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1. INTRODUCTION

Recently, considerable interest has been shown in quesiions con-~
cerning the complexity of the membership problem for various types of
L systems. Van Leeuwen showed in [ 11] that there are ETOL systems G
such that L.(G) is complete for N (nondeterministic polynomial time).
Opatrny and Culik showed in [7] that EOL membership (for fixed grammars)
may be decided deterministically in time n4, and Sudborough gave a
(log n)z space algorithm for the same problem in [ 10], based on a construc-
tion by van Leeuwen [12] . Sudborough also gave a deterministic log n
space algorithm for EDOL membership in [ 10], and showed in [ 9] that some
linear languages (and hence some EOL and deterministic ETOL languages)
are complete for nondeterministic log space. In a companion paper [4] , we
have shown that each deterministic ETOL language can be recognized non-
deterministically in log n space, and therefore deterministically in poly-
nomial time.

In this paper we study the complexity of the emptiness and finiteness
questions for each of these classes (ETOL, EOL, and their deterministic
counterparts), as well‘as the general membership problem.

Let G be a linearly encoded form of an ETOL. system over a fixed
alphabet independent of G. (E.g. represent symbols VisVgsee sV in
the form Vi where T is the binary representation of i, 1<i<m.)

The problems we discuss may all be represented in terms of membership

in the following sets. C denotes any of the system classes just mentioned.

1. NONEMPTYC = {G | GisinC and L(G)# @}
2. INFINITEC = {8 | G is inC and L(G) is infinite]
3. MEMBER® = {<8,x>] Gis inC and x is in L(G)}

4, L(G) for a fixed grammar G in C




The work referenced above establishes upper and lower complexity
bounds on problems of type 4 (except for a lower bound on deterministic
EOL. membership). We shall outline a series of constructions which suffice to
establish both upper and lower bounds on the remaining problems (in most
cases rather tight). As we shall see, the complexity of the general member-
ship problem (in which the input-is the system as well as the terminal string)
can be much higher than that of determining whether x is in I{G) for some
fixed G. In the most extreme case, if C is the class of deterministic ETOL
grammars, membership for fixed systems may be determined in log n space,
while the general problem requires essentially linear space (both by nonde-

terministic algorithms).




2. TERMINOLOGY AND RESUL TS

The results may be presented in the form of a table as follows. For
the sake of comparison we have included the context-free and context-sensi-
tive classes as well. In the system class names, D indicates ''deterministic!",

and P indicates ''propagating" (i.e. the absence of productions with the

empty string on the right side).
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TERMINOLOGY

1. DSPACE(S(n)) = { L | L is accepted by some deterministic offline

Turing machine which operates within space Sin)

on all inputs of length n}

NSPACE(S(n)) is defined analogously for nondeterministic machines, and

and D TIME(S(n)), NTIME(S(n)) are defined similarly for the time

measure.

2 £ = DSPACE(log n), nh& = NSPACE(log n)
[0 (o0}
P = U DTIME(RS), nP = UNTIMERS)
k=1 k=1
3. A table entry of the form I R for problem P indicates that
L
a) P is inclass U
b) If L ish&, P or NP, then some complete problem (and so any
problem) in class L is reducible to P
c) if L is NSPACE(S(n,¢)), then for any € > 0, P is not in
NSPACE(S(n,¢)).
d) If L is &, then any algorithm which solves P in DSPACE(S(n))
. S(n)
must satisfy sup > 0.
oo log n
4, A table entry Lu for problem P indicates that P is

complete for class LU.




3. OVERVIEW OF PROOF METHODS

EDOL .

Theorem NONEMPTY is WP hard.
Proof Method By Stockmeyer & Meyer [ 8] the following problem is

NP -hard:
Given a regular expression R of the form
0P (0% )% + ... + 0P (0% )

to determine whether L(R) + 0%,

Construct an EDOL. systiem

j ,O o
G =({z~i' | 1=i<r, 0<jspta-ll, P, 2y ... 2,
{ZJi ] j# Pis 1<i<r, OSjS_zpi,+qi—-H) whnere P consists of the productions
(i=

zl Zj+
i i

,..0.,r)

! for j = O""’pi+qi_2
zPitai=1 4 7P
i i

EDOL .

Then L(G) # @ iff L(R) % 0%, consequently NONEMPTY is NP hard.
Theorem NONEMPTYEDOL is in NP,
Proof Method Let G =(V,P,w,X) be an EDOL grammar. Construct a
nondeterministic finite automaton M = (\/, { 0} , G,SO,E) where
Sy = {fa€ v | a occurs inw}, and 8(a) = {a1,a2,... ,amf just in case

a- aqeeva is a production in P. It is easily seen that L_(G)% @ if and only

if I_(M)7-4 0¥. By Stockmeyer and Meyer, this test can be carried out nonde-

terministically in polynomial time. ]
Corollary
NONEMPTYEDOL' is NP complete.

Theorem ME!\/\BE!‘-‘%EF)OL is in ne.




Proof Method Given <G,x> , we can determine whether x € L(G) as

follows:
o := Axiom of G,
for 1 := 1Step 1 until | x| do
begin choose B so that a§6 and |a| = |8];
_;_1:,3 = x then accept;
choosey so B8 =y and |B| < |7 |;
o=y

end

This procedure will provide a polynomial time membership algorithm if the
step ""choose B ..." can be done in polynomial time; however there can be
nonrepeating derivations of length greater than any polynomial in l_G—‘ Let

p
= = ; R Py .
a—a1...amandﬁ _bi"'bm' Then o =g iff a;>by,..., and a. = bm”

p o

and ¢ ,é); g iff ¢« > B for some p= KT " where k Is the size of the

alphabet of G. The test a; :F; bi can be done by forming a connection matrix . 1
me log. k

M (M(a,b) = 1 iff a - b is a production), and calculating M,MZ,M4,. Y -

by repeated squaring. mP may be obtained as a product of some of these
p
matrices, chosen nondeterministically; and = 8 may be easily determined

from MP, o

Theorem  NONEMPTYECH € DspacE(n).

Proof Let G =(V,P,w,XZ) be given. Define

Ag =1, Ai+1 = {a | a =@ is a production in P such that ¢ € Ai* . Then
L(G)# @ iff wE€ Ai* for some i. The DSPACE(n) algorithm is simply to
calculate AO’AP ... , storing only the most recent one (as a bit vector),

and comparing the letters in w against Ai' O




Theorem  INFiNITES 'Ok ¢ NSPACE(n).

Proof Method L(G) is infinite if and only if there exists a derivation of

a word x € L(G) such that S:>* v1av2:>* w1awz:>* X, where as” o,
Alph(vlavz) =Alph(w1gng), and @ contains the letter a and another occurrence

of a letter, say b, yielding a nonempty subword of x.

The algorithm simulates such a derivation by nondeterministically choosing
Vi@V, 8, and b and checking whether the statements above are satisfied.

The only information needed for that,is information about the alphabet of the

current sentential form and two letters derived from a and b. (]
Theorem MEMBEREDTOL $ NSPACE(n]_e) for any € > O.
Proof Let 2 =(K,Z,I",#,0 » Ao { qf}) be an arbitrary 1 tape Turing

machine which operates in space n (¥ is an end marker). For any x = g eee 8,

construct the EDTOL sysiem G _=(V_,J ,w_, {o}) where

A fg,0} U lAEl"andO<l<n+1}UK

_ 0 _1.2 n 1
w. = p # aja, - n#n
for each (p,a) € (K - {qf} ) xT" there will be a table Tp 5 N I _defined as

’

follows:

If 6(p,a) = (q,b,R) then

T —{paaq, a®a ™ i, e

o a "cer,o<i<mijuc
?

U {c
p,a

where Gp a contains d = g for every d € Vn other than
2

p,ao or c' for c € I' O<i=sntl.

If 6(p,a) =(qg,b,C) then

_ 0..0 i .
Tp’a—{p—)q,a +b}Ufc 4c ICEI‘,O<1£n+1}UGp,a
If 6(p,a) =(q,b,L) then
Tpa={p—'q, ao”’bl}U{CiﬂCH—]lcéT‘,0<iSn}
?
u{c™Taclicerjue

p,a’




In addition, ‘Jn contains the table

f

It is easily verified that Z vyields an |.D. @ = bO' . 'bi—l p bi e bn+1 iff
G derives the string p bn—'+2. .. br]-H bo oo bn—'-l-1 . Consequently

0 -1 7 n+1
Li{G) = §0n+3} if Z accepts x, and L(G) =@ if Z does not accept x.
Further, ]5] = 0(n log n). In the usual way this implies
MEMBEREP TOL ¢ NspACE(n—¢), for any ¢ > oO. .
Corollary

MEMBEREDTOL is complete for polynomial space.
Theorem There is a deterministic EOL language L such that if L is in
DSPACE(S(n)), then
Sp sup 'So(n) >0

N0 gn

Proof L = {abncdn | nz 0} is clearly a deterministic EOL. language. By

Alt and Mehlhorn [ 1], L in DSPACE(S(n)) implies that S must satisfy the

condition above. 0

T.={a»0} Ulc'+0|c€eT, osi=nt1}ufag]| a€KU{g,0] -faf.
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