BETA LANGUAGE DEVELOPMENT
SURVEY REPORT, 1. NOVEMBER 1976

(REVISED VERSION, SEPTEMBER 1977)

by
Bent Bruun Kristensen
Ole L.ehrmann Madsen

Kristen Nygaard

DAIMI PB-65
September 1977

Institute of Mathematics University of Aarhus []

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06 -1283 55

]

=
=

—

This report is included in the publication series from

the following institutions:

- The Regional Computing Center at the University
of Aarhus, Denmark as report RECAU-76-=77.

- The Computer Science Department, Institute
of Mathematics, University of Aarhus, Denmark
as report DAIMI PB-65.

- The Norwegian Computing Center, Oslo, Norway
as report NCC Publication No. 559.

This report is also referred to as:

Joint Language Project Working Note No. 2.
DELTA Project Working Note No. 3.

BETA Language Development

Survey Report, 1. November 1976

(Revised Version, September 1977)

by

Bent Bruun Kristensen, University of

Aalborg, Denmark,

Ole Lehrmann Madsen, University of

Aarhus, Denmark, and

Kristen Nygaard, Norwegian Computing

Center, Oslo, Norway.

September 1977.

Contents

Abstract

Preface to the revised Version

Preface to the Original Version

Introduction

The Joint Language Project

Concepts for Description of the

Computing Process

BETA Systems

N N N N
S ow N

Basic Approach
Entities
Nesting

Entity Kinds and Constructional Modes

4.4.1 Autonomous Entities and References
4.4.2 Quantities and Infixing

4.4.3 Prefixing

Repition

The Dynamic Structure of
BETA Systems

Interrupts

Representative States and
Transitions

Parallelism

Page

ii

iii

11

11
12
16
17

19
21
22

22

23
26

30
35

Page

BETA Language Constructs 36
The Entity Descriptor 37
Constructional Modes 39

Constants and Restricted
Involvement 40
Interface Specification 41

5.5 Imperatives, Expressions and

States 42
Parameters and Virtual Attributes 49
Contexts 51
Generator Specification 52
ALPHA-Level Considerations 55
Conclusion 55

References. 56

Abstract

The report describes ongoing work within the Joint Language
Project (JLP). Research workers from Aarhus and Aalborg
Universities, Denmark and the Norwegian Computing Center,
Oslo, Norway participate in the project. The aim of the
JLP is to consider new tools in programming by the
development of a system programming language BETA and a
high level programming language GAMMA, both related to

the system description language DELTA. The state of the

ideas for BETA in November 1976 is presented.

ii

Preface to the Revised Version.

This report was prepared as a Working Note within the
Joint Language Project (JLP) in November 1976. The
purpose was to sum up the state of the BETA development
till 1. November, 1976, and to give a survey of the

JLP and the basic BETA ideas to a limited set of
interested people.

We also intended to provide a published version of this
Working Note. This version has been delayed for two main

reasons:

- the language development proceeded rapidly, and
particularly our ideas on how to approach parallelism.
As a consequence, some of the proposals in the version

of 1l.November soon were outdated.

- when, in the end of 1976, we started the revision of
the original manuscript, we found many minor points
which needed a clearer exposition. Since there was
no urgent need for a published version, this work was

given low priority.

The Working Note, as it now is revised, still presents
the state of the BETA Language development at 1l.November

1976, with two modifications:

1. A few proposals, mainly relating to parallelism,
have been omitted, since they soon were abandoned
and also were not related to fundamental aspects of

the language.

2. The syntax is modified to conform more closely to

the current BETA syntax.

No ideas or porposals from after 1l.November 1976 are,

however, added to the manuscript. The authors want to thank
the JLP team members, Birger Mgller-Pedersen and Peter Jensen
at the NCC, and Bruce Moon, University of Canterbury, New
Zeeland. They have all contributed through discussions, ideas
and comments.

September 1977.

Bent Bruun Kristensen
Ole Lehrmann Madsen
Kristen Nygaard

iii

Preface to the Original Version.

This Working Note contains a brief description of the
Joint Language Project (JLP) and a survey of the present
state of one of its partial projects: the development
of the BETA system programming language. The purposes

of this survey are:

- to inform other participants in the JLP in order to

provide a platform for our joint work.

- to make an initial evaluation and criticism by other

interested parties possible.

- to serve as a partial project status report.

A number of the ideas suggested are of a tentative nature
and may thus be modified, substituted or just abandoned

later.

(Within the JLP, preliminary ideas and results, status
reports and other information on work in progress will be
presented in Working Notes. Completed work will be

presented in Project Reports).

The JLP publications will be included in the publication series
of the participating institutions and will for this reason carry
multiple serial numbers. Also, they will be given serial numbers
within the JLP and the related DELTA Project publications.

Bent Bruun Kristensen,
Ole Lehrmann Madsen,

Kristen Nygaard.

1. Introduction

In the report "The BETA Project" by Peter Jensen and
Kristen Nygaard, ref. (1), the authors proposed that

the NCC should establish cooperation with other partners
in order to implement the BETA system programming language
on micro computers. The BETA language is now being
developed within the Joint Language Project (JLP) at

the University of Aarhus, Denmark, with participation
from research workers in Aarhus and Aalborg, Denmark

and Oslo, Norway.

BETA is based upon the ideas of the DELTA system description
language. This report gives an outline of the work going on
within the JLP. Particularly, the report presents the JLP
partial project which deals with the main framework of the

BETA language.

In "The BETA Project" report, the intended uses of the BETA
language were described, as well as its relation to some other
languages: the DELTA system description language, the DELTA-
derived GAMMA high level programming language, as well as the
SIMULA high level programming language. These aspects are not

repeated in this status report.

During 1977 new working notes and project reports will
present research related to various aspects of BETA and,
we belive, at least an initial BETA language specification.
(In "The BETA Project" report the time schedule proposed
calls for a firm and complete language definition at the
end of 1977).

2. The Joint Language Project.

The Joint Language Project (JLP) is carried out by research

workers at

- the Departement of Computer Science, Institute of
Mathematics at the University of Aarhus, Denmark
(DAIMI) ,

- the Regional Computing Center at the University of
Aarhus (RECAU),

- the University of Aalborg, Denmark,

- the Norwegian Computing Center, Oslo, Norway, (NCC).

The initiative for the JLP was taken in the autumn of 1975
by Bjarner Svejgaard, Director of RECAU. The initial purpose
of the JLP was twofold:

1. To develop and implement a high level programming
language as a projection of the DELTA system description

language into the environment of computing equipment.

2. To provide a common central activity to which a
number of research efforts in various fields of
informatics and at various institutions could be
related.

Thus, the JLP is also a research activity aiming at
contributing to the development of the field of programming
research. The reports are not only to be steps in a process
leading to a language implementation, but should also be
regarded as attempts to explore new ideas and reorganize

existing ideas of a more general interest.

The JLP is strongly related to the DELTA project at the
Norwegian Computing Center, Oslo, Norway (NCC). The DELTA
project is reported upon in references (2)-(7). Ref. (5)
"System Description and the DELTA Language" presents the
language and the reasoning behind its definition. It will
also be referred to as the "DELTA-4"-report. (DELTA is a
system description language which may be regarded as a
generalization and development of the SIMULA high level

programming language.)

The discussions within the JLP centered in the initial stage
around problems of implementation and some unresolved questions
related to the DELTA language. As a result six partial

projects were defined.

2.1 Distribution and Maintenance.

A number of problems relate to the proper design of software
which is to be distributed to a large number of computer
installations of many different types, being locally installed,
used and updated over an extended period of time. Questions
arising in this area are, e.g., distribution formats,
standardized updating procedures, documentation, interfaces

to operating systems etc.

These questions are discussed in one of the partial projects
of the JLP, with Jens Ulrik Mouritsen and Leif Nielsen

at RECAU as the responsible sub-team. The discussion is

not confined to the problems of a DELTA-derived language
only.

2.2 The BETA Development.

The discussion of methods for implementing a compiler and
run time system for the new language resulted in a decision
to write the implementation in a (possibly augmented) subset

of the language.

At this stage it became useful to introduce names for
the various languages or, rather, language levels. We
now discern three related languages at three different

language levels:

- a DELTA language, to be used in system description.

- a GAMMA language, being the projection of DELTA
into the environment of the computer and thus

being a high level programming language.

- a BETA language, to be used in system programming,
being developed by adapting the DELTA concepts to

organize the world confronting the system programmer.

As work with the BETA language proceeded, the authors
became convinced that the development of a powerful,
advanced BETA system programming language was an impor-
tant task in itself, and not only a convenient stepping

stone to the implementation of the GAMMA language.
The development of the BETA language definition is in
this first stage the responsibility of the authors of

this Working Note.

2.3 Control Structures Within Entities.

The traditional control structures (conditidnal statements,
repetition statements, case statements etc.) were given a
provisional treatment in the DELTA-4 report, Section 8.2.
We feel that these control structures to a very large
extent may be common for both the BETA, GAMMA and DELTA
levels. Particularly we feel that this should apply to

the action sequencing control within an entity. A large
amount of interesting work has been done in this area

over the last few years, and we have to extract a useful

set of structures, exploiting this effort. Also we have

to take into account that the introduction of computer-
assisted program verification techniques may be made
easier if control structures are selected with these
techniques in mind. Within the JLP team, Benedict Lgfstedt
at RECAU is responsible for this partial project.

2.4 Data Types.

One main reason for the frequent references to SIMULA in
recent programming language research is the properties of
the SIMULA '"class" concept. Often the class is used as a
tool in establishing composite data types. This is, however,
a doubtful approach, easily leading to conceptual confusion.
(For an initial discussion of the type-quantity issue, see
the DELTA-4 report, Sections 3.5.6, 7.1l.) In our opinion
composite quantities (described by "type declarations")
basically should be introduced as items infixed ("in-line")
in the entities which they characterize and only accessible
as part of these entities (e.g. no references to "real"
quantities). This applies both at the GAMMA and DELTA
language levels. The basic tools for achieving this must

be available at the BETA level, also including means for

establishing the set of values which such quantities may take.

For these reasons, the whole question of the definition

of types at the GAMMA and DELTA levels, and the associated
questions of the means for providing the foundations for
types at the BETA level, is defined as still another par-
tial project. Morten Kyng at DAIMI is responsible for this

partial project.

2.5 Contexts.

The concept of "system classes", used in SIMULA to provide

a set of predefined concepts as a context for a program

(e.g. the classes SIMSET and SIMULATION), has been revised
and extended in a DAIMI thesis by Birger Mgller-Pedersen
(spring 1976). The "context" concept proposed in the thesis
will be included as an important part of the structuring
tools of BETA (and GAMMA and DELTA as well). Birger Mgller-
Pedersen (from the spring of 1977 at NCC) will be responsible
for the further development and definition of this concept,

which also may be regarded as a partial project in the JLP.

2.6 Representative States.

A major problem in the execution of a program by a complex
of processing units working in parallel is to secure that
interaction between program execution components only may
result in states of variables etc. which are meaningful,

or representative, in relation to the task at hand.

This problem relates to a much wider area of methods for
program structuring, but is a particularly important one
when parallelism and (parallel and quasi-parallel) inter-

rupts are to be handled.

A conceptual approach to this problem, based upon the
DELTA concepts (see the DELTA-4 report, Section 11.1),
a report by Lars Mathiassen and Morten Kyng, ref. (9),
and work by the authors of this report, is being developed

by Morten Kyng and Kristen Nygaard.

The work within the JLP till now has created an active interest
outside the institutions participating in implementing the BETA
language, particularly as a tool for producing programs for
networks comprising micro-computer technology components (but
also for the implementation of SIMULA and GAMMA compilers).

3. Concepts for Description of the Computing Process.

In system programming it is, and to a much greater extent

will become, necessary to control the components which are
entering the program execution process: central processing
units, storage media, data channels, peripheral equipment etc.
This necessitates in our opinion a general conceptual approach
to these apparently very diversified components. It will appear
that a large proportion of the software complex now usually
referred to as "basic software" and "operating system" will

be regarded in our framework as being an integral part of

the organization of what we may call "logical components",

as opposed to the hardware components.

In the DELTA-4 report this system definition is introduced:

"A system is a part of the world

which we choose to regard as a whole, separated from the

rest of the world during some period of consideration,

a whole which we choose to consider as containing a col-

lection of componentsg, each characterized by a selected

set of associated data items and patterns, and by actions

which may involve itself and other components."

The reasoning behind this definition is given in Section 2.1
in the DELTA-4 report. Systems existing in the human mind,
physically materialized as states of the cells of our brains,

are called mental systems. Systems external to human minds are

called manifest systems.

When the term "a program execution" is used, we may either

understand

- the action of executing a given program, or

- what is physically generated by this action.

In the SIMULA, DELTA and now BETA language design process
the basic reasoning has been related to the structure

of a program execution understood as something generated
and undergoing a dynamic process of change. A program
execution 1is regarded as a system, and more specifically

as a manifest system, existing within the computing

equipment.

When information about a system is transmitted from one person
to another, this process may be conceived as follows: A person

whom we may call the system reporter considers some system

about which he wants to convey information through a system

description. The system to be described is called the referent

system. The system description is given in some language, under-
standable also to the receiver of the description. This person
uses the description to generate in his mind a mental picture,

a mental model system of the referent system. Since the essential

feature of the receiver in this context is his ability to gene-
rate a system on the basis of a system description, he is called

a system generator (see the DELTA-4 report, Chapter 2).

The above concepts do, however, apply to a much wider set of
situations than just transmission of system information from
one person to another. In the standard use of a computer, the

system reporter is a programmer, the referent system is his

conception of what should be generated within the computer, the

language is a programming language, the system description is a

program, the system generator is a computer and the model system

is a program execution. A more detailed discussion and a number

of other illustrations are given in Chapter 2 of the DELTA-4

report.

The "computer" concept is no longer useful for a precise dis-
cussion of the structure of the complex networks of interrelated
computing equipment which we have to deal with in the computing
systems of today and in the future. We shall regard such networks
as system generators in the DELTA sense and introduce concepts

in terms of which we may understand and describe such a network

as a system generator.

The term "program execution" is also too narrow and sometimes
misleading in a number of the situations we shall consider. As
remarked above, a program execution is a system in the DELTA
sense. This point of view relates naturally to our basic
approach, as stated later in Section 4.1. For this reason

we introduce the definition:

- a system which is being or has been generated by

the execution of a program written in a language L

is called an L-system.

It follows that the program execution of an ALGOL-program is
an ALGOL-system, of a BETA-program a BETA-system, etc.

A system generator (computing equipment network) component upon
which such systems may exist will be called a substrate. Discs,

tapes, core storage, data screens etc. are examples of substrates.

A system generator component which is able to change the state
within a system (in the above sense of the term) will be called
a processor. A central processing unit and a disc drive unit

are examples of processors.

A system generator component which provides a connecting link
between two components of these categories (substrates, pro-
cessors) will be called a connector. (It should be pointed out
that the more complex "data channels" usually will have to be
regarded as aggregates of substrates, processors and connectors
at the basic "hardware level". They may be given a simpler

structure at the "logical level".)

A collection of interacting substrates, processors and

connectors will thus be called a system generator. We shall,

in fact, understand any complex of computing equipment in
these terms, any piece of equipment being regarded as
belonging to one of the above component categories or as
a subsystem consisting of such components. (A system

generator may, of course, itself be regarded as a system.)

The set of instructions which a processor may execute as a
consequence of its physical construction only (not altered
or augmented by use of software) will be called its machine

language or, abbreviated, its M-language. What is established

on a substrate by the use of M-language alone is thus called
an M-system, and the physical equipment is conceived and used

as consisting of M-substrates, M-processors and M-connectors.

A complex of equipment used in this manner 1is regarded as an

M-generator.

A system generator is almost never used by prescribing its
program executions in M-language. Instead we use some language,

L, and we may prescribe program executions which we may conceive

as L-systems. Any substrate which is organized so that it may

contain an L-system will be called an L-substrate, and any

processor which is organized so that it may carry out actions
(changes of state) within an L-system will be called an

L-processor. In the same manner we define the term L-connector.

L-substrates, L-processors and L-connectors will now no

longer directly correspond to well defined pieces of equipment.
They are "logical" substrates, processors and connectors,
getting their defined capabilities by the use of storage,
processing power and software from other components of the

system generator (M-substrates, M-processors and M-connectors).

How this is achieved is not the concern of the user of the
L-language, who may use the system generator as if it
consisted of L-processors, L-substrates and L-connectors,
generating L-systems. In this way the concept of "basic
software" and "operating systems" will be dissolved, its
various constituent parts being distributed and regarded
as belonging to logical L-substrates, L-processors,

IL-connectors and L-systems.

One reason for substituting the term "program execution" by
"IL-system" now should be obvious: The term "L-system" will
comprise a traditional program execution as well as a file
on a disc unit and what is generated during a conversation

between components of a network and a user, etc.

4. BETA Systems.

4.1 Basic Approach.

In the DELTA-4 report and in the teaching of SIMULA, see e.d.
ref. (8), the presentation focuses upon what is generated
during the execution of a system description (DELTA) or a
program (SIMULA); the "model system" in DELTA, the "program
execution" in SIMULA, both consisting of a collection of

components called "objects".

Of course, the study and development of the tools for writing
program text is important, but as soon as one leaves the simple
situation of program executions consisting of one simple stack
(perhaps supplemented by a set of always-passive data objects),
the understanding of the dynamics of the program execution
becomes the essential starting point. The program execution
should be regarded as a system for which we want to prescribe
precisely defined properties by writing a program text. At the

higher level of generality of designing a programming language

a corresponding approach has to be used: We have to start by
discussing how we want to organize the systems (program execu-
tions) which are to be generated when program texts (written
in the language to be developed) are executed. The outcome of
such discussions then will determine the basic features of the
language. Obviously, considerations relating to clarity of
textual expression, etc., enter the language design process,

but are not essential in the first, basic stage.

4.2 Entities.

Our purpose now is to develcop suitable properties of BETA-
systems so that they may be used to organize the tasks
confronting a system programmer. The next step is to develop
language elements, together comprising the BETA language,

to be used in system programming, that is, in prescribing

specific BETA-systems.

Since BETA is based upon DELTA's system and system description
concepts, in our work we are also using the DELTA terminology.
In DELTA an attempt is made to create a consistent terminology
relating to the very wide class of systems which may be
described in that language. This class contains the class

of program executions, but is much wider. The DELTA terms

to a large extent have been drawn from those used in programming
languages, many are new, and some are new (but hopefully
improved) names for old concepts. Below we shall mention

in parentheses the most closely corresponding programming

language term when a DELTA term is being introduced.

As a first step we introduce the concept of an entity.
(Block instances, arrays, text objects are entities).
We shall build BETA on the following, well-known basic

organization:

A BETA-system as existing upon some subtrate will consist
of a (usually variable) collection of entities. 1In the
corresponding system description (program) an entity is

described by an entity descriptor. (Program text blocks

are entity descriptors).

An entity will consist of subtrate areas containing an

attribute part and an action directive. Within the entity

descriptor the attribute part is described by a set of

declarations and the action directive by a sequence of

imperatives (a body consisting of a sequence of statements).

The attribute part consists of a data item part and a

pattern part. The data item part consists of subtrate

segments (storage locations) containing values of the

data items defining the state of the entity at any given

moment. Data items are either gquantities (real and

Boolean variables are examples of quantities) or references.

The pattern part consists of descriptions, pattern declarations,

which may be used in generating entities. (In SIMULA, e.g.,
procedure and class declarations correspond to pattern

declarations).

The action directive consists of substrate segments containing
a sequence of instructions to processors, specifying an

action sequence to be executed as associated with the

entity. An instruction specified in BETA will, as stated
above (see also the DELTA-4 report, section 3.7.1), be

called a BETA-imperative. The basic physical format of a

BETA-imperative as materialized upon an M-subtrate will be,
of course, a sequence of M-imperatives, i.e. instructions
in M-language (possibly supplemented by local data items

used in the execution of what corresponds to a BETA-imperative).

Obviously, there will exist also BETA-imperatives specifying
the generation of new BETA-entities and the switching of
the processor's actions from the action directive of one

entity to that of another.

Considering an entity, we may distinguish between three basic

aspects: its structure, its specification and its state.

The structural aspects of an entity are those properties

which it has by being a BETA entity, and its mode of
generation, determined by the basic definition of BETA

systems and the BETA language. The specified aspects

of an entity are those properties which are described
within the entity descriptor, by the use of the language
(BETA). All entities which have been generated in the

same way, by a given constructional mode (se later) have

common structural properties. Entities having a common
entity descriptor have common specified properties. The

state aspects of an entity are those which are associated

with a specific point of time: the set of values of its
data items at that point of time, the stage of execution
of its action sequence, (some of these values may, of course,

be constant).

When an entity is generated, its specification (entity
descriptor) may be given as a part of the language element
causing its generation (stating its constructional mode).
This is e.g. the case with inner block instances in ALGOL

and SIMULA. The entity is then said to be singular.

In other cases, an entity's properties may be specified

by referring to a pattern declaration, specifying a set of

properties common to a group of entities. In these cases

the entity is said to be category - specified. The referring

to the entity descriptor of this pattern declaration is
made through an identifier associated with the declaration.
This identitifer is called the title of the pattern.

An identifier indicating a specific entity is called a

name of that entity.

Entities having the same set of structural properties are

said to be of the same kind. The basic features of a

programming language are to a large extent determined by
the kinds of entities available and the structural properties
they are given. Using ALGOL 60 as an example, ALGOL-systems

will contain three kinds of entities:

1. ordinary block instances, being either singular
(inner block instances) and category-specified

(procedure block instances).

2. type procedure block instances, always being

category-specified.

3. arrays.

In DELTA entities of the first kind are called instances,

of the second kind evaluations (since a value is associated

with the entity), the third kind array entities.

In ALGOL we have also, in fact, a fourth kind of entities,
associated with variables, being category-specified data
items whose properties are determined by various predefined

specifications called data types. In DELTA and BETA such

data items are called quantities. Since ALGOL quantities

all have a very simple data structure and language-defined
properties, we do not usually think of them as being
associated with entities which are constituent parts of
other entities. In DELTA and BETA, however, the user

will be able to specify more complex quantities.

In order to obtain an efficient organization of a BETA-system,
the obvious solution is to separate the system in two main parts:

a system descriptor and a (variable) collection of value records.

The system descriptor consists of descriptors for all entities

which may occur within the system, translated into a format

which may be used by the processors executing actions within

the system. A value record consists of a substrate area con-
taining the structural and specified data items of an entity.
Among the structural data items are a reference to the entity's
descriptor and to the imperative defining the stage of execution

of the entity's action directive.

An entity thus consists of the union of a value record and a

descriptor. Two or more entities may share a common descriptor.

If the attributes and actions of an entity El are integral
parts of the attributes and actions of another entity E2,

then El1 is said to be a constituent entity of E2. If the

attributes and actions of an entity El are not parts
of the attributes and actions of any other entity, El is

said to be an autonomous entity.

In ALGOL, quantities (variables) and arrays are associated
with constituent entities. Instances and evaluations are

autonomous entities.
4.3 Nesting.

As another basic organizational principle we introduce
the possibility of specifying that an autonomous entity
may be internal to another autonomous entity, which then
is called the first entity's encloser (see the DELTA-4
report, Section 3.5.4). This implies that the life span
of the internal entity is confined to that of its
encloser, and that it contains a constant structural
attribute indicating the encloser. An entity may contain
any number of internal entities, which once more may

contain internal entities, etc.

The resulting interrelationship between the autonomous

entities of a BETA-system will be a nested structure, or

simply a nest (see the DELTA-4 report, Section 3.5.1).

Every autonomous entity will have one, and only one encloser,
except one entity containing all the others. This entity

will be called the system entity.

4.4 Entity Kinds and Constructional Modes.

As stated above, a high level language is defined to a
large extent by the various kinds of entities available
and their structural properties in terms of data items,

patterns and actions.

In BETA an entity's specified properties are determined

by its entity descriptor. Its structural properties are

determined by the way it is generated, its constructional

mode.

The BETA language notation for an entity descriptor is

BEGIN entity description END

In some cases an entity generated by some constructional
mode will be anonymous, it cannot later be referred to by
a name. Means do exist for the naming of autonomous entities

and constituent entities.

If we want to use the descriptor to generate a group of
entities sharing the same specification, we shall call the
descriptor a pattern. This is indicated by the key word
PATTERN followed by a title which is used to indicate the
pattern, and the resulting language element is called a

pattern declaration.

- 18 -

The BETA language notation is
PATTERN P : BEGIN entity description END P;

(In ALGOL and SIMULA the brackets BEGIN and END also are
used to embrace compound imperatives. This is not the

case in BETA; instead the bracket pair (¥ and *) is used).

In SIMULA we have both a procedure declaration, a type

procedure declaration and a class declaration. In addition

we have implied a type declaration in some language
predefined versions (specifying the properties of REAL,
BOOLEAN etc. quantities). The structural properties of
entities, their kind, are given by the choice of the key
words in the declaration stating its specified properties
(PROCEDURE, CLASS etc.), by an indication of the predefined

declaration in the generating language element as in e.g.
REAL X, BOOLEAN B or by a combination (REAL PROCEDURE etc.).

In other block structured languages similar approaches are
used. In general only one constructional mode is associated
with a specific kind of entity declaration (the procedure
imperative with the procedure declaration, the NEW imperative
with the class declaration, the declarations REAL X,

BOOLEAN B with the implied predefined type declaration

of real and Boolean quantities).

In BETA we have only one, basic entity specification,
specifying either a singular entity or a pattern. The
kind of the entity is then determined by the selection

of a proper constructional mode used for its generation.

In order to give the desired power and flexibility, a

basic range of constructional modes are provided,

combined with the possibility of building up aggregated

and specialized patterns which may be used to define a range
of entity kinds with the properties desired, suitable to

the task at hand.

(Examples are: a set of entity kinds corresponding to the
kinds of ALGOL or SIMULA, used in writing an ALGOL or
SIMULA compiler and run time system; a set of entity kinds

to be used in organizing an operating system).

4.4.1 Autonomous Entities and References.

An anonymous autonomous entity may be generated either as

singular by the language element

NEW BEGIN entity description END
or as category specified by

NEW P

where P is the title of a pattern.

The naming of autonomous entities are achieved by references.

Data items are in BETA (as in DELTA) either references or

quantities. The basic definitions and discussion of the

nature of references and gquantities are given in Section
3.5.6 of the DELTA-4 report, and the reader is referred to
this report. 1In this Working Note we shall express ourselves

more briefly and state that

- a reference is the association of a name and a value

which is the substance of an autonomous entity (or

"no entity").

(The value is the substance of the entity since it does not
change even if attributes of the entity do change values.
We do have also, implicit and unavailable for direct use

by the programmer, structural references whose values

are imperatives).

A reference attribute having a singular entity as its
(always constant) value is specified by the reference

declaration

REF R: BEGIN entity description END

where R is the name of the reference.

A reference attribute having a category specified entity

as its value is specified by
REF R:P

where P is the title of a pattern. P is called the

qualification of the reference. The implication is that

the range of values of such a reference is restricted to
entities specified by the same pattern. This restriction
is made to guard against invalid indication of data items
supposed to be attributes of the entity which is the wvalue
of R.

By this a qualified reference R is only specified and given
a range of possible values. Actual assignment of a value

is made by assignment imperatives as e.g.
:— NEW P

(with the same notation as in SIMULA. The generation of

constant category specified references will also be possible).

By the use of a reference we may also indicate the attributes
of its (entity) value. If an attribute A is specified

as an attribute of a pattern P, we may indicate the A-
attribute of the P-entity which is the value of R by

R.A

(R "dot" A, or R's A).

Since we want to implement BETA in BETA itself, the
question of the use of unqualified references does arise.
We have not yet made any discussion as to the extent and
form of unqualified references to be made available to
BETA users.

- 21 -

4.4.2 Quantities and Infixing.

In ALGOL and SIMULA the language predefined type declarations
(for real, Boolean etc.) generate contituent entities which
are used to construct entities. These entities are
associated with variables, and they are infixed in the
surrounding entity. This is specified in the attribute
speficiation part of the descriptor of the surrounding

entity by variable declarations referencing to the

proper types (REAL X etc.).

This constructional mode, which we shall call infixing, is

in BETA related to the quantity concept, being a generalization
of the ALGOL and SIMULA type variables. (The reader is once
more referred to Section 3.5.6 of the DELTA-4 report for a

more precise, if not complete discussion.)

As a shorter definition we shall state that

- a quantity is the association of a name and a value
which is the state of the measure part of an infixed

entity.

Bothe category specified and singular entities may be

infixed and associated with quantities.

A gquantity which is category-specified by the pattern P
is specified in BETA by the quantity declaration

QUANTITY Q:P
If the guantity is singular, it is specified by
QUANTITY Q : BEGIN entity description END

In BETA the standard data types will be regarded as
specified by patterns, and e.g. a real dquantity variable

specified by

QUANTITY X : REAL

4.4.3 Prefixing.

Another constructional mode, also available in SIMULA, is
prefixing. Prefixing implies that an entity, referred to

as a prefix part, becomes a permanent, constituent upper

part (or "outer" part) of another entity. The organizational
properties of prefixing are different from those of

infixing and correspond to those of SIMULA's "subclass"
concept. Prefix parts may be specified both for singular
entities and patterns. Prefix parts must be category
specified. A singular entity with a prefix part, specified

by the pattern P, is specified by the notation:

P BEGIN entity description END

If all entities specified by the pattern Q have a prefix
part specified by the pattern P, the notatation used is

PATTERN Q : P BEGIN entity description END Q;

A prefixed pattern (as Q above) is called a sub-pattern of

its prefix pattern. A sub-pattern may in its turn be used

to specify another prefix etc.

4.5 Repetition.

Repetition implies that a specified number (e.g. N) of

references with the same qualification, or guantities
being specified by the same pattern are incorporated with
a common name. The specific indication of one of these
references or quantities is achieved by the use of a

subscript as a selector. The specification is

REF R : [Nl P
and
QUANTITY Q : [IN] P

More flexible array concepts may be built by the combined

use of constructional modes and patterns.

4.6 The Dynamic Structure of BETA Systems.

BETA-programs will have a descriptor tree structure
corresponding to that of other block structured languages,
as e.g. ALGOL. The dynamic structure of BETA-systems is,
however, different from that of ALGOL.

In an ALGOL-system all entities are organized into one stack.
When a new entity is generated it is attached to the stack.
This implies that it relates to the other entities, already

being members of the stack, as a new top member at the top

of the stack. The processor executing the actions within an
ALGOL-system will always execute the actions associated with
its top member. When the actions associated with a top
member is executed, one possibility is that a new member

is generated and located at the top of the stack. Another
possibility is that the action directive is completed.

In this latter case the entity becomes terminated and the

actions associated with the previous top member are resumed.

The terminated entity disappears from the ALGOL-system.

The entity at the bottom of the stack is called its

basic member. When the basic member terminates, the

program execution is completed and the ALGOL-system

ceases to exist.

This well-known stack organization is ideally suited for the
organization of what is conceived as a single action sequence,
and it will be used as the basic building block for the dynamic

structure of BETA-systems.

In more complex situation we may want to organize a system
(program execution) as containing a number of components,
with each component possibly having an associated action
sequence. If two or more of these action sequences may

go on in parallel, the situation is called parallelism.

We will give some remarks on that situation later on.

We may also organize the action sequence of the components
as a sequence of subsequences. If the action sequence of
the total system consists of a sequence of subsequences,
each of which is associated with one of the components,

then the situation is called quasi-parallelism.

A special case of this sequencing scheme is the dynamic
structure of SIMULA: a SIMULA system consists of a (variable)
collection of entity stacks, called objects. (In SIMULA only
object heads and prefixed instances may be basic members of

objects).

A BETA~system consists of a collection of entities, organized
in stacks containing autonomous entities. These stacks are

called BETA-objects (or just objects).

An entity which is a non-basic member of an object (stack)
is said to be in an attached state. An entity which is not
in an attached state will be regarded as a basic member of
an object (possibly consisting of this basic member alone),

and will be said to be in a detached state.

The basic member entity of an object will be regarded as
representing the object towards other parts of the system

and may also be named the object entity.

Internal entities (always autonomous) may also be detached
in BETA (as in SIMULA), and an entity thus may develop

internal objects.

The result is that a BETA-system will be organized dynamically

as a nested system of BETA-objects.

The BETA language contains imperatives which organize
the insertion and deletion of autonomous entities in
BETA-objects.

An object X may be attached to the object Y by e.g. the

imperative

ATTACH X TO Y

(another imperative syntax may possibly be used). This implies
that the entity stack of the object X is inserted at the top of
the entity stack of the object Y.

If X is a reference to an entity which is a non-basic
member of some object Y, then the execution of the

imperative

DETACH X

will result in the deletion of X and all the entities on the
top of X from Y. These entities now constitute a new object

with X as its object entity (or basic member).

The imperative controlling the quasi-parallel sequencing is

RESUME X

When this imperative is executed as a part of the action direc-
tive of an object Y, the effect is that Y's stage of execution
is recorded in one of Y's structural attributes, the execution
of the top member of Y's entity stack is temporarily stopped and
the actions associated with X's top member are initiated at the

stage of execution where it was halted the last time X was active.

When an object X is attached to an object Y, both X and Y
may have internal objects. This may create confusion in the
desirable strict organization of action sequences by stacks,

especially when many parallel processors are considered.

To remedy this situation various solutions may be proposed.
At the present moment the authors tend to introduce the

following restriction on the dynamic structure:

Actions associated with internal objects cannot be

executed when their encloser is in an attached state.

(The relation of objects to processor may possibly provide

exceptions to this rule).

The imperative repertory to be provided to control the object
organization has not yet been settled. Very important conside-
rations in this respect relate to the execution of BETA-systems

by processors working in a truly parallel mode.

4.7 Interrupts.

In this section we discuss the interrupt concept. We

start by examining the information content of a so-called
"hardware interrupt". Then we will extend the interpretation

of such an interrupt at the M-language level to what is a more
convenient "logical interrupt" concept at higher language levels.
The third step is to define the meaning of a "BETA-interrupt"

and a reasonable principle for the handling of such interrupts.

Let us consider a M-system MS, containing two M-subsystems
MS-1 and MS-2. Assuming that our hardware complex is
organized as an M—-generator (i.e., using M-language), an
M-interrupt (hardware interrupt) is generated by some
action within MS-1. The purpose of the M-interrupt is

to obtain that some specified action or action sequence

be executed within MS-2.

Let us assume that the actions within MS-1 are executed by
an M-processor MP-1 and those of MS-2 by an M-processor MP-2.

Three different situations may now occur:

1. Both MS-1 and MS-2 have their actions at the time of
the generation of the interrupt executed by the same
M-processor, or, MP-1 is identical with MP-2. The joint
system will then be organized by some sequencing principle,
e.g. quasi-parallel. In this case we will classify the

interrupt as an internal interrupt.

2. MP-1 and MP-2 are at the time of the interrupt two
different M-processors. In this case we will classify

the interrupt as an external interrupt.

A third conceivable case 1is

3. MS-2 does not at the time of the interrupt have any
M-processor assigned which executes actions within MS-2,
or, MP-2 is "no processor". In this case we will also

classify the interrupt as an external interrupt.

Let us examine the cases 1 and 2. (Case 3 is a special case
which is irrelevant at the M-level and will be excluded
at the BETA-level.)

We will start with case 2. Even in its most rudimentary form,

an M-interrupt must contain three pieces of information:

- a signal to MP-2 indicating that an interrupt has

occurred.

- sufficient information to allow MP-2 to select and

initiate some desired action sequence within MS-2.

(This may imply that MP-2 has to analyze its internal

registers, the state of MS-2, etc. If only one action

sequence is specified for initiation by the occurrence
of an interrupt from MP-1, the possibility of identi-

fying MP-1 as sender of the interrupt is sufficient.)

- information about the "importance" of the execution
of the action sequence, i.e., some priority informa-
tion. (Sometimes no such information is given, which

may imply that all interrupts have equal priority.)

Regardless of the M-level implementation details we may

conceive the immediate implication of an M-interrupt as:

- the transmission of a signal from MP-1 to MP-2.

- the generation of an (or identification of an existing)
"M-level (autonomous) entity", available to MP-2, now
containing data items and an action directive specifying
the actions which are to be initiated within MS-2, as well

as information about the priority of the interrupt.
At higher language levels this organization may be made
more explicit, and we may e.g., speak about an "interrupt

routine" etc.

In BETA we draw what we regard as the logical consequence

of this way of understanding an interrupt:

A BETA-interrupt has two aspects:

- the initiation, by some action within a BETA-system BS-1,

of a signal from the BETA-processor BP-1 executing the

actions of BS-1 to a BETA-processor BP-2 executing the
actions of a BETA-system BS-2, the signal indicating
that an interrupt has occurred. (BS-1 and BS-2 are

subsystems of a BETA-system BS).

- the indication (possibly also generation) of an
autonomous entity E whose actions may be executed
by BP-2 as a part of the actions of BS-2 (if any).
E should also contain information about the priority
of the execution of E if such information is available.
Since E contains all available information about the
actions which should be enforced upon BS-2, it will

be called an interrupt entity or, for short, an interrupt.

Since every action within a BETA-system will be executed in
association with an entity which is a member of a BETA-object,
E must also contain the information (if any) indicating the
BETA-object with which it should be associated within BS-2.

This interrupt concept corresponds to that developed in the
DELTA language. The imperative within BS-1 initiating an

interrupt to be executed within BS-2 will be given the format

INTERRUPT BS-2 object indication

BY interrupt entity indication

We may distinguish between two phases in the transmission

of an interrupt:

1. The reception by BP-2 of a signal from BP-1 and the
recording of sufficient information to be able to

indicate (and possibly generate) the interrupt entity.

2. The actual indication (and possibly generation) of
the interrupt entity and the execution of its actions

as a part of BS-2.

Phase 1 has to be executed by BP-2 immediately upon reception
of the signal. Phase 2 may be executed at a later stage,

dependent upon the action sequencing organization of BP-2.

When internal interrupts are considered, their implications may

be organized as a simplification of those of external interrupts:

1. No signal is really necessary. BP-1 indicates (and
possibly generates) the interrupt entity as a conse-

quence of its execution of the above interrupt imperative.

2. When a point in the action sequence is reached at which
interrupt entities may be executed, BP-2 examines the
list of interrupts waiting for execution and decides

whether or not to execute one interrupt on this list.

The list of interrupt entities waiting to be executed will be
called the agenda. The agenda may be regarded either as a part
of BP-2, BS-2 or the substrate of BS-2. These alternatives

have not yet been discussed in detail.

4.8 Representative States and Transitions.

The concept of representative states used in this section
has been developed initially by the authors of the DELTA-4

report and Morten Kyng as a tool for understanding and
describing the semantics of DELTA-systems. Dijkstra

has used a related concept, "legitimate states", in another
situation in ref (17). Later on Morten Kyng and Lars
Mathiassen has discussed the use of the concept in connection
with development of system descriptions, ref (4). The
present suggestions are the result of a cooperation

between Morten Kyng and Kristen Nygaard.

The main purpose of this section is to indicate a few
approaches which will be used in BETA's handling of
parallelism. The analysis of the associated general
problem is a major task which will require much of the
team efforts in 1977.

In these efforts, we will try to benefit from the large
number of interesting papers which have appeared over the
last years, by e.g. Brinch Hansen, Dijkstra, Hoare and
Wirth. (ref. 12,13,14,15).

Some objectives of our efforts may be stated as:

- we shall attempt to classify the possible parallel
interaction situations into a (hopefully small)
number of gqualitatively different cases, and

analyse mechanisms suitable for each of these cases.

- we shall analyze these situations with reference to
a general nested object structure, in order to arrive

at rules covering which interactions are meaningful.

- we shall try to select from existing work and own
efforts some basic properties which are incorporated
as structural properties of BETA objects and which are
used as the fundamental and general tools for a general

organization of parallelism in BETA systems.

We belive that in this work we may make use of the approach
to parallelism used in the DELTA language, even if important
modifications result from the discrete nature of computer

systems.

Before we start our discussion, we will introduce the notion

of a subsystem.

Depending on the structure of an L-system, associated with

a language L, we may give meaning to the term L-subsystem.

In general an L-subsystem will be a part of an L-system,

delimited according to some principle.

For the time being, let us assume that within an L-system LS
we have delimited two L-subsystems LSS-1 and LSS-2, and that
the actions of (associated with) LSS-1 are executed by an L-
processor LP-1 and those of LSS-2 by an L-processor LP-2. We
will further assume that LSS-1 and LSS-2 have no common compo-
nents. (This restriction may to a certain extent be modified,

as shown in the next section.)

Very often one will discuss "interaction" between LSS-1 and
LSS~2 in such situations. As mentioned in the DELTA-4 report
(section 3.5.9) this term is not sufficiently precise, since
it implies both that LSS-1 acts upon LSS-2 and LSS-2 acts
upon LSS-1. For this reason we will say that LSS-1 involves
LSS-2 in its actions when these actions either make use of

attributes of LSS-2 or initiate actions within LSS-2.
Such involvement may take on two main forms:

1. The sending by LP-1 of an interrupt generated within
LSs-1 to LP-2 and thus initiating the execution of an
interrupt within LSS-2. This has been discussed in the

previous section.

2. The use within LSS-1 of attributes (by reading or assig-
ning values) of components of LSS-2. The problem centers
around the issue of "shared data items" (or "shared
variables”). It is necessary to provide principles
governing this kind of involvement which secures that
the set of values read from LSS-2 in some sense are
"meaningful" as a description of the state of LSS-2,
and that the set of values assigned always establishes

"meaningful" states within LSS-2.

In connection with point 1 above, the question arises: at which
stages of execution of LSS-2 should it be allowed to execute an
interrupt entity? A reasonable answer is: only at stages of

execution of LSS-2 which have established states which in some

sense are "meaningful".

A large proportion of the states which are established within
an L-system cannot be given a meaningful interpretation in
relation to the task which the L-system is intended to solve.
E.g., in an expression when we evaluate a square root by an
iteration procedure, all states of the evaluation entity used
are meaningless in relation to the expression except the final

one.

Similar situations are encountered very often. Intermediate
states in the evaluation of algorithms are often "meaningless™"
in the sense that they may not be interpreted usefully in
relation to the problem which is to be solved. The use of
other L-system components of the values of such intermediate

states may create "meaningless" states within these components.

Morten Kyng and Lars Mathiassen in a recent paper have sugges-
ted that the DELTA concept of "representative states" may be
used by the programmer as a tool to organize his program to
reduce the risk of "meaningless" states. It should be pointed
out that it is the programmer who should indicate what he
will regard as representative states. It will be seen that

the concept also relates to the "action cluster" concept
proposed by Peter Naur, ref (16) and the "legitimate state"

concept of Dijkstra.

By a representative state we shall thus understand a state

of an L-system component which has the property that it

may be given a meaningful interpretation in terms of the

task it performs in relation to the other L-system components.

If a means is introduced of indicating stages of execution
at which the state of an L-system component is representative

in the above sense, then it is reasonable to require that

- execution of interrupts are initiated within an
L-subsystem LSS, whose actions are executed by an
L-processor LP, only when LSS as a whole is in a

representative state.

- only values obtained in such representative states are

read or assigned by other L-system components.

The means of indicating that a state is arrived at in ALGOL,
SIMULA and many other languages is the semicolon. The semicolon

may thus be named a state indicator. It is a very rudimentary

state indicator, since it only indicates that a state is

obtained, but provides no further information about that state.

In BETA an additional state indicator shall be introduced,
indicated by the key word STATE. When this key word appears
between two imperatives, the implication is that a state

is arrived at which the programmer regards as being

representative.

According to this propsal, interrupts of the action sequence
of a BETA-object may occur only at points of the action

sequence indicated in this manner.

An action sequence specified by the execution of a corresponding
sequence of imperatives, starting with an imperative preceded
by STATE and ending with the first imperative executed which is

succeeded by STATE, will be called a transition. A transition

carries a BETA-object from one representative state to another.

The intermediate states within a transition, indicated by the
semicolons separating the imperatives specifying the transition

will be called transient (or non-representative) states.

4.9 Parallelism.

The previous two sections, 4.7 and 4.8, shall be used as a
platform for the BETA approach to parallelism in the
execution of BETA-systems. However, this section will contain

no solutions but just indicate the problems as we see them now.

As stated earlier, a BETA-system will be structured dynamically
as a nested structure of BETA-objects. A BETA-system may

be executed by a BETA-generator containing a number of
BETA-processors. A BETA-object will execute actions if it

has been assigned a BETA-processor. At a given moment of

time a number of BETA-objects may have assigned a BETA-processor
and in this way execute actions in parallel. In general there
will not be a BETA-processor available for each BETA-object

so the execution of actions has to be organised as a

combination of guasi-parallelism and parallelism.

We must distinguish between two kinds of quasi-parallel

execution:

- in one situation a number of objects operate in quasi-
parallel because there is not enough available processors,

and they could in fact operate in parallel,

- in another situation a number of objects operate in
quasi-parallel by sharing one processor, and at most
one of the objects may operate at a time. Even if there
were more processors the organisation of actions in
objects should not take place in parallel. (This mode

of operation corresponds to Simula).

In BETA it should be possible to organize a set of objects
in both ways. This means that a BETA-system consists of

a set of nested parallel sub-systems which all may operate

in parallel and inside each parallel sub-system only one

object at a time may have assigned a processor.

The important and difficult case is of course the organization

of interaction between parallel sub-systems.

BETA is intended for programming at several levels:

- at one level the programmer may have complete knowledge
and control over the BETA-generator, and in this way

control the assignment of BETA-processors to BETA-objects.

- at a higher level, the programmer may have little
information about the BETA-generator which executes
his program. This means that he should be able to
organize his program as several parallel sub-systems and
whether or not they operate in parallel depends on the

actual processor-situation - unknown to the programmer.

Communication between BETA-systems existing on separate
BETA-substrates will be organized by principles corresponding
to those developed in relation to communication between

parallel sub-systems.

5. BETA Language Constructs.

In Chapter 4 the basic features of BETA-systems were briefly
discussed and developed. In accordance with the "basic approach"
defined in Section 4.1, the BETA language elements were derived

from decisions on BETA-system features.

In this chapter some important language element proposals will
be presented, and the material will be structured in a way
more suitable to a language introduction. At this stage large
sections of the language are still open to further discussions
and modification, before a more comprehensive proposal is made.

For this reason we feel that it is not useful to invest much

effort in stating details of syntax and semantics. The
presentation will be informal and sketchy, often only with

the purpose of conveying an impression about what kind of
elements will be proposed.

The notation used for syntax description will be a simplified
version of that introduced in Section 4.5 in the DELTA-4 report.
It should be self-explanatory as used here. As usual the brackets
< and > are used to embrace a syntactical element specification.
We will in addition use the syntactical key word optional to
indicate that an element may be omitted and the brackets + and

¥ to embrace a composite syntactical element.

5.1 The Entity Descriptor.

The basic syntactical element used when an entity is to be

specified is the entity descriptor. The format is

<entity descriptor> is
optional <prefix>
BEGIN
<interface specification part>
<attribute specification part>
<measure specification part>
<action directive>
END

The <prefix> is an (entity) pattern title. The <prefix>
specifies the entity category to which the entity's
prefix (if any) belongs.

In the <«interface specification parts> we should be able to

specify

- the exclusion of specified language elements from
use within the entity (the prefix entity excepted)

and all the entity's internal entities.

(Whether or not it should be possible to specify re—-inclusion

of earlier excluded language elements is not yet decided upon).
In the <attribute specification part> we may specify

- singular (autonomous) entities (with associated
infixed singular references) and entity patterns

being internal to the entity,
- singular infixed entities (associated with quantities),

- category defined infixed entities (associated with quantities)

and category qualified references,

- virtual attributes.
In the <measure specification parts> we should be able to specify

- a set of possible values,

- a method for assigning one of these values as the

current value of the entity,
- operations upon such values,

- a method for assigning an initial value of the entity.
In the <action directives we may specify
- a set of possible action sequences which is associated

with the entity. The specification is made by a sequence

of BETA-imperatives (statements).

5.2 Construction al Modes.

An entity pattern P is specified by a pattern declaration
PATTERN P: < entity descriptor> P

This declaration does not in itself generate any entity.
The generation of an autonomous entity, category defined by

P is specified by
NEW P

if singular the specification is

NEW <entity descriptor>

The generation of a singular, autonomous entity with the

singular reference (name) E is specified by

REF E: <entity descriptor>
A reference R whose set of possible values is restricted
to autonomous entities belonging to a category defined by
the pattern P or a pattern prefixed by P is specified by
the reference declaration

REF R: P

The possibilities may be extended, in the same way as for

guantities, to include repetition and initialization.

We may generate two kinds of constituent entities (non-

autonomous), by infixing and prefixing.

The infixing of a single entity Q (thus being associated
with a quantity) belonging to a category defined by a

pattern P is specified by the declaration

QUANTITY Q: P

The notation for the infixing of a singular quantity is

QUANTITY Q: <entity descriptor>

We may, of course, specify a list of quantities by the

standard format

QUANTITY Ql, Q2, ..., QN: P

A sequence of quantities may be specified by supple-

menting the declaration by a repetition clause

QUANTITY Q: <repetition clause> P

In this case a particular P quantity in Q is indicated by

Q <subscript clause>

It should also be possible in some way to specify the

initial value of a quantity.

Prefixing is obtained by specifying the pattern title of
the entity category to which the prefix entity belongs.
Prefixes may only be category defined, but may be used

to prefix both singular entities and patterns.

5.3 Constants and Restricted Involvement.

It has to be possible to specify that the value of a reference
or the value of an entity is to be kept constant. If the entity
is infixed, this will imply that we may specify that a quantity

has a constant value.

The possibility of one entity involving other entities in its
actions has to be clearly defined in terms similar to those

discussed in Section 3.5 in the DELTA-4 report. In addition

to the structurally defined restrictions defined by scope
rules, we may also want to extend the degree of restriction

to include, e.g., the following possibilities:

- an attribute is only made observable by other entities

except those internal to the entity (observable
implies that the value is available for reading, but
not modification). Correspondingly an attribute may be

specified as modifiable only. Or the attribute may be

specified as internal, only observable and modifiable

by those entities which are internal to the entity.

- an attribute is made unavailable in entities with

some specified prefix.

- restriction of the use of an attribute to its entity

only.

No definite set of possibilities has yet been worked out.
Obviously, the use of attributes with restricted availability
in the specification of unrestricted patterns may present

some problems.

5.4 Interface Specification.

The set of possibilities available in the <interface
specification part> has not yet been discussed in any detail.
Among the possibilities which may be useful we may mention,

e.g.,

- the exclusion of any use of attributes of or references
to entities external to the entity (only the entity

itself and its internal entities being available).

- the exclusion of the use of a specified list of

identifiers (names and titles).

- the restriction to the use of only a subset of th=z

imperatives of the language.

Interface specifications will be particularly useful when
contexts are to be specified. An interpretation of the
language elements discussed in the previous section into the
<interface specification part> will be considered. The

same does apply to virtual specifications.

5.5 Imperatives, Expressions and States.

The BETA imperatives (statements) may be classified as follows:

1. Generator imperatives

1.1 Substrate imperatives
1.2 Processor imperatives

1.3 Connector imperatives

2. System imperatives

2.1 Entity external imperatives

2.2 Entity internal imperatives

The generator imperatives are those which contain explicit

references to the BETA generator components. The interrupts
treated in Section 4.7 relate to BETA-system components and
only implicitly to processors. Of course, the task of keeping
track of these interrupts, assigning them to theilr apprcpriate
BETA-objects and executing their actions is the task of the
BETA-processor executing the actions of the BETA-subsystem

in question. But the programmer should not have to specify
anything which may as well be regarded as being part of the

internal task of the logical component (a BETA-processor).

We have not yet done work on discussing the generator impera-
tives. Some ideas are mentioned in Section 5.8. At this point

we should only mention that we should like to preserve the above

classification of imperatives also in, e.g., situations in which
a BETA-system BS—-1 on one BETA-substrate S1 interrupts another
BETA-system BS-2 on another BETA-substrate S2, and S1 and S2

are not both sub-substrates of an enclosing BETA-substrate S.

The entity external imperatives are those which relate to

- generation of new autonomous entities (their internal
structure determined by their declaration, by e.g.,

use of the available construction modes).

- the organization of BETA-objects by insertion and

deletion of entities from the BETA-object stacks.
- the organization of the sequence of the object phases,
i.e., the switching of the processor's attention from

one BETA-object to another.

Generation of autonomous entities is achieved in five

different ways:

1. By singular (internal) entity specifications in the

entity's attribute part, the syntax being

REF E: <entity descriptor>

The entity is generated as part of the generation of its
encloser (in which the above specification is inserted).
The singular and constant reference E is at the same
time becoming a data item of the encloser. The internal
entity will have the same life span as its encloser, and
it is upon generation detached. This implies that it may

also be regarded as a new BETA-object.

Category-specified detached entities are generated by the

construct
NEW P

where P is a pattern title. If the entity is not
immediately attached to a BETA-object (or assigned

as a subsystem to another processor) it will be anonymous
and unavailable from other BETA-objects and thus regarded
as non-existent. For this reason it is necessary to use

a reference assignment (assign a name)
X: - NEW P

to keep a new detached category-specified entity in the
BETA-system. (X is a reference qualified by P or by a

pattern which has P as a sub-pattern.)

Another possibility is to include the generation in the

attribute specification part as
REF X : CONSTANT P

where X now becomes a constant reference to the new

entity.

Anonymous singular entities may be generated by the

construct
NEW <entity descriptor>

Obviously, the reasoning about existence given above
applies also in this case. Since no name may be assigned
to such entities, these entities have to attached
immediately to a BETA-object. This attachment has

to be specified by an imperative and will be described

later in this section.

Anonymous category-specified entities may be generated
within expressions. Let X be a quantity described by
a pattern with the title PL and let PR be the title of

another pattern. Then the imperative

X: = PR

is valid if certain relations between PL and PR holds.

There are two cases, either PL=PR or PR is a subpattern

of PL. 1In both cases the implication is

- a new autonomous PR-entity is generated,

- this PR-entity is attached immediately,

- when the PR-entity terminates its value is determined,

the part of the value defined in the PL-prefix
(this is the whole value if PL=PR) is assigned as
the new value of X, and

- finally the PR-entity disappears.

(In the above assignment example we have assumed the
existence of an ":="-operator for the pattern PL.) This
kind of entity will correspond to "type procedures"”

in ALGOL.

Anonymous singular entities may also be generated within
expressions if the entities do possess a prefix part
satisfying the same requirement as PR in pt. 4 above

We may e.g. write
X: = PR <entity descriptor>
(If such a prefix is lacking, only values of attributes

of the anonyms singular entity may be used, assuming

that they satisfy the prefix part requirement.)

The basic format of the imperatives which control entities'’

membership of the stacks of BETA-objects is as follows

ATTACH X TO Y
DETACH X

The implication of the first imperative is that the object X
(perhaps a single entity) is inserted at the top of the object
stack of the BETA-object Y. (The effect of the imperative if X
is not detached (not an object) should probably be "no effect”.)
At present we feel that the internal BETA-objects of X (if any)
should not execute any actions as long as X is in an attached
state. If it is desired to attach an object to the object
executing the ATTACH-imperative, this is achieved by the

simplified version

ATTACH X

which has two important cases

ATTACH NEW P

corresponding to a "procedure call" in other languages, and

ATTACH NEW <entity descriptor>

corresponding to an "inner block".

ATTACH/DETACH is a manipulation of stacks and the object
executing the ATTACH/DETACH statement continues to execute
actions. Note that an object may attach an object to itself
and in the way shift the execution of actions to another

entity (now being member of itself).

When the action directive of an attached entity reaches the

final END, the entity becomes terminated and can execute

no more actions. The processor will detach the entity and

resume the actions of the entity below it in the BETA-object

stack. If the entity is detached, the arrival at the final END
of the action directive also causes termination. Probably the
processor then should resume the enclosing entity. Inspection
of this and other cases demonstrates that there is a close
connection between the ATTACH-imperative and the INTERRUPT-

imperative which has to be explored.

The DETACH-imperative has the converse effect. If X is in an
attached state, it now becomes a BETA-object having in its
object stack all those entities which were above it in the

stack.

In order to stop the actions of an active object and resume
the action of another object X by the imperative which follows
after the one last executed in X's action directive, the

imperative used is

RESUME X

The INTERRUPT-imperative has been discussed briefly in Section
4.7. All these imperatives need a thorough study in order to
arrive at a suitable sufficient set of imperatives to cover
all relevant situations. (All cases cannot be covered

by those mentioned here.) In particular, it should be explored
to what extent the ATTACH-imperative may be regarded as a
special case (within a quasi-parallel subsystem) of the
INTERRUPT-imperative.

The entity internal imperatives will not be discussed in this

report. As mentioned in Chapter 2, the entity internal control

structures are made the subject of a JLP partial project.

In relation to expressions, some proposals have been made
earlier in this section. We only want to add that the value
of an autonomous entity, referred to by the reference X, can

be indicated by the notation

X. VALUE

So far we have not discussed the subject of establishing
initial values of attributes of entities. Some aspects of this
gquestion will be discussed in the next section. At this point
it only should be mentioned that an associated question has to
be resolved in a manner which does not destroy the principles
developed in this section: that of transmitting values from a
terminating entity to the entity below it in the BETA-object

stack.

In Section 4.8 we pointed out that the symbol semicolon ";" may

be regarded as a state indicator, and that we need an additional

state indicator to be used when what we choose to regard as a

representative state is arrived at, and interrupts are allowed

to occur. At the time being, we want to introduce the notation

STATE <state descriptor>
<priority clause>
<exit clause>

<reentry clause>

where any combinations of these clauses may be empty.

The <state descriptor> may be used to describe details of
the state obtained and is related to the "invariant" concept.
The <priority clause> will indicate the "resistance" of the

object against letting itself be interrupted in this state.

It will be compared with a corresponding "power" priority of
the interrupts indicating their importance. The <exit clause>
may specify actions which are executed before an interrupt is
executed, if accepted. Correspondingly, the <reentry clause>
may specify actions executed when returning to this point of
the action directive from an interrupt. (The clauses correspond
to similar clauses in the "time concurrency imperatives" of
DELTA, see Section 8.3 of the DELTA-4 report).

Finally, it should be remarked that the proposals made here
regarding values and quantities owe much to discussions going
on within another JLP partial project - that relating to

"types" (see Chapter 2).

5.6 Parameters and Virtual Attributes.

Until now we have been discussing only closed entity descriptions.

For a number of reasons, it is desirable to be able to leave

parts of an entity specification open in order to close it at a
later stage. In ALGOL and SIMULA the parameters of procedures and
class declarations are tools which may be used for this purpose.
In SIMULA we have in addition the "virtual" concept as a power-

ful tool, allowing us to specify virtual attributes which may

be bound ("matched") or even redefined at lower subclass levels.

We may have a number of parameter transmission modes.
In SIMULA we have three modes

"value", "reference", "name",

For values of quantities and references we want to adopt the
DELTA proposal (DELTA-4 report, Sections 8.2.3, 8.2.4.2, 8.3.2.2
and 8.4.1) except the proposal relating to "functions" (DELTA-4
report, Section 8.4.1). This proposal implies that values of
guantities and references may be transmitted at entity
generation and values retransmitted upon termination

of the entity. (This retransmission in BETA, as mentioned

at the end of the previous section, may necessitate some

consideration.)

Values can be transmitted to an entity by means of a

PUT-clause

PUT (*A:= By T:-F; ...¥)

If R is a reference to the entity then the construct

corresponds to the following sequence of assignement

statements

R.A:=E; R.T:-F; ...

Values can be retransmitted from an entity by means of a
GET-clause

GET (#X:=A; Y:-T; ... ¥)

If again R is a reference to the entity this corresponds to

In BETA, PUT/GET clauses are relevant in connection with
the imperatives NEW, ATTACH, DETACH and RESUME. Presently

we consider the following possibilities

NEW P <PUT-clause>

ATTACH X<PUT-clause> TO Y
ATTACH X<PUT-clause><GET-clause>
DETACH X<GET-clause>

RESUME X<PUT-clause>

All the PUT/GET clauses are optional.

Name parameters do not appear in DELTA, and will not appear
in BETA. In the case of virtual pattern attributes we will
adopt the solution offered in SIMULA (and copied in DELTA) .

The important problem is to develop a suitable "pattern
parameter" concept. The solutions offered in ALGOL (carried
over to SIMULA) by its "procedure parameter" concept, has a

number of disadvantages. Some of these disappear because of

our abolishment of name parameters. A further improvement of
the situation is achieved by requiring that parameters to

pattern parameters should be specified.

We intend to include a pattern parameter concept in BETA,
preferably implying a unification of the "virtual" and
"parameter" concepts.

5.7 Contexts.

In SIMULA it is possible to use the concept of an external

system class to provide a context of predefined concepts to

be used in the specification of a SIMULA-system (in writing
a SIMULA program). The classes SIMSET and SIMULATION are

examples of such language—-defined contexts.

Useful as it is, the SIMULA solution still has a number of

deficiencies:

- it is not possible to create a union of such classes

except by their organization in a class hierarchy.

- sufficient mechanisms are lacking for the protection
of the concepts of these classes from incorrect
manipulation by the user. (Even with the newly added

"hidden" and "protected" mechanisms.)

Birger Mgller-Pedersen in his Master's thesis (ref. 10)

has discussed the problem of providing contexts and has
developed solutions which seem very powerful. The above
deficiencies have been removed, and his "context",
"subcontext" and "context set" concepts will allow

the establishment of one-level (non-hierarchical) libraries
of contexts, still keeping the power of SIMULA's "subclass"
concept (which may, e.g., be used in resolving name conflicts

when a union of contexts is specified).

He also proposes the introduction of specifying attributes as
"auxiliary". Auxiliary attributes are freely available for use
in the definition, (also for cross-referencing between class
specifications) but are completely shielded off from the program
using the context.

The proposal also has a number of other interesting features
which will not be mentioned in this report. We intend to adapt
the context concept as what is, we believe, a very useful

part of the BETA-language.

As an example of the use of a context in system programming we
may mention the writing of ALGOL, SIMULA and GAMMA compilers.
The approach would be to describe the structural properties of
the various kinds of entities (object heads, tasks, instances,
prefixed instances, evaluations) by patterns collected in a
context. The structural attributes and their manipulation may
then be protected as auxiliary attributes and by local language
restrictions. A declaration of, e.g., a "procedure P" may then,

by using the context, be specified as

PATTERN P: PROCEDURE BEGIN END P

A syntax transforming program may then carry the ALGOL format
into the one given above. Of course there are aspects of ALGOL
and SIMULA which cannot be handled in this simple manner (name
parameters, connection imperatives etc.) and which have to be
handled with additional BETA programming. Still, the task of

writing such compilers should be reduced drastically.

5.8 Generator Specification.

In order to be able to control the components of the BETA-
generator (and thus the computing equipment) its structure
must be specified and this specification must be available
within a BETA-system (and to the programmer writing a
BETA-program). We have as yet, not addressed ourselves

to this task and only a few remarks may be made.

As a basic approach we shall try to use the DELTA concepts in
understanding, describing and organizing the properties of

substrates, processors and connectors.

The degree of detail possible in the specification has to be
considered. We should like to simplify the concept of a connector
as much as possible, and hopefully reduce it to the nature of

a qualified substrate or processor reference.

With regard to processors, we believe that it may be useful

to supply the basic processor specification with a number of
virtual attributes which may or may not be matched in sub-
concepts of the processor concept. Also, the "basic" processor
may be given a complete BETA language capability which may be
narrowed in particular processors (e.g. those handling discs
etc.) by local language restrictions. It also has to be decided
to what extent (if any) and in what form the registers and other
attributes of the processor should be made available explicitly,

while still protecting the structural properties of BETA-systems.

We may list some desirable capabilities for the substrate

concept:

- it should be possible to specify sub-substrates of a

substrate, and sub-substrates of sub-substrates etc.

- it should be possible to specify the borders of sub-
strates and sub-substrates, and to modify the

borders of sub-substrates.

- it should be possible to specify the available methods
of allocating entities to positions on the substrate:
fixed, relative according to some list-based scheme
etc. (This may imply that a specification of entity
generation in some cases has to include a substrate

allocation clause.)

- it should be possible to manipulate the location of
the descriptor parts of entities, keeping protected
and updated the descriptors' relations to other
descriptors and the value records' references to
their descriptors.

- it should be possible to load a tested out BETA-system
in a given state (e.g. an "initial" one) together with
the appropriate run-time modules (internal parts of a
BETA-processor) into another substrate (also physically
separate). This is necessary if BETA is to be useful in
developing programs on a program development computer
for dedicated microcomputers with small substrate areas.
(See "The BETA Project", ref. (1).)

In Chapter 3 we remarked that large sections of what is usually
called "basic software" and "operating systems" should be
considered by our definitions of substrates, processors and
connectors as belonging to such generator components as
internal organizing parts. For the time being we believe

that this should not be the case with those parts of the
operating systems which handle the distribution of resources
between the BETA-systems (e.g. "user programs") existing

on a substrate.

We feel that any substrate should have a "resident entity”
which may be specified and developed into a more complex BETA-
system. This BETA-system should carry out these tasks of the
operating system and be able to receive, establish and execute

a stream of users' programs as subsystems.

5.9 ALPHA-Level Considerations.

Even if we want to implement BETA in BETA, we have to do a
certain amount of initial programming in assembly level
languages (which may be named appropriately the ALPHA

language level).

When this ALPHA-level "kernel" is established, we still cannot
write BETA in "pure" BETA. One important reason is that we have
to be able to operate upon the structural attributes of entities
in order to write e.g. substrate management programs, processors'
interrupt handling programs etc. Other reasons are that we may
want to specify M-processor register operations, and perhaps want

to include occasional ALPHA-level code to speed up execution.

The question now is: Should BETA users be allowed, by explicit
specification, to use this extended but less secure level of
BETA?

(It should be noted that rather strong features already are
available in "strict" BETA. It will, e.g., be possible to
define types directly operating upon "words", "bytes" and

"bit sequences".)

If this extended, unsecure BETA level is made available, it
should at least be done with some safety considerations, such
as imposing the confinement of as much as possible of this

sort of programming to the writing of contexts.

6. Conclusion.

We hope that this report may convey an impression of the ideas
governing the BETA language development, and that some of the
ideas may prove useful to other research workers. We will
welcome any suggestion and criticisms, which will be considered
in the further BETA development.

References.

Peter Jensen and Kristen Nygaard:

"The BETA Project"
Joint Language Project Working Note No. 1, 1976

Norwegian Computing Center, Oslo, Norway.

Kristen Nygaard:

"On the Use of an Extended SIMULA in System Description”
DELTA Project Report No. 1, 1973

Norwegian Computing Center, Oslo, Norway.

Roar Fjellheim, Petter Handlykken and Kristen Nygaard:

"Report from a Seminar on Systems Description at "Skogen"
Rpros™"
DELTA Project Report No. 2, 1974

Norwegian Computing Center, Oslo, Norway.

Morten Kyng and Birger Mgller-Pedersen:

"Description of a Model of a Single Helix Pomatia Brain
Neuron and an Associated Neurophysiological Experiment"
DELTA Project Report No. 3, 1974

Department of Computer Science, University of Aarhus,

Denmark.

Erik Holbak-Hanssen, Petter Handlykken and Kristen Nygaard:

"System Description and the DELTA Language"
DELTA Project Report No. 4, 1975,

Norwegian Computing Center, Oslo, Norway
(The "DELTA-4 report").

10.

Kristen Nygaard:

"DELTA-prosjektet og dets tilknytning til problemene i
systemutvikling"

DELTA Project Report No. 5, 1976

Norwegian Computing Center, Oslo, Norway

("The DELTA Project and its Relation to Problems in

System Development", in Norwegian).

Erik Holbazk-Hanssen, Petter Handlykken and Kristen Nygaard:

"A Brief Survey of the DELTA Project"
DELTA Working Note No. 1, 1975

Norwegian Computing Center, Oslo, Norway.

Graham M. Birtwistle, Ole-Johan Dahl, Bjgrn Myhrhaug

and Kristen Nygaard:

"SIMULA BEGIN"
Studentlitteratur, Lund, and Auerbach, New York 1973.

Morten Kyng and Lars Mathiassen:

"Application Oriented Discussion of Formalized
Language Tools" (In Danish).

Department of Computer Science, University of Aarhus,
Denmark, 1976.

Birger Mgller—-Pedersen:

"Communicating Concepts in an interdisciplinary
Project - Four Models of a Lake described in the
DELTA Language'.

DAIMI PB-77, DELTA Project Report No. 7.

Department of Computer Science, University of Aarhus,
Denmark (May 1977).

"Proposal for a Context Concept in DELTA"

DAIMI PB-83, DELTA Project Report no. 8.

Departement of Computer Science, University of Aarhus,
Denmark (September 1977).

11.

12.

13.

14.

15.

16.

17.

Morten Kyng:

"Implementation of the DELTA Language Interrupt Concept
within the Quasi-parallel Environment of SIMULA"
Department of Computer Science, University of Aarhus,
Denmark, 1976.

P. Brinch Hansen:

"Operating System Principles"
Prentice Hall, England Cliffs, N.J., 1973.

E.W. Dijkstra:

"Cooperating Sequential Processes”
in Programming Languages, F. Genuys, Ed.,

Academic Press, New York, 1968.

C.A.R. Hoare:

"Monitors: An Operating System Structuring Concept"
Comm. ACM 19, 5 (May 1967), 273 - 279.

N. Wirth:

"Modula: A language for Modular Multiprogramming”

Software - Practice and Experience, 7, 1 (Jan. 1977), 3-35.

P. Naur:

"Programming by Action Clusters”
BIT 9 (1969), 250 - 258.

E.W. Dijkstra:

"Self-stabilizing Systems in Spite of Distributed
Control"
Comm. ACM 17, 11 (Nov. 1974), 643-644.

