4) by storing only

Alph(wk) and Alph(zk) at the k-1st and k'th simulation step, as well as
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Alph(wi) and A!ph(zi). At the k'th step we nondeterministically select a table

P € P to apply; it is easy to build Alph(wk) from Alph(w and P. We then

k—l)

nondeterministically select a set Alph(zk); such a set is legal just in case
every symbol b in Alph( Zk—T) has at least one occurrence of a letter from
Alph(zk) in the right hand side of the b-production in P.

To verify condition (1) note that‘|zo[ < |z1| <..., so| zi] < |z | if

il
and only if some symbol a in z; derives two or more symbols in Zj in z; = Zj'
T

This condition may be recognized during the simulation by remembering

whether any a in some z i < k< j) has two (or more) descendants in z

k—l(

K
This is easy to check when Alph(zk) is constructed from Alph(zk_1). The
storage required for this is O(p) bits and so no greater than |5| . 0

Theorem 14 INFINITEETOL € NSPACE(N).

LetG =(V,P,w,2) be an ETOL system. Let G, =(V,P',w,Z) be the
EDTOL system where P! is the set of dll deterministic tables P with the pro-

perty that {a; 8 in F’} c {a +5 in T} for some T In P. GC is often called the

combinatorial complete version of G. Now L(G) is infinite iff I_(\Gjé)'is infinite.
Infiniteness of L(GC) can be decided in NSPACE(n) by the method above. Since
we do not have to store GC explicitly but just make sure that we use the same
production for a symbol in one step of the derivation, we can test infiniteness

of any ETOL system in NSPACE(n) as well.

Corollary 15  INFINITEFOS ¢ NSPACE(N),
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