THE COMPLEXITY OF FINITE MEMORY PROGRAMS
WITH RECURSION

by

Neil D. Jones
Steven S. Muchnick

DAIMI PB-68
December 1976

Institute of Mathematics University of Aarhus [

DEPARTMENT OF COMPUTER SCIENCE
Ny Munkegade - 8000 Aarhus C - Denmark J’—

Phone 06-1283 55

L[]
1
=

The Complexity of Finite Memory Programs 1

with Recursion

by

Neil D. Jones2

Department of Computer Science
University of Aarhus
8000 Aarhus C, Denmark

Steven S. I\/\uci’nrﬂc:k3
Depariment of Computer Science
The University of Kansas
Lawrence, Kansas 66045, USA

A preliminary version of this work was presented at the Second
ACM SIGACT-SIGPLAN conference on Principles of Programming
L_.anguages, Palo Alto, California, January 1975,

Work partially supported by University of Kansas General Research
Grant 3802-2038

Work partially supported by University of Kansas General Research
Grants 3758-5038 and 3803-x038

I. INTRODUCTION

In [3] we situdied the computational complexity of a number of questions
of both programming and theoretical interest (e.g. halting, looping, equivalence)
concerning the behavior of programs written in an extremely simple program-
ming language. These finite memory programs or fmps model the behavior of
FORTRAN-Ilike programs with a finite memory whose size can be determined
by examination of the program itself. The main resulis of [3] are that detepr-
mining halting, equivalence, looping, etc. are all of essentially the same com-
plexity and that such analyses generally require nondeterministic algorithms
with tape bounds at least proportional to the amount of memory which the pro-
gram being analyzed can address, as a function of the size of the program. More
precisely, if we define Accept to be the set of all finite memory programs which
halt and accept at least one input string, then one of our results is that

Accept € NSPACE(n) - U NSPACE(n1—€) .
€e>0

Throughout the remainder of this paper we shall assume that the reader
is familiar with the notation, terminology, and methods of [3]

The present paper is a continuation in which we extend the analysis to
include ALGOL ~like programs (called fmppecs) with the finite memory augmented
by an implicit pushdown stack used to support recursion. Three variants are
studied: one without formal parameters (equivalent to call-by-value parameters)
and two with different varieties of call-by-name parameters. As might be ex-
pected, analysis 6f these programs is somewhat more complex, since the fmp
is essentially a programmed generalized sequential machine, while a fmprec
is a programmed deterministic pushdown transducer.

Our major results are the following. First, we show that at least deter-
ministic exponential time is required to determine whether a program in the

ecC

basic fmpp model accepts a nonempty set. Then we show that a model with a

limited version of call-by~name requires exponential space to determine ac-
ceptance of a nonempty set, and that a more sophisticated model with rewpritable
conditional formal parameters has an undecidable halting problem. The same
lower bounds apply to the equivalence problem, which in contrast to the situa~
tion for the basic fmp model is not known to be decidable (since it is not known

whether equivalence of deterministic pushdown automata is decidable).

lI. THE BASIC MODEL

A finite memory program with recursion (or fmprec) is defined to be a

tuple

P = <Pg KgPps Xgoeeeh Py 7(p>

where p = 0 and
1) Lorw+> lp are disjoint sets of variable names ("(O is the set of

global variables and for iz 1, X’i is the set of local variables for

F’i).
2) PoP - .Pp is a sequence of labeled instructions
1: |1?"; 2: Iz;...', k:lk
such that

a) each Pi is a nonempty subsequence of instructions,

b) each instruction in Pi for 0 < i < p has one of the following

forms
read X accept
write V - halt
X € Vv _(_:_@_lle
it V=V, goto r return

where X ¢ X’OU li.’ vV, \/1, and VV, denote elements of

2
ZJO U li UZ U {$}; j= 1, and r labels an instruction in P

c) the last instruction in any Pi is accept, halt, or return,

and d) every variable in ZO U eoeo U lp occurs at least once in

POP1' . .Pp.

The semantics of a fmpr‘ec is intended to mimic that of an AL.GOlL. 60-style

program of the form

begin symbol all variables in ZO;

procedure P1;

begin symbol all variables in %1;

body of P1

end;

procedure Pp;

begin symbol all variables in Zp;

body of P
Y P

end;

body of PO (the "main program!)

end

Note that the definition implies that goto's cannot cross procedure boundaries;
that there are no calls on the outermost block; and that the end of each indi-

vidual procedure is explicitly marked by a halt, accept, or return statement,

The semantics of the fmprec is a stack-oriented extension of that of the

ordinary fmp. A configuration of a fmpr*ec is a variable-length tuple (whose

length is three more than twice the current depth of calls) of the form

o =<x$,i0,y0,i1,y1,...,iq,yq>

where, for each j, if ij labels an instruction in P then Y. e uUi{$]})llr\! .

J
The initial configuration for an input string x€ & ¥ is <x$,1, $|LO‘ >.

Intuitively, the currently executing instruction is that numbered iq’ and
yq is a vector containing the current values of the local variables of the pro-
cedure containing li . Further, for each j such that 0= j=< q, ij is a
"return address! inqsome procedure Pr' which has executed a call but which-

has not yet been returned to; the values of the local variables in F. are con-

catenated to form yj.

Now let @ be a configuration as above and let X € lO U X1 U..o U %p'
Let X be local to procedure P (so k is the unique index for which
X EX,k). Further, let Z’k = §X1, e ,Xm} and let X be Xj. Then the memory

cell in ¢« denoted by X is defined to be the jth position in Vo = @qee-8
where r is the largest index such that iq labels an instruction in Pk’ and
is undefined if no such r exists. We use @ [X/b] to denote the configuration

in which the memory call denoted by X has the value b and the remainder of

the configuration is identical to . Similarly, a[n] denotes the configuration

identical to ¢ except that iq is replaced by n. The content function con()
is defined by
V o if VETU{S$I

con(V,a) =
aj if V& X'OU UZp and symbol aj is in

the memory cell in @ denoted by V

Let ¢ and B be two configurations, with @ as above. We define

o l——- B (o yields B directly) to be true if and only if one of the following is
true:
1) I, has the form "pead X" and B =a [X/b] [iq+1], where

q
bée X U {$} is such that either x=zbor x=z=¢ andb=$§

2) I, has the form "write X" and 8 =0 [iq+1]
q

3) liq has the form "X « VIl and B = o [X/con(V ,a)] [iq+1]

4) Ii has the form "if V1=V2 goto ' and either con(VP(x) = con(Vz,a)

q
and 8 =alr], or con(V1,oc) F con(vz,a) and 8 =« [iq+1]

5) qu has the form !'call Pj” and 8 = <x$,i0,yo,i1,y1,.. . iq+1,yq,

|q+1,yq+1> where i labels the first instruction of Pj and yq+1= $ /A

g+l

6) I

iq is "return! and B =<x$,io,y0,i1,y1,.. . >,

’ |q_1ayq_1

As usual, I-i‘— denotes the reflexive transitive closure of I—— . We say P

accepts (halts for) an input x € & ¥ if and only if initial configuration for x

yields an accepting (halting) cénfiguration, i.e. a configuration in which

Ii is accept (halt). L(P) denotes the set of all x € & ¥ such that P accepts x.

q
The output function P : T % 2+ T * is defined as follows. If

o, I-— o, I— ‘oo l— oL where ¢ ; is the initial configuration of P for x
and ap is an accepting configuration, then P(x) =b bz. . bp, where for
each | if o = <v$, igrYgre=es iq,yq> and the current instruction p has
the form "'write V! then bi = con(v,(xi), and bi = ¢ otherwise. P(x) is un-
defined for x € L(P).

Finally, we define Acceptrec by

Accept™®¢ = {p € fmp"°° | L(P) = @}.

Note that the representations and lengths of programs will be as for fmps

(see [3]).

I1l. COMPLEXITY PROPERTIES OF THE fmp' <

ec . ;] ;
Clearly a fmpr~ ©is computationally more powerful than a fmp, since it
ec ;
can accept a nonregular set. In fact, a fmpr‘ may be viewed as a programmed

deterministic pushdown transducer (dpdt), as shown in the following lemma:

Lemma 1 For any P € fmpr'ec there is a deterministic pushdown transducer

M equivalent to P)i.e. P(x) = M(x$) for all x € % ¥), and conversely.

Proof Consider a variant of the nonrecursive fmp which is augmented

by an explicit stack and the instructions !"push V" and "pop X" with the natural
semantics (push V adds con(V,q) to the top of the stack and pop X removes the
topmost stack symbol and places it in the memory cell denoted by X). Such a

machine model {which we shall call a fmpStack

) is clearly equivalent in power
to a dpdt, since they differ only in how the finite control is specified.

It is,further, quite clear that it is possible to construct for an arbitrary
P e fmpPec an equivalent fmpStack by standard methods involving storing the
"meturn addresses!! on the stack as bit sequences with multi—-way branches used
to simulate the effect of the return instruction. Thus constructing an equivalent
dpdt, given a fmpr‘ec is easy.

The other direction of the theorem is a bit more complex.
stack

Suppose we are given a dpdi M presented as a fmp . Let the instruc-

tions of M be laveled 1,2,...,k in sequence and let the variables in M be

nhamed X.,,...,X . We define the fmprec
1? m
P=<Pu, { YsF e s P X e ,xm} ,P 1,1 TOP, AUX}>
where P, and P, are given by the following AL.GOL. 60 style program *) with

a € ¥ chosen arbitrarily and # used as the bottom of stack marker:

*) In this and succeeding programs we use a number of high level dictions,
such as case and do forever, because of their greater degree of structural

clarity.

X

., X

begin symbol AUX,FP...,Fk, TEE m?
procedure P1;
begin symbol TOP;
TOP « AUX;
do forever
case
p=an Fpe % Jp
F,=a: Foe $5 Jys
Fk=a: F. o+ 3, Jis
end case
end;
F1 + a; AUX « #F;
call P1; halt
end

The instruction segment di is obtained from the ith

ith instruction of M

accept

halt

push V
pop X

instruction of M as follows:

JiinFa

read X, Fi_H«-«a

wprite V, Fi_Hc—a

HVi=V,thenF, «a
elseFiqva

accept

halt

AUX « V, Fi+1 « a; call F’1

X+ TOP; F + a; return

i+1

P simulates the operation of M by interpreting one instruction at a time,
keeping track of the current instruction by means of the flags F1, . e ,Fk.
Calls and returns simulate pushes and pops so that the current top of stack
symbol is‘in the cell denoted by TOP in the current invocation of PI. AUX
is a global auxiliary cell used to update TOP when a push is performed.

It should be clear that P faithfully simulates M. [

Note that the use of global variables (e.g. AUX) is necessary in
this construction, since it is known (Tixier [7] and Lomet [4]) that not all
deterministic context-free languages are recognized if information cannot
be passed back from a called submachine.

It follows from Lemma 1 that the result in [3], that equivalence of
fmps is computationally no more difficult than nonemptiness, is difficult to

recs (and is perhaps not even true), since the decidability of

extend to fmp
equivalence for deterministic pushdown automata is an open question of long

standing.

Theorem 2 There is a constant ¢ > 0 such that

Accept” €€ € DTIME(2°").
Proof Let P bea fmprec with k instructions and m variables, and
let s =|Z U {$}|. The natural construction of a dpdt M equivalent to P

(as discussed in the proof of the preceding lemma) results in a machine with
k + s pushdown stack symbols and at most k - s™ states. Clearly

k,m< len(P), so for some fixed a > 0 (independent of P) M will have no more

len(P)

than 22 ° states. Also, there is a constant b > 0 such that a repre-

b+ len(P)

sentation of M can be constructed in at most 2 steps.

10

Now L(M) # @ iff L(P) # @ and testing whether L(M) * @ can be carried
out in time polynomial in len(M), e.g. by first building a context-free grammar
from M and testing it as in [2]. Whether L(P) # @ (or equivalently P € Accept” °°)

can be determined by constructing M and then testing L.(M) # @, with a total time

len(P) ec

bound of 2° ° for some c> 0 and all P € fmpP . 0

Theorem 3 /‘»\cceptr‘ec

¢ D‘I‘lME(.’Z’.dn/Iog ") for some d> O.

Proof Let L T ¥ be an arbitrary set in DTIME(Zn). Cook [1] has
shown that there is a deterministic auxiliary pushdown automaton Z which re-~
cognizes L ina linear storage bound (such a machine is merely a Iifnear—space—
bounded Turing machine with an auxiliary stack). Without loss of generality
we assume Z has 2 U { $} as both its tape and stack alphabets and operates

within tape size gn for some integer g> 0. Let Z be presented as a program

11;...;lk with instructions of the types werite s, right, left,

if s goto |, push s, pop, accept, and halt (where s €T U §$}) with the usual

interpretations (pop moves the topmost symbol on the pushdown stack onto the
tape square being scanned).

Given an arbitrary x = a4a5---3, €T ¥ we sha![construct a fmpr‘ec
fz(x) such that the computation performed by fZ(x) will (regardless of its own
input) directly simulate the computation of Z on input x. Also, the length of
fz(x) will be 0(n log n). As in the proof of Lemma 1, flags F1, .o ’I:k are used
to record which instruction of Z in currently being simulated. The variables

T1, .oy Tgn are used to contain the symbols on the auxiliary storage tape of

Z and flags POSI, “ o ,POSgn are used to identify which tape square is currently

being scanned. The form of the program fZ(x) (with # used as a bottom of stack

marker) is as follows:

11

begin symbol AUX,F1,... ’Fk’TV' ..,Tgn,POS1,... ,POSgn;
procedure P1; |
begin symbol TOP;
TOP « AUX;
do forever
case
F1=a: F14—$;J1;
Fo=a Fioe $5 Jy
end case
end;
F,+a; POS,+a; AUX « #
T11— S PRIEEE Tna-‘an;
call P.]',
halt
end
where the correspondence between Ii in Z and ‘Ji in F’1 is given by the table
. inZ J. in P
=l====== ==l=====1=
accept accept
hait halt
right case
POS, =a: - POS, « $5 POS, « a;
F’Osgn_1 = a: POSgh__1 « $; POSgnt— a;
POS = a: halt
gan —
end case
F + a

left

write s

if s goto r

push s

BCop

12

similar to translation of right

case

POS , = a: T, ¢+ s5

POS = a: T « s
gn an

end case

Fippea

case

POS , = a: AUX € T ;

POS = a: AUX « T
gn an

end case

ifAUX =s thenFP«aelseFi+ «a

1

AUX ¢ s; Fi+1 + a; call F’1

case

F’OS1 = a: 'l’1 + AUX;

POS = a. T « AUX
gn gn

end case

TR

return

Now note that there must be constants bz 1 and c> 0 such that for any

bn =

(x)) <cn log n

13

(where n =|x|). The log n factor accounts for representing the subscripts
of the Fi’ To and POS, variables. Further, it is clear that fz(x) can be
constructed in polynomial time, say p(n); that fz(x) faithfully simulates Z
operating on input x; and that fz(x) € Acceptr‘ec if and only if Z accepts x.
Thus the question of whether x Is a member of L. can be solved by
first calculating fz(x) and then determining whether it is a member of

rec

Acceptpec. Now suppose that for all d > 0 we have Accept € DTIME(Zdh/Iog n).

Then the question "is x in LL?!" could be answered in time bounded by

dm/log m

p(n) + 2 , Wwhere m = length (fz(x)), by the method just outlined. By

the previous inequality we have

dm < dcn log n < dcn -
logm — logb+logn = 1+ logb —

dcn.

Thus for any d > 0, membership in L could be determined in time bounded

dcn

by p(n) + 2~ . If we choose d = 1/2c, this implies that

DTIME(2") € DTIME(p(n) + z”/z), which contradicts Theorem 10. 11 of Hop-

croft & Ullman [2]. Thus there exists d > 0 such that AcceptPeC¢

dn/log n

DTIME(2), as required. O

14

IV. MODELS WITH PROCEDURE PARAMETERS

The effect of call by value (and call by result) parameters can be
achieved in the basic fmppec model by setting a collection of global variables
before executing a call and then copying their values into local variables
immediately after procedure entry (and similarly at a return for call by re-
sult). We shall next consider two versions of call by name and establish their
complexity properties.

For the sake of simplicity we avoid giving formal definitions of the
call-by-name models, relying instead on the reader's presumed familiarity
with the semantics of ALGOL. 60 to verify the validity of our constructions.
We first show that a broad Interpretation of call by name results in an unde~
cidable halting problem, and consequently in emptiness, equivalence, and
similar problems being unsolvable as well. The proof of this fact will again
be a simulation argument.

Let Queue dehote the programming system with a single memory cell X,

an implicit queue data structure, and the instruction types

enqueue a - copy the symbol a onto the right end of the queue

dequeue X -~ remove the leftmost symbol from the queue and copy
it into X

if X =a ~goto r where aEZ_

halt

We assume that & = | 1,2,... ,n} here for some fixed n= 2. Itis known that
the problem

Given an arbitrary program P in Queue

To determine whether P will eventually halt (by executing. a

halt instruction or emptying its queue)

is recursively undecidable. This can be shown by simulating tag systems [5]
in Queue, since we know that tag systems in turn can faithfully simulate Turing

machines.

15

Theorem 4 The halting problem for finite memory programs with recursj‘io‘n

and call by name is recursively undecidable.

Construction Let P = 1: l1; .oy ks lk b'e any program in Queue with
variables ><1, .o ,Xm. From P we construct the ALGOL ~like program which
follows. The program uses the integer data type for simplicity; the same
effect could also be achieved by a larger program with only the sxn%bol data

type, as used by the fmpr‘ec.

begin integer , X;

procedure P(A,B,C); value C; integer A,B,C;

begin

do forever

case
F=1 Jis
F = k: ‘Jk
end case
end,
Fee 1

call P(0,-1,-1)

end

where the instructions are encoded as follows:

l J.

=l= ='=

halt halt

_l_fV1=V2gotor IfV,=V,thenF «relse F « i+1
engueue a F« i+

call P (if B < 0 then C else A,C, a);

halt

16

dequeue X if B < 0 then halt;
Xe A
A« =A;
F e i+1

Discussion of the Construction

The above construction involves a rather subtle use of call by name,
as we shall now illustrate. Suppose the Queue program being simulated has

performed the sequence of instructions

enqueuye X 19
engueue Xz;

enqueue ><3

Then our simulator will be in the state diagrammed in Figure 1 (recall that
call by name parameters do nothave immediate values, but rather are pointers
to expressions which were bound to memory cells or other parameters at the

time of their call). The arrows in the figure indicate these parameter bindings.

recursion level parameter A - parameter B parameter C

4 pointer to pointer to ><3

ifB<O0thenC else A

pointer to
if B <0 thenC else A

2 Cpolnter‘ to \>:\;;e\r~to\\ X

ifB<0thenCelseA

1 pointer to pointer*::“\ -1

Figure 1. Stack Contents During Simulation in Theorem 4.

pointer to

1

17

The successive values of C in the stack will contain all the elements
ever added to the queue, with the most recently added ones nearest the top.
Those elements which have been dequeued appear as negative numbers.
Execution of the statement "X « Al in the simulator causes evaluation of the
expression bound to A. This causes "if B < 0 then C else A" to be repeatedly
evaluated, with B and C successively bound to elements lower and lower in
the stack, until at last a negative value is obtained for B. The value finally
returned (and stored in X) will be that positive value of C occurring lowest
in the stack, namely ><1 in the given example. Execution of "A « Al then
causes the same C value to be made negative, effectively removing it from the

queue.

Proof of Theorem 4 It should be clear that the constructed program faithfully

simulates the actions of P and halts just in case P does. Halting of programs
inQueue is undecidable, as poinied out above, since they can faithfully simulate
tag systems. Consequently any class of finite memory programs which is
capable of simulating the type of program we have constructed also has a re-
cursively undecidable halting problem. But the set of values assumed by the
variables in the construction is clearly fixed so that the class of fmps with
recursion and call by name is sufficient to carry out the indicated simulation.
O

Note now that the program constructed above actually goes somewhat

beyond the semantics of ALGOL 60, in that the statement '"A « -Al!' has essen-

tially the effect of

(if B < 0 thenC else A) « - (if B < 0 then C eise A)

While this is not legal according to the ALLGOL. 60 report [6], it is actually

allowed in some implementations and should be clear to the reader.

18

Even if the implicit use of a conditional expression on the lefthand side
of an assignment statement is prohibited, the halting problem remains quite

intractable, as is shown by the following theorem,

Theorem & There isa d> 0 such that the Accept problem for fmps with
recursion and call by name, but without assignment to conditional expression

parameters, is not in NSPACE(zdn/'Og M.

Proof We omit most of the details since the same principle has been used
in several previous theorems (e.g. Theorem 16 of [3]). In essence the tech-
nique is to construct, given a Turing machine Z which operates nondetermin-
istically in space 2" and an arbitrary string x € Z *, a fmp of the required

variety such that

(1) Z accepts x if and only if I_(fz(x)) + @

and (ii) Ien(fz(x)) = 0(] x| log| x|).

The method used in [3] was to build fz(x) to accept an input string just in
case the input encoded an accepting computation by Z on input x. This required
a memory capable of holding 2" symbols.

Such a memory may be simulated by the use of call-by-name parameters
as follows. Let INDEX denote an array of n variables, each containing a
0 or a 1. Such vectors can (and will) be interpreted as binary numbers in the

range 0, 1,..., 2"_1. Now consider the program

19

[
begin symbol INDEX, AUX;

procedure P(A);
begin symbol KEY, DATA;

— &
If INDEX < 2 then

begin

KEY « INDEX,

read DATA,;

INDEX ¢ INDEX + 13

P (if KEY = INDEX then DATA else A)

end
else
begin
Q
end
end;
INDEX « 0
P(0)
end
which reads in 2" data values (hereafter called ><0,><1, ooy X n) while

performing recursive calls and then executes the program segment Q. During
. . X . n ——=

the execution of Q the local variable stack will contain 2 <KEY, DATA>

. - - — .

pairs, namely <0, X >, <1, ><1>,...,<2r‘—1, in_1>, ordered with the

last of them at the top of the stack, and the A parameters will be chained

together in the same manner as in the proof of Theorem 4. Consequently any

><i value for i = 0,1,..., 27-1 can be fetched within the program segment Q
m———— .?

by setting INDEX « i and then fetching A, thus providing effectively random

. N .
access to a read-only memory of size 2. Note also that further recursive calls

to P can add to the end of this memory, but that only 2" distinct data cells may

be accessed.

20

Now the techniques used in the proof of Theorem 16 of [3] can be applied

quite directly to vield the desired result.

V. SUMMARY OF RESUL TS

O

We have considered a class of programs which bear roughly the same re-

lationship to finite memory programs as ALGOL. 60 does to FORTRAN, and

have shown thai analysis of their behavior is of extreme computational diffi-

culty. The following table summarizes both upper and lower bounds for the

complexity of the Accept problem for each of the varieties considered in [3]

and the present paper.

L.ower bound

Upper bound

Accept
Acceptnum

AcceptVWS

Acceptamﬂay

Acceptr‘ec
Acceptname
(restricted)

Acceptname

NSPACE(n ™)
NSPACE(n ')

NSPACE(n%¢)

NsPACE(2dn/1eg n)
pTIME(24"/ 109 Ny

NsPACE(287/ 109 Ny

undecidable

NSPACE(n)
NSPACE(n)
NSPACE(n?)
NSPACE(2°")

DTIME(2M)

?

21

REFERENCES

(1]

[2]

(3]

[4]

[5]

[6]

[7]

Cook, Stephen A., Characterizations of push-down machines in

terms of time bounded :computers, Journal of the Association

for Computing Machinery, vol, 18, no. 1, January 1971, pp. 4-17.

Hopcroft, John E. & Jeffrey D. Ullman, Formal Languages and Their

Relation to Automata, Addison-Wesley, 1969,

Jones, Neil D. and Steven S. Muchnick, Even simple programs are

hard to analyze, Journal of the Association for Computing Ma-

chinery, in press, 1976.

LLomet, David B., A formalization of transition diagram systems,
Journal of the Association for Computing Machinery, vol. 20, no. 2,
April 1973, pp. 235-257.

Minsky, Marvin, Computation: Finite and Infinite Machines, Prentice-
Hall, 1967.

Naur, Peter et al., Revised nreport on the algorithmic language

ALGOL 60, Communications of the Association for Computing

Machinery, vol. 6, January 1963, pp. 1-17.

Tixier, V., Recursive Functions of Regular Expressions in Language.
Analysis, Techincal Report CS-58, Computer Science Dept. ,
Stanford University, March 1967.

	20050927092142_Page_01_Image_0001.tiff
	20050927092142_Page_02_Image_0001.tiff
	20050927092142_Page_03_Image_0001.tiff
	20050927092142_Page_04_Image_0001.tiff
	20050927092142_Page_05_Image_0001.tiff
	20050927092142_Page_06_Image_0001.tiff
	20050927092142_Page_07_Image_0001.tiff
	20050927092142_Page_08_Image_0001.tiff
	20050927092142_Page_09_Image_0001.tiff
	20050927092142_Page_10_Image_0001.tiff
	20050927092142_Page_11_Image_0001.tiff
	20050927092142_Page_12_Image_0001.tiff
	20050927092142_Page_13_Image_0001.tiff
	20050927092142_Page_14_Image_0001.tiff
	20050927092142_Page_15_Image_0001.tiff
	20050927092142_Page_16_Image_0001.tiff
	20050927092142_Page_17_Image_0001.tiff
	20050927092142_Page_18_Image_0001.tiff
	20050927092142_Page_19_Image_0001.tiff
	20050927092142_Page_20_Image_0001.tiff
	20050927092142_Page_21_Image_0001.tiff
	20050927092142_Page_22_Image_0001.tiff
	20050927092142_Page_23_Image_0001.tiff

