A MULTI-EMULATION SYSTEM

by

Ejvind Lynning

DAIMI PB-62
July 1976

Institute of Mathematics University of Aarhus 7

DEPARTMENT OF COMPUTER SCIENCE —

Ny Munkegade - 8000 Aarhus C - Denmark ~ T T

Phone 06 -1283 55 T , '

PREFACE
The present report is submitted as my master's thesis (speciale-opgave).

The multi-emulation project (the terminology is defined later) grew out of
discussions at DAIMI about the situation which arose over the department's
experimental microprogrammable computer .;: - RIKKE-1 (and MATHILDA)
in 1974: Two emulated machines, OCODE and PCODE, had been built and

it was desirable to enable these machines to cooperate. More generally a
supportive environment for the development of emulated machines and

other microprogrammed implementations was wished for?. In the autumn

of 1974 the subject was discussed in a study-group where Peter Kornerup,
Nigel Derrett, and Mike Manthey (among others) took part; The presently
reported project came later and does not directly build on that group's dis-

cussions.

For advice on the project, and in particular for valuable criticism of this
writing as it developed, thanks are due to Nigel Derrett, my thesis ad-
viser. For careful, yet humorous drawing of the figures in this volume
I thank my wife, Kirsten Hays. By typing the manuscript Karen Mgller and

Eva Sloth have also been of great help.

Documentation of the programs of which the described system actually con-

sists is found in an appendix which will not be published.

/&r‘hus, June 1976, Ejvind Lynhning

TABLE OF CONTENTS

I,

V.

Vi,

INTRODUCTION

THE PROBLEM OF MULTI-EMULATION
1.
2.
3.

THE RIKKE MULTI-EMULATION SYSTEM

o F L b=

ALTERNATIVE MODELS FOR MULTI-EMULATION ‘

o oE N

Resources 8
Communication 9

External References 10

The Virtual Memory 11

External program calls and parameter passing 16

External References and Linking 26
Permanent Disk Storage Arrangements 32

System Overview

Multi-programming 41

Compatibility Features on the IBM 360 Computers
The Burroughs B1700 Computer System 46
Supporting User-Microprogram Development 48
Nested Interpreters 49

Generalised Transfer of Control 53

............

..........

44

SUGGESTED EXTENSIONS TO THE MUL TI-EMULATION

SYSTEM
1.
2.

USER MANUAL

0‘!014}5.»[\):-'0

Multi-tasking 55

Structures for Nested Interpretation 56

Introduction 66
1/O and Files 68

Conventions for the Use of RIKKE's Registers 68

System Microprogram Entry Points 71

Interfacing User Microprograms to the System 73

Use of Control Store 74
Segments 75

..

...................................

VA,

7. Common Data Formats 75

8, Formats of Code and L.inkage Segments 77

9, System Routines 78

REFERENCES

oooooooooooooooooooooooooooooooooooo

82

1. INTRODUCTION

Recent years have withessed an upsurge of interest in microprogramming,
and a number of more or less dynamically microprogrammable computers

have seen the light of day, or in many cases only the neon-lit laboratory.
Even textbooks have begun to appear on the topic of microprogramming,

e.g. [11], indicating that the subject has reached wide recognition as an
area of interest. Originally microprogramming was introduced as an or-
derly way of organising the control section of an automatic computer but

the recent growth of interest in the area is founded on technological advances
which allow changeable microprogrammed control; this development has
facilitated the exploitation of microprogramming for several purposes which

go beyond the original aim of orderly hardware organisation.

Judged by a criterion of economic success a most important application of
microprogramming has been the realisation of the IBM 360 line of computers
on a number of different microprogrammable host processors {(or CPUs).
These processors were designed with the specific intention that they should
serve as hosts for the 360 models. However the flexibility allowed by
changeable microprogram was exploited to make these processors support
also programs for older IBM products by imitation or emulation, as the tech-

nique was named, of the older models [§] .

The possibility of configuring a given microprogrammable processor to appear
and behave according to a given description has not only been exploited for
emulation of already existing physical machines. Clearly there is no reason
why the specifications to which an emulator must conform should come from

a physically existing machine. Abstract machines may be defined and imple-
mented by emulation. Machines designed to support particular high level lan-

guages are important in this category.

With the B1700 the Burroughs Corporation provides a means of emulating .
abstpract or virtual machines in a manner claimed to be very flexible. The
microprogrammable processors in the B1700 computers are not designed to
support any particular "general purpose'! machine (such as, e.g. the 360),

but rather to allow efficient emulation of arbitrary machines [9].

Microprogramming is not only being used for emulation but also to support
particular applications, e.g. graphics, or to fortify operating systems by
the provision of useful operations as microprogrammed primitives [12] .

For example semaphores may be supplied to an operating system in this
fashion. In a more general situation systems may be provided where micro-
programming is not significantly more cumbersome than ordinary '"high
level" programming. With such a system a programmer may choose to imple-

ment any algorithm, or time-consuming part thereof, as a microprogram.

One member of the group of fairly small microprogrammable computers
which have appeared in research environments is RIKKE~1 which was . .
designed and built at the Department of Computer Science,. Aarhus Univer-
sity (DAIMI) during the years 1972-75. RIKKE-1 was intended to be used as
a tool for emulator and processor design research. In particular RIKKE is
intended to control MATHILDA (a computer of similar design, but with a 64
bit main data path as compared to RIKKE's 16 bits) in experiments with non-

standard arithmetic.

Various design and microprogramming projects have taken place in connection
with RIKKE-1: An emulator for PCODE, designed as a suitable target code
for compilation of programs in the PASCAL language, has been implemented
[17] (this uses both RIKKE and MATHILDA); an i/o-nucleus, for block trans-
fers to and from peripheral devices, and an OCODE emulator [18] are used

as the microprogrammed level of the RIKKE BCPL system, a programming
environment simular to the Oxford OS-system [5]; and an interpreter, similar
to Landin's SECD-machine, has been built for the purpose of evaluating

LLCODE expressions, which are the output of a compiler-compiler system [19].

One can foresee the development of further such special-purpose interpreters
or emulators, e.g. for numerical experiments; indeed being a host for such
experimental implementations is RIKKE's raison d!'étre. In connection with

such projects there will be a need for basic support software.

If we look at the design and development of a particular emulated machine we
may be influenced by traditional stand-alone machines and include in the design
facilities for i/o and a filing system, in general: an operating system. Turning

our attention for a moment to the IBM 360 model 30 which supports switching

of microprogram to run programs for the earlier 1401 model, we find that
1401 i/o is done not by microprogram, but by simulation within the 360 [8].
Similarly in the B1700 a master control program which runs on a particular
- emulated machine (although part of it is directly microprogrammed) manages
system resources for all existing virtual machines. We may raise a more
general question as to whether programs already developed to run on some
well-established virtual machine can be used to serve in the development

of new emulators and programs for them.

Consider now experimental applications of microprogramming such as they
may be expected on RIKKE, e.g. language machines, list processing, or
matrix operations. A number of problems which arise in connection with such
applications are of no real interest to the experimenter. Primarily he does
not want to have to build an operating system, I e. filing system and i/o
programs, for each microprogramming project. He wants utility programs

to be available and easy to call. But it does not suffice to provide service
programs once and for all. It may also be very desirable to be able to combine
micro—~ and high level programs in a flexible fashion. For example some appli-
cations of the kinds alluded to above may involve both pre- and post-processing
of the data structures which are transformed by the central algorithm. In so
far as these tasks are not of central interest to the experimenter he will wish
to get them done as easily as possible, typically by writing programs in a
high level language. By providing tools which allow such flexibility we may

help the experimental worker to focus attention on his real problem.

Motivated by these considerations we have established as the general objective
of the projectdescribedinthis report: to allow the creation of sets of co~
operating programs, which may run on different virtual processors, or some
of which may indeed be written in microcode. The organisation of the report

is then as follows.

Chapter Il is intended to clarify, define, and delimit the problem.

Chapter Ili is a description of the system which has been designed. This
description has been written with the aim of explaining design choices and of
providing a complete presentation of the designed system, leaving no more
loose ends than are actually present in the system. A fair number of details

are therefore included, although the purely technical details which would

only interest a possible user of the designed system are postponed until

Chapter VI, the user manual.

There are not many generally known computers systems which support mul-
tiple emulators. As mentioned above, some of the IBM 360 models may be
switched to act as older IBM machines, and the B1700 supports user written
emulators. In Chapter IV, our proposed system is compared to these

systems Iin a discussion of other possible models for allowing communication
between programs running on different machines emulated on the same physical
processor. Also a paper by Tafvelin [’7], describing a system very similar

to the one proposed in this report, is discussed; this paper is also referred
to in Chapter lll, as some of the facilities described there are strongly in-

spired by Tafvelin.

The problem of designing suitable basic software to support microprogramming
experiments on RIKKE has been discussed at DAIMI since the summer of 1974
by several people, each participant in the discussions having his own under-
standing of the problem, and each developing his own model for: a solution.
This report is not a history of that debate, but in Chapter IV, some of the
important concepts which the discussions have centered on are mentioned,

and possible extensions to the proposed design are suggested in chapter V.

One comment should be made here with respect to general models and possible
extensions. Two approaches to problem solution and system design may be
contrasted. In one, a concrete problem is taken as a starting point, an effort
is made to understand that problem and its implications, and then some solu-
tion is devised, incorporating the structiures deemed necessary. In the other
approach the researcher first sits comfortably back and meditates, trying to
identify what may naturally be seen as a more general problem of which the
concrete problem at hand may be considered a special case. Then the general
problem is attacked, whereby one not only solves the motivating problem, but
also creates stronger tools, possibly solving the problems which might pop
up three years hence. The latter approach may be called academic; it may
result in no concrete achievements if the general problems are too hard to
grasp. The effort reported here haé taken place under timing constraints, and
it has been influenced by a desire to reach concrete results. Therefore the

philosophy of the former of the two appraoches has been dominant. However

a striving to provide as flexible and general a design as possible within the
[imitations of time has hopefully influenced the design and also the present

discussion.

The final chapter of the report contains a collection of specifications of

the proposed system. The chapter is intended as a handbook for the designer
of emulators or other micrpprograms to fit with the system, and for the com-
piler writer, who must think about building code segments to be executed

by such emulators.

I THE PROBLEM OF MULTI-EMULATION

In order to define more precisely the problem which was introduced in the
preceding chapter, and which is attacked throughout this report, it is use-
ful first to define or discuss some relevant terms. The clarification which
is hopefully attained by this discussion, will be of value through all the fol-

lowing chapters.

Emulator

In the IBM view as put forward by Tucker [10], an emulator is a combination
of hardware and software additions to a given machine which enables it to

act as %if it were another machine. This view is tied to a concept of machine
as a physical entity. A different understanding, taking into consideration the
fact that machines may be purely abstract, is reflected in R. Rosin's defini-
tion: "We use the term emulator to describe a complete set of microprograms
which, when embedded in a control store, define a machine''. In this view,

the 360 machines are themselves emulated as well as the e.g. 7090 models
supported by the same microprogrammed processors. Our use of the term agrees
with Rosin's definition; indeed by an emulator we will always understand a
microprogram (or collection of microprograms, depending on the unit to which

one assighs the name microprogram) whereby some processor is realised.

Micro-procedure

We are also interested in microprograms which do not emulate any processor.
Some times we will forget this and merely speak of emulators, because these
are the kind of microprograms we expect to see most of. However, when we
wish to stress that a given microprogram is not an emulator, in fact that it is
a direct implementation of an algorithm which is not interpretative, we use
the term ""micro-procedure!'. This term is chosen because it is not used else-

where.

Virtual processor

A machine, defined in terms of some insiruction set and possibly other archi-
tectural characteristics, is called a "virtual processor!' or sometimes a
"virtual machine!', These terms may be seen as opposed to '"physical!t or
"host processor!', used for the actual hardware, that part of a computer which

is not changeable by a process of programming. The design of a virtual machine

will often include a set of registers, the values in which together define
the processor!s state at a given time. The collection of values in such re-

gisters will be referred to as the processor!'!s state vector.

Interpreter

A virtual machine may be realised by emulation. But in general it may also

be implemented by means of interpretation or simulation, achieved by program-
ming in a high level language [13]. In fact we will later consider a concept

of interpreter which includes an emulator as a special case. An interpreter

is any program which by interpretation of code realises a virtual processor.

Transfer of control

In a simple one-level machine the flow of program control is represented by the
changing state of the insiruction pointer. When a sequence of instructions is
carried out, the instruction pointer is merely incremented, jumps cause more
drastic changes, and routine call mechanisms may be implemented using a
stack, so that instruction pointer values are saved away and later restored.

In an emulated machine control moves at two levels. The microinstruction
pointer is associated with execution of the emulator microprogram, but there
will also be an emulator-accessible register which functions as an instruction
pointer in the emulated machine; it points into the interpreted code. From the
user or outside observer point of view the latter is the "peal! instruction
pointer. However, in connection with micro-procedures the micro~instruc-
tion pointer is the real instruction pointer. Rather than pursuing a discussion
of this distinction further, we merely state that when control at the micro-
level passes from one emulator to another (or to a micro-procedure) we will
speak of an "external transfer of control!', Thus an external control transfer
occurs e. g, when a PASCAL. program which runs on the PCODE machine calls
a BCPL program on the OCODE machine. Notice that there is a connection with
the traditional use of the term external subroutine or entry point, narhely the

problem of linking; it must be possible to identify an external entry point.

Multi—emulation

A system which supports external control transfers (i.e. across emulator
boundaries) in a general fashjon will be called a "multi-emulation! system,

and the activity within it "multi-emulation!'.

The following sections expand on those aspects of the problem of multi-
emulation which have influenced the design of the proposed multi—-emulation

system for RIKKE-1.

1. Resources

When a virtual (target) machine is emulated on some physical (host) machine,
the various constituent parts of the target machine: registers; storage; i/o—
devices; and functional units, are mapped onto pa‘r‘ts of the host machine. We
may view the host machine as a collection of physical resources to be used

in this mapping, and indeed the suitability of these resources with respect to
the particular mapping determines the success of the emulation. As long as one
needs to consider only one emulator the problem of finding such resources
remains relatively simple, although possibly not solvable. However when
several emulators must co-exist in the physical host a competition begins for
resources such as host machine registers, control store (microprogram store),
main storage, and perhaps i/o devices; a competition which becomes fiercer

with more parallelism in emulator execution.

The problem presents itself Iin different ways for the different kinds of re-~
sources. Peripheral devices need only be multiplexed in a multi-tasking or
multi—-programming environment, and only if multi—emulation is achieved through
sdme form of multiprogramming do the problems that arise with per‘ipher-a\i

devices have to be taken into consideration. We will ignore them here.

The registers of virtual machines, making up their state vectors, may be mapped
onto host registers, but can be saved in main storage when a particular emula-
tor is not active, and thus the problem of sharing registers can be reduced to
the problem of sharing main storage. A special problem arises with "blind-
alley!' control registers, i.e. registers which cannot be read on to the main
data bus, a type which abounds on RIKKE-1. An emulator which uses these
registers must initialize them properly each time it receives control, so that
they can be kept out of what is intrinsically the processor state vector; al-
ternatively such registers may, when they are not contested, be granted

wholly to a particular emulator.

Control store, if it is not large enough to contain all emulators in the system,
and if there are no hardware aids to achieve overlaying by some type of vir-

tual addressing, must be loaded with each emulator before it assumes control,

This again reduces to a problem of sharing main store.

Direct access storage, or main store for short,is the remaining trouble

spot. Main store will be used to map virtual processor storage, and to

save processor state vectors and emulator control store images as suggested
above. Thus each emulator will make demands on physical storage in terms

of one or more blocks of contiguous main store words. These vectors may be
of various lengths. The problem consists of managing the division of storage

into such vectors; protecting one emulator!s store from erratic behaviour v
of other emulators, while at the same time providing orderly access for pur-

poses of sharing information.

Disk storage is not considered a scarce resource in this context. However,
it is highly desirable to use common formats if not for the data contents of
disk pages then at least for the system information which binds disk pages
together, and it is necessary to have a common administration of free disk

space. Indeed it is difficult to see how a multi-emulation system could use a

disk sensibly without a common filing system.

2. Communication

Two typical uses of external control transfers would be:

1) a call from a routine running on some user-implemented emulator

to an i/o-routine in an operating system; and

2) the pre-processing in an emulator-supported high level language
for a microprogrammed list-processing algorithm, i.e. the

building of a list representation in some data area.

These applications suggest the need for parameter passing mechanisms
and a scheme for orderly access from different emulators to a shared storage

area.

Conversely, a general facility for passing parameters and results, in par-
\

ticular general addresses, and an access scheme for shared areas of in-

formation, makes possible both the general invocation of services across

emulator boundaries and the execution of algorithms which are implemented

with different passes running on different emulators.

10

Information which is to be understood by several emulators must neces-
sarily be represented in a format acceptable to all; thus it may be useful

to specify conventions for representation of the most important data
types. This is not a logical necessity; it suffices that in any particular
communication situation, some rule is adhered to by the parties involved,
but common conventions provide a solution once and for all and also im-
prove prospects for compatibility, e. g; if a given algorithm is programmed
to run in different versions on various emulators then such conventions
would allow the same call and return sequence to be used in other pro-

grams making use of this algorithm.

3. External References

We have already mentioned the problem of allowing one emulator to have
access to data in the store '"belonging' to another emulator. Another si-
milar situation is the referencing of external code; What information is
necessary within a program running on one emulator to reference and
call a program on another? The provision of simple means of identifying
and transferring control to external programs is an important part of

the design of a multi-emulation system.

Since different emulators will assume different code and data formats,
loading and linking programs becomes a problem. It would seem to be
very complicated to construct a general loader or linkage editor which
would satisfy external referencesfor routines loaded into code areas of
greatly varying formats, indeed such a linking program would be depen-
dent on the set of emulators available at any given time. Again some con-
ventions must be imposed to overcome this problem.A common scheme,
which can work with all emulators, for loading programs and resolving
links must be included in the design, and the demands placed by this
scheme on code formats must be respected by all for the sake of com-

pability.

11

. THE RIKKE MULTI-EMULATION SYSTEM

This chapter contains a description of a multi-emulation system which
has been designed to provide solutions to the problems posed in the pre-
vious chapter. The system includes the following features: a segmented
virtual memory with mechanisms for dynamic resolution of external code
and data references; an integrated disk organisation for files and seg-
ments; primitives to perform external control transfers in the form of
subroutine calls and returns; and a stack with associated operations to
hold saved virtual processor state vectors and parameters for external
subroutine calls. The subroutine call and return discipline employed
for external control transfers implies that the system is limited to handling
one process at a time. This restriction will be discussed later in con-
nection with a treatment of other models for multi-—emulation. For the

moment our interest centers on a déschiption of the system.

The system consists both of micro-programmed modules and of modules
programmed in BCPL.. The micro-programmed ones are those which must
be callable at the micro-level, or which operate on hardware resources
directly, The BCPL modules are the more complicated ones, either al-
gorithmically ~or with respect to data structures; they constitute by far
the largest part of the system. In other words only what had to be micro-
pr‘ogr‘émmed was microprogrammed. BCPL was chosen partly because it
is well suited for the kind of programming in question, but mainly because

it was available.

It should be noted that at the time of this writing the proposed system has
been designed in detail, and the program modules both in BCPL and RIK-
KE microcode have been written. But the programs have not been tested,

let alone run in production. Therefore we speak of a proposal rather than

of an established, completely implemented system.

1. The Virtual Memory

In order to provide a facility for orderly sharing of storage among emula-
tors, a virtual memory system has been implemented. Instead of physical

storage blocks, logical segments are allocated as units of memory space.

12

A segment is simply a vector of (16 bit) words. Access to a particular
word in virtual memory goes through the system microprograms READ
and WRITE, both of which work with virtual addresses of the form

<segment number, word number> .

Segments reside on disk, but are accessed using copies in core storage
units, which are of variable length, so as to fit the segments they hold.
The implementation of segments does not employ paging. As the amount of
core storage available is fairly large, considering expected demands, the
problem is not one of efficient use of a scarce resource, but rather one
of erganising a common resource. The extra level of indirection incurred
on storage references in a paging scheme is deemed to cost much more in

execution time than could be gained by a better use of physical memory.

A segment fault, i.e. a reference to a segment which is absent from physi-
cal store causes the READ or WRITE micro-program, (whichever- is in
question) to invoke the segment fault handler, which is programmed in BCPL.
Its task is to manage the actual storage devices available: the 32K 16 bit
RIKKE main store; and the 32K 64 bit wide memory, which is connected

to both RIKKE and MATHILDA. Each word of the wide memory is for the
purposes of this scheme treated as four 16 bit words, so that all together,

there are 160K words of 16 bit memory available in the system.

A very simple algorithm is used to find room for a faulting segment. It uses
two lists of storage unit descriptors (one for each of the physical storage
devices) which together completely describe how memory is utilised at any
given time., The algorithm is in three stages: first it searches for a suf-
ficiently large unoccupied storage unit; then, if sufficient storage is avail-
able but scattered, the data in the relevant store is compacted, using a
microprogrammed block move; third, if not enough free storage is avail-
able, as many occupied segments as hecessary are swapped out to disk,
beginning with the oldest one. (We do not swap out the least recently used,
but the least recently allocated - the one which has occupied physical sto-~

rage for the longest period of time.)

13

This algorithm may not be satisfactory in a situation where storage de-
mands outmatch supply, but it is simple, and a situation of scarcity is
hot expected. Certainly it would be wasteful to expend much effort on
optimising this algorithm before collecting performance data, particu-
larly since it may be tuned at any time. However the implementation of
a least recently used or working set algorithm would involve changes
to READ and WRITE, in order to record all references, or it would
involve ensuring that working sets can be easily recognized from the
state vectors of virtual processors, a very difficult requirement in

a generally unstructured situation. In the adopted implementation we
must impose a limit on segment size which ensures that some small
number of segments may be in each physical storage medium simulta-

neously.

The main advantage of the segmentation scheme is that it provides exact-
ly what emulators need for storage, i.e. long vectors of storage words,
in a fashion which neatly separates the stores of different emulators
(since READ and WRITE take care of checking the validity of all sto-
rage r*efer*ences),while at the same time providing shared access to com-
mon data segments. There is nothing new in the idea of seg‘mentation,

the Burroughs B5500 implementation of the concept goes back as far as
1961, and Dennis' classic paper [1] appeared in 1965; but we notice

a difference between the MUL TICS-situation [2] (with which Dennis
worked) and the RIKKE multi-emulation scene. In the former, identical
processors, executing in parallel, shared physical memory and common
copies of data and code areas by means of segmentation; in the latter the
same sort of sharing takes place, but by different processors executing
s‘er‘ially. The real difference between the two situations is that in the
MUL TICS case segmentation served multi-programming, in ours it serves

multi-emulation.

In order to access a given segment it is necessary to know its segment
number. All segments which have segment humbers at some given time
are called known segments at that time. The collection of known seg-
ments make up the address space of a computation. Segment's may be
added to an address space in two different ways: either a segment may be

created from scratch, or a segment which exists permanently in the fi-

14

ling system may be retrieved by symbolic name and associated with a seg-
ment number. The latter process is called making a segment known; it
also involves inserting the pair <symbolic name, segment number> into the
Knhown Segment Table (a concept from [2]), so that any further symbolic
references to the segment from the same computation may be translated

into the same segment number.

We have now seen how the address space of a computation may grow by
the addition of more known seaments. Eventually a computation will ter-
minate and control return to the system at the basic level. At this time
the address space is re-initialised; all segments except those belotfiging
to the system become unknown, and a new computation may begin to build
its address space. The computation associated with one such address
space history is called a process; hereby we establish a one-to-one re-
lationship between a process and an address space, similar to that which

exists in the MULTICS system.

Assigning a number to a segment is always associated with the creation of
a segment descriptor; in fact the purpose of a segment number is to address
the segment descriptor, which contains:

1. the base address of the segment in physical store, if it is in physi-
cal store.
the length of the segment.
the address of a disk page containing the disk addresses of the ac-
tual Information pages of the segment.

4, a segment type word with bits to indicate whether the segment is
currently in core {segment fault bit) or only on disk, whether the
segment is a main store or a wide memory segment, whether the
segment may be overwritten or not (protection of pure code segments),

and further information which is not of interest her‘e;

READ and WRITE always check the validity of the supplied segment num-
ber against the number of known segments, and of the word number against
the segment length; WRITE also makes sure that pure code segments are

not overwirtten.

15

The segmentation scheme provides good protection against errors, but it
is inefficient, as two references to physical store are needed for each
virtual memory reference, the extra one being a segment descriptor
fetch from the wide memory. To satisfy those users (emulators) who
prefer speed to security (or~ they may be safe drivers) it is possible

to lock a segment in core, thus guaranteeing that it will not be swapped
out until the current process terminates, or until it is unlocked again.
By using this facility an emulator may reference the segment directly,
without invoking READ or WRITE. It needs to know the physical base
address and length, which may be kept in virtual processor r‘egister‘s;
Since there are no privileged micro-operations for accessing physical
store on the RIKKE-1, it would even seem awkward to exclude this pos-

sibility.

There is another reason why it might be desirable for an emulator to do the
job of READ and WRITE for itself, which has to do with the use of RIKKE re-
gisters. Since no facilities are included in the hardware-design of RIKKE to
support segmentation, these routines must make use of the same physical re-
gisters as the emulators which call them. In particular, three of the ge-
neral purpose registers connected to the main data bus are used to hold
segment number, word number, and the data word to be read or written

from or to'virtual memory. It would be ridiculously inefficient to use the
external subroutine call mechanisms for each READ or WRITE; thus a set
of special conventions are needed to specify exactly which register values
may be changed by READ, WRITE, and in fact by the OCODE-machine
which interprets the segment fault handler. Basically this means that all
values temporarily held in local and shifter registers around the main

bus must be saved in working registers by an emulator before it calls

READ or WRITE; An emulator which does not satisfy this criterion

could still be used Within the system, provided somebady locks all seg-
ments referenced by it and passes their base addresses along before it
assumes control. Incidentally, this comment about READ and WRITE
applies in exactly the same sense to the micro-programmed primitives
LINKREF, NEXT,‘ OUT, and ENDOF to be introduced later. Exact spe-
cification of the conventions for register allocation is a subject for the

user manual.

16

Microprograms which have been written prior to the appearance of
these specifications cannot be assumed to conform to them. It will al-
so be very difficult to modify, say, the OCODE emulator to use READ
and WRITE for its storage references. Fortunately, this is not neces-

sary.

2. External program calls and parameter passing

In stack machines, information describing the state of a process is orga-
nised in a stack. A stack frame, or "activation record", may contain
return information, implicit parameters, explicit parameters, and lo-
cal variables. By imposing a subroutine call and return discipline on
external control transfers, we may utilise a similar organisation for the
purpose of saving return information and of passing parameters. We call

this stack the "super-stack!'.

This term has been coined to allude to the fact that there may be several
other stacks around. In particular emulated stack machines will have

their own stacks sitting inside private segments. The super-stack which
serves control transfers across emulator boundaries shoduld not be con-

fused with stacks of emulated virtual processors.

The super-stack

The super-stack is best described by a picture (Fig. 1).

Fig. 1 illustrates the situation when program A running on emulator X

has been called from program B, running on emulator Y, and has started
pushing parameters for a further external call. The letters C, E, P, and
S represent (system) registers which point to those locations in the stack
indicated by the arrows emanating from the letters. The chosen letters

have no particular mnemonic significance.

(Fig. 1 — see next page)

S e
parameter passed
from A to ?
p —)r__.
B!s linkage segment
number
name of Y
saved register values
for emulator VY
E -y
‘.)r""‘
parameters passed
from B to A
and results returned
from A to B
c Y,
ve
Fig. 1

- s - — -ﬂ ——————— 7
return

Y's state information

vector

e >

—n o e emw exe Wes ooy wme e wwes mmos wme J

17

Als
stack
frame

As is seen, the stack contents are alternately blocks containing parameters

and saved virtual processor state vectors. Notice that the last word of

such a state vector must be the name of the emulator it belongsto. The

area used for passing parameters in a call may be overwritten with re-

18

sults to be passed back. Thus communication is symmetric for call and

return situations.

The primitives which access the super-stack are microprogrammed. They
may be considered to be the bottom level microprograms of the system as they
do not access the super-stack as a segment, but in terms of absolute ad-
dresses. This decision may be thought of ' as an attempt to reduce mi-
croprogram interdependence (between the super-stack primitives on one

side and READ and WRITE on the other), since microprograms are com-
plicated enough already. A description of the individual primitives follows
(using the BCPL rv-notation). Figures to illustrate the use of the super-

stack follow when the calling process has been more completely explained.

GetParam (i): returns rv(C+i). Used to get parameter or result.
GetRegister(i): returns rv(E+i).

Push(x): S:=S+1; rv(S):=x. Push is used to load parameters and register
values onto the super-stack.

MarkStackFrame(): Push(P); E:=S, C:=P. MarkStackFrame is used to
place a link in the super-stack and update the system registers accor-
dingly after all parameters for an external call have been pushed, but
before the virtual machine registers are saved.

UnmarkStackFrame(): S:=C; P:=C; E:=rv(C); C:=rv(E). UnmarkStackFrame
is used to undo the effect of MarkStackFrame after a return has been made
from an external call and the saved register values and returned results

have been read from the super-stack.

Notice that all information in the super-stack is accessed as 16 bit words.
The accessing primitives have no k}nowledge of the meaning of information
stored In the stack, so it is most natural to use the unit size offered by
the hardware. Any further structure to this information must be imposed
by convention, as was discussed in section 1. 2. It would be preposterous
to invent formats which have not yet been implemented in connection with
projects on RIKKE; As far as systems programming is concerned there
are two important data types, i.e. modes of interpreting 16 bit words or
collections thereof; these are integer and character string. Conventions
are defined for these two types and for booleans and single characters.

Note that formats are merely defined by convention, it is up to emula-

19

tors or compilers to use the super-stack primitives in accordance with

such formats.

To justify the choice of integers and character strings we point out that
these suffice for any sort of addressing or linking in the system as any
references may be reduced to strings or integers: segment numbers and
word numbers are integers, symbolic names of segments and files and
also of locations within segments consist of character strings. Further-
more, we may reasonably expect that information passed across emula-
tor boundaries will most often, or nearly always, be addressing infor-
mation: the symbolic name or number of a segment where the called pro-
gram will find data structures for processing, or the name of a file to

be printed, for example. Details of the conventions are found in the user

manual.

Enter and Return

This subsection explans the micro-programmed system primitives ENTER

and RETURN which handle external program calls and returns.

To describe programs which can be called externally, we use Routine Con-
trol Blocks (RCB's). The term is taken from Tafvelin, and used in the
same meaning as he uses it. A Routine Control Block is a record with

three fields:

1. size of scratch data segment.
2. emulator name.
3. virtual address of program entry point.

The use of the RCB is elaborated below.

The following two situations are intrinsically different:

1. Program A which runs on emulator X is called from some external
program; and

2. a returnis'made to A from some external program which A itself

has invoked in a situation such as 1).

In both situations control at the hardware or microprogram level must
pass to X, and in both situations X's program counter will be set to point

somewhere in A. However, in situation 1), the state of X, i.e. the con-

20

tents of its registers, must somehow be initialised to establish a pro-
cessor configuration which will allow the execution of A, while in si-
tuation 2) the virtual processor needs to be restored to the state which

it was in before the external call originating from A was executed.

Because of this difference we assume that any emulator has two entry
points, a "new-entry" point for the former of the above situations, and
a "re-entry" point for the latter. In fact more distinction may be needed,
as the new-entry may itself represent a sort of re-entry, e. g; programs
on different emulators call each other recursively, the question being
whether on each external call an entirely new incarnation of the emula-
tor supporting the called program is desired, or whether some version,
already lying around, could be used. This question may be seen as an
aspect of the wider question of generalized transfer of control, which

is very briefly touched upon in section IV. 6. Basically, the problem a-
rises when an emulator must obtain information to initialise its state at
new-entry. We shall return later to the question of wher€ this informa-

tion may come from.

The distinction which matters to the system is between the situation where
an RCB explicitly handed to the ENTER-microprogram specifies a pro-
gram to be entered, and the situation where the RETURN microprogram
implicitly uses return information in the super-stack to find an emulator
to resume cantrol at a point where its state had been saved. Tables are

kept of the new—entry and re-entry points of all emulators in the system.

A third module which an emulator must contain if it is to support external
program calls is a "calling sequence!" part which will save the virtual pro-

cessor state and then pass control to ENTER.

To clarify the implications of these demands on the structure of emulators
we present a standard example of what these parts of an emulator may look

like, in an informal notation. Let the state vector consist of n registers.

NewEntry(PC):
11 for i=1 to n-1 do initialise i'" register

2: ProgramCounter:=PC (nth register)

4:

21

move parameters from super-stack to private storage
using GetParam

goto instruction fetch (or entry point into main algorithm)

CallingSequence (external routine):

5:

X

Get parameters from private storage and push them on the
super-stack

MarkStackFrame()

for i=1 to n do Push (ith register)

Push (emulator's own name)

calculate address of RCB and place it in standard location

goto ENTER

ReEntry():

11:
12:

13:
14:

for i=1 to n do ith register := GetRegister(i)
move results from super stack to private storage
using GetParam

UnmarkStackFrame()

goto instruction fetch loop.

We now present some pictur‘és which illustrate the changing state of the

super-stack as an external call proceeds. Referring to the CallingSe-

quence above, we have the situation in Fig. 2 before the line labelled

5. Between lines 5 and 6 we get Fig. 3. Fig. 4 depicts the state of the

super-stack after line 8. And finally after ENTER, the situation is as

shown in Fig. 5; this is the "normal® situation when control resides "in-

side!' some emulator, and in that sense similar to Fig. 2, but now one

more stack frame is present than before the call started.

S ~
=

Fig. 2 parameters

p
g-s

SN
o7
S =3 | emul. name
state vector
state vector
E->1 . E -—)gl .
parameters . parameters
P ™ c »-93' _

22

Three points in connection with this description deserve further comments.

1)

2)

The Calling sequence and re-entry parts stand in a natural relation

to each other in that every time control goes out of an emulator through
its CallingSequence it will eventually return to ReEntry. Similarly,
whenever control passes into an emulator at NewEntry it will even-
tually leave the emulator again and go to the system!'s RETURN. That
part of the emulator which contains the branch to RETURN may also
deserve to have been described in some detail. We merely remark

that it does» not need to manipulate the super-stack pointers (system
registers), but that it may involve writing results which are passed

back to a calling program into the super-stack.

All moving of parameters or resultsto or from the super-stack may

involve conversion between the system data formats discussed above

23

and the emulator'!s own data representation. (This takes place
in the lines labelled 3, 5, and 12.)

3) Lines 1 and 11 in the above description may hide a situation which
is really more complicated than it appears. 'Suppose an emulator
uses working registers to hold decoding tables, and suppose a fair
number of such registers are used. It may seem odd to save these
registers away as part of the emulator state vector, particularly
as the tables are constant; Also at NewEntry it may be difficult
to generate the values in such tables. We therefore make it possible
to associate a small segment with each emulator, a segment which
belongs to the system, and which is therefore known to any pro-
cess automatically. Hereby we allow all references (i.e. from all
processes) to such a segment to use the same segment number,
realising that it is difficult to microprogram symbolic references.
A segment of this kind, called an emulator segment, may be initia-
lised in the system at the time a new emulator is introduced,

and emulator initialisation values may be placed in it.

An emulator segment may also be used to solve the above mentioned di-
lemma as to whether a new-entry may really be a re-entry. Specifical-
ly, it it is desirable in an emulator!s CallingSequence to save its state
so that it may be restored, not only at a re-entry, but also at a (recur-
sive) new-entry, the state may be saved in the emulator segment. In fact
the emulator segment may be thought of as an emulator'!s own storage, not
belonging to any program it interprets but to the emulator itself. The sy-
stem will re-initialise the contents of all emulator segments at the begin-

.ning of each process.

The groundwork has now been done for a description of ENTER and RE~
TURN. We first look af ENTER in detail. Before considering the Rou-
tine Control Block handed to it, ENTER does the following so as to pre-

serve the return information in the super stack: (cf. Figs. 4 and 5)

Push (current linkage segment number) (see section 3)
Push(E)
P:=S.

24

Then ENTER interprets an RCB as follows. The size of an optional scratch
segment may be specified to provide local storage to the called program.
Unless this size is 0, ENTER must create such a segment. Also the emu-
lator microprogram to receive control must be placed in control store.

To perform these two tasks ENTER calls the higher level of the system.
Microprograms are kept in ordinary (write-protected) segments, and the
equipment for translating emulator name into symbolic name and further
into segment nhumber is all found in the parts of the system which are pro-
grammed in BCPL. Finally control goes to the NewEntry of the "called"
emulator, with the contents of the virtual address field of the RCB and
the humber of the optional data segment being passed in standard register
locations. If the RCB represents a microprocedure and not an interpre-
ted program, its virtual address part is at worst superfluous. The point
is that the right microprogram gets control. Thus we may use the same
kind of RCB to represent micro-procedures and interpreted programs,

" and, correspondingly, the same version of ENTER for both.

Dancing on the delicate barrier between micro- and higher level in the
system requires a light and steady foot. A couple of non—-trivial problems
are hidden in the above description of ENTER. How does the microprogram
ENTER pass control to system routines at the higher level; by calling
ENTER? Can a RETURN be made to ENTER? When ENTERing a BCPL
system routine, how is the OCODE emulator loaded? The answers to the
first and third questions are connected. Obviously the OCODE emulator
and system microprograms must be resident in control store, or no emu-
lator could ever be loaded; for much the same reason. system routines

do not require the creation of scratch data segments. It follows that when
higher level system routines are called, ENTER may pass control direct-
ly to the OCODE emulator without the steps described above. If we assume
this characteristic to hold for all OCODE programs then ENTER may
simply test the emulator name to see if a given RCB represents a system
routine. Thus ENTER may in fact invoke the system = programs which
swap emulators in the standard way, i.e. using ENTER, without run-
ning into recursive trouble, provided it knows where the RCB for the
system program sits. The remaining question of RETURNINng to ENTER
is solved by giving the ENTER microprogram an emulator name and an as-
sociated entry in the table of re-entry points. The same mechanism is
employed for other system microprograms such as READ/WRITE and
LINKREF which may need to call higher level system programs for help;

25

One might think RETURN could be simpler. In fact it involves exactly
the same kind of complexity. When control is passed to the RETURN
micr*opr*ogr*am,k it looks in location P-2 in the super-~stack for the name
of the emulator (X) to return to. Unless X is a resident emulator, RE-
TURN then calls the higher level routine which swaps emulators. Even—
tually the OCODE emulator will return, to RETURN that is. Taking a
look atits own emulator name RETURN will realise that it is itself re-
sident (although it is only aware of the residency characteristic, not
that it is looking at itself), so that it may pass control directly to its
own ReEntry, where it resumes the real task of returning to X, a task

which is now very simple.

RETURN could also usefully destroy a data segment of the kind speci-
fled in an RCB, if one had been associated with the program invocation
which is returning. This would necessitate storing the data segment nhum-
ber somewhere in the super-stack. However for the initial implementa—-
tion we rely on a technique where the higher level system keeps track

of the disk pages used for such segments, so they may later be recovered
for other use. All that is lost, then, is a segment descriptor. This ap-
proach simplifies RETURN and super-stack contents. Besides, by not
collecting the assumed garbage at return time, we allow a kind of gene~-

ral retention.
The above description of ENTER and RETURN is complete except that
it does not take linkage segments into account. These will be introduced

in the next section.

.Emulators, Compilers, Programmers

At this stage there may be some confusion as to who has which responsi-
bility in connection with external calls. How much must the programmer

do, how much the compiler, and how much the emulator? The system design
does not answer these questions, nor should it; there are several pos-
sibilities, depending on the lariguage and virtual processor involved. In
generdl it seems reasonable to requfre that the programmer provide speci~-
fications of eXter‘nal entry points, including symbolic hame (see next
section) and type, i_.»ei. the types of parameters and results, This might

be the case in, say, a PASCAL or a FORTRAN machine. However, in a

26

BCPL -orientedmachine it is possible to allow the programmer control of
individual super-stack primitives. In some other language system, a num-
ber of external entry points might be known to the compiler as part of a
run-time library, and the programmer might not even know when exter-

nal calls are brought about.

Also the division of labour between the emulator and the compiler may
vary from case to case. The ReEntry, NewEntry, and CallingSequence
parts of an emulator, which we have described,need not necessarily be
programmed as modules set apart from the rest of an emulator. It may
be convenient to create machine instructions which allow a compiler to
build them as code to be interpreted for each individual external entry

point. In particular this may be useful for parameter conversion.

3. External References and Linking

In section ll. 3 the need for a unified representation of external references
was argued. After virtual memory has been introduced this amounts to
cross—-segment references. Let us be more explicit. Assume the code

of a program lies in segment A; the processor interpreting this program
has in its registers the segment number of A and also of data segment

B which contains the processor stack and other data of the computation

in progress. If this program makes an external program call, or referen-
ces data other than that in B, its processor may not know the relevant

segment humber, and therefore some manner of indirect reference is needed.

A general solution for this problem was found for the MUL TICS-project
[3], where linkage segments were introduced, and Tafvelin [7] has used
MUL TICS~like linkage segments in his multi-emulation environment. Our
design follows his approach. To any code segment, i.e. compiled pro-
gram, belongs a linkage segment. For each external reference from the
che" (which may be referenced from several places in the code segment)
tHe linkage segment contains a link reference (in MULTICS: "ITS!") which
is basically a virtual address. However, as segment numbers are dynami-
cally assigned, and as the point being referenced in some external segment
is likely to change location over'time within that external segment, e; g.
with recompilation, it is impossible at compile time to find virtual ad-

dresses for all points of external reference which will be valid at run

27

time; therefore symbolic addressing is used. A link reference is always
in one of two possible states, either resolved, in which case it wntains
the virtual address of the point referred to, or unresolved, in which case
it contains the virtual address of a location in the code segment to which
it belongs, where the symbolic reference may be found in the form {sym-

bolic segment name, symbolic word name).

The mapping of symbolic word name to word number is performed by look-
ing up the name in a table of externally referenced locations which is
found in the beginning of the referenced segment. Any segment which
contains targets for external references must begin with such a table;
The segments for which this is relevant are linkage segments and
segments containing data structures accessed using external references,
such as data structures on which several programs running on different

emulators perform operations.

The reason linkage segments are included here is that in addition to link
references they also contain RCBs for externally available entry points
in the code segment to which they belong. Thus an external code reference
goes from caller's linkage segment to called program's linkage segment;
The segment number of the linkage segment for the program in execution

is always in a system register.

An external reference from the program in code segment "PROG1! to the
entry point "BLUE" in the code segment "PROG2! is illustrated in Figs;

6 and 7. In Fig. 6 the reference is unresolved; in Fig. 7 it has been re-
solved. The segment "PROG1!". "CODE" has segment number a. In Fig. 6

the virtual address <a, r> is represented by the two letters occurring in

the linkage segment. In :Fig. 7 all references by virtual address are drawn

as arrows. It should be)pointed out that for the arrow from "PROG1!", "CODE!
to the correspronding linkage segment the segment number of the virtual

address is implicit.

(Figs; 6 and 7 - see the next two pages)

"PROG1 ", "CODE"

CALL EXTERNAL

k

"PROG2!"
|||__|NKI|
HB]_UEH

"PROGT !, "L INK"

UNRESOLVED
a
r

28

"PROG! "', "CODE!

"PROGT !, L INK"

CALL
EXTERNAL k

e

RESOLVED

s

NPROGZLIL INK!

IIBLUEH

29

"PROG2". "CODE!

2 RCB

actual entry
point

30

When making an external reference, which we now understand as an indi-
rect reference through the current linkage segment, an emulator must call
the system microroutine LINKREF, with the location of the link reference
within the linkage segment as an argument (k in Fig. 6). LINKREF can
then read the link reference. If it is not resolved a call must be made

to a higher-~level link resolution routine which uses the following algo-
rithm:

1. look up the symbolic nhame of the referred segment S in the Known

Segment Table; if it is known get its segment number and proceed

to step 4.
2. make S known and proceed to step 4 unless S is a linkage segment.
3. make the corresponding code segment known; its symbolic name may

be derived from that of S.

4, look up the symbolic word name in S, and finally overwrite the
link reference to indicate the virtual address which has been found,

and the fact that the reference is now resolved.

A moment's thought reveals that updating the linkage segment register be-
comes an additional taskfor ENTER and RETURN. For ENTER the new va-
lue in the register is simply the segment-number part of the virtual address
of the RCB for the called program. The old value must be saved on the su-

per-stack (see Fig. 1) and later restored by RETURN.

With this scheme an external program call proceeds in two stages, first
a call to LINKREF to find the address of an RCB which is then passed to
ENTER. The fact that there are two stages is due to L_LINKREF being ge-

neral enough to handle both code and data references.

The gains from the use of linkage segments are as follows:

1) External references, which are alien to the inner worlds of emula-
tors, are separated from code and data into their own segments,
where they provide a simple and uniform representation of link in-

formation, irrespective of emulators! internal formats.

2) Link resolution of code references provides late dynamic binding

at no extra cost. It may not seem g important to delay link resolu-

31

tion in a one-process environment without code—sharing, but consider
for example a command interpreter which, according to the commands
received, may call on a variety of programs; in such a situation it

is desirable not to have to load them all, but only those needed, when

they are needed.

3) In a multi-programming environment, linkage segments help to pro-
vide re-entrant code segments, and thereby code-sharing among
processes, as they allow the variable information related to the
code segments to be factored out into small linkage segments, of which
processes may have one each; In our situation the corresponding gain
is probably less important: when code segments do not need to be
modified, they can be write-protected; this serves to protect them,
and it is not necessary to move them physically, when they are

swapped out of core.

By the phrase '"variable information related to a code segment!" is meant
all information which is unknown at compile time. All addresses occurring
in code segments are either symbolic or offsets within segments, and
therefore do not require any binding between compilation time and run-
time. It is a well-known aspect of segmentation with linkage segments that
no explicit loading is needed; this pleasant characteristic is invariant
under the presence of several emulators. All compilers in the system are

expected to produce code which is ready to be ENTERed.

One load-time problem was skimmed over above: When a linkage segment
and the corresponding code segment are made known to a process all re-
ferences from the linkage segment to the code segment by segment number
must be filled in, since this is the time when the segment number is deter-
mined for the duration of that process. These references include both RCBs
and all the link references, as these are at this time unresolved and there-
fore point to the code segment. This action takes place in step 3 of the

link resolution algorithm. Thus while the contents of a code segment never
change once the segment has been compiled, the corresponding linkage
segment must be modified to reflect the incorporation of the segment pair
in the address space of different processes. Within each process it must
again be modified as external references are resolved. It follows that each

process heeds a separate copy of a given linkage segment. Since a linkage

32

segment is small it is reasonable to lock it in physical store once the link
resolution routine has triggered it to fault. We thereby avoid having to
make an explicit segment copy, as the locking ensures against the possi-
bility of having to overwrite the permanent "template" version on disk

by swapping a linkage segment out. The advantage of the linkage scheme is
still that linkage segments all have a common format so the problems of

linking can be handled once and for all by the link resolution routine.

4. Permanent Disk Storage Arrangements

There are three reasons for including a disk filing system in the present

design:

1) The disk, as a physical resource, must be shared by emulators; this
means that common formats are necessary. (" We might make some
inflexible division of the disk into sections for each virtual emulator,
but this would seem unreasonable in a system containing a varying

number of experimental emulators.)

2) One of the reasons for introducing multi-emulation was the saving in
systems programming obtained by having a common set of programs
for this task, and these were more or less in existence before

the project started.

3) By introducing segments which reside on disk we have already gone
some way toward administering the disk from the multi—emulation sy—

stem programs.

The system which administers files and permanently existing segments, and .
which is described in the following, is an adaptation of the filing system
designed for the RIKKE BCPL system [16], and is therefore influenced by
the Oxford OS-system.

The Disk

A DRI 200 disk unit will be connected to RIKKE by a controller built by
the DAIMI hardware staff. Logically speaking, the disk contains a number
of pages, each containing a four word header and a 256 word data block.
The disk is accessed by means of micro-programs, integrated with the O-

CODE machine, which communicate with the disk controller. A point of in-

33

terest is that when handling page transfers, these programs separate
header and data block, so that these may be read from (or written to) loca-
tions quite separate in memory, even residing In separate physical memo~-
ries. This separation allows all control of page header information to
take place in the BCPL part of the system, which has its own private
data area, even though the data contents of pages may be transferred

to or from any location in physical memor‘y; Page headers are used to
validate disk pages in a fashion inspired by Lampson [6] Page headers
identify the file or segment in question, and the serial number of the
page, information which is checked on every disk read. Also a checksum
computed by the microprogrammed transfer routine is included in the

header.

Technologically it should be noted that the disk controller is not a chan-
nel, actual transfers take place as programmed i/o at the micro-level. In
a slow one-process system the use of interrupt-driven disk transfers is hard-
ly of interest, quite apart from the problem of simulating these interrupts
on RIKKE, which has no hardware interrupts. For these reasons, disk
cylinder seek operations are simply waited for. Transfers of several
pages in a row, i.e. segment swaps, are made efficient by the use of a
buffering s@;heme in the disk controller, which allows overlapping of trans-
fers to or from RIKKE memory with mechanical operations and transfers

to or from the actual disk. This scheme also removes any critical timing
requirements from the disk-handling micro-programs, and thus serves

to simplify them.

Files and Segments

Segments are ordered sets of words of information. So are files. Seg-~
ments may be created and destroyed at any time during a computation.

So may files. A segment may survive the computation which creates it by
the establishment of an association between the segment value and a symbo-
lic name and the insertion of this pair in a directory. The same is true

- for a file. The difference between files and segments is that segments are
randomly accessed, while files must be read or written sequentially. Seg-
ments provide emulators with linearly organised memories, while files are
used for sequentially arranged information, such as texts to be input or

output via peripheral devices, or edited. Files are specifically intended

34

as a spooling medium for input and output.

Technically, this distinction means that a segment is either wholly in or
wholly out of physical store, whereas for a file it suffices to have direct
access to one page, at the location where reading or writing is currently
taking place. (In a paged system, this distinction would be immaterial, and
indeed the MULLTICS system only has segments.) Apart from this technically
founded difference, files and segments are treated alike; they occupy the
same type of entries in directories, (i.e. directory searches are the same
for files and segments) and they are described by headers in the same for-
mat in the system master file; It is also quite easy to convert a segment to

a file, and vice versa, preserving the information content.

Segment and File Values, Headings

In accordance with the philosophy of the OS-system, every file or segment
has a value, an integer, which serves to identify the file or segment during
its whole existence. A segment value should be distinguished from a segment
number, which serves to access the segment while it is known to a particu-

lar process. The value is used for the following purposes:

1) as control information in the header of every page of the file or seg~-
ment.

2) as the identification associated with symbolic names in directories.

3) as an index in the master file, which contains a description, called

a '"heading' of each existing file or segment, sufficient to access its
constituent pages; a heading also contains a file or segment title which

is a character string.

Directories and Symbolic Names

Directories are files. They are used to permanently associate symbolic
names with files and segments. As in Oxford OS and DEC's TOPS 10 sy-
stem, a symbolic name consists of two character sirings.

Thefirst string is the name a user gives to the file or segment in question,
whereas the second string or '"extension!' describes the kind of information

contained therein. Thus a number of logically related files or segments,

35

such as source text, compiled code, and documentation for a given pro-
gram, may all be given the same first name but will have different second
names. We write symbolic file or segment names as two quoted character

strings separated by a period (.).

In some instances the extension name is used to inform the system of how
to process a given file or segment; Thus the link resolution routine ex-
pects code and linkage segments to have second names "CODE!" and "L INK"
respectively. User-built language systems with compilers may add to these

conventions.

A directory contains a list of pairs of the form <symbolic name, value>

and nothing else. ~There are routines in the system to insert and remove
directory entries, and to search for or rename entr'ies; The same sym-

bolic hame may occur in several directories without causing confusion, regard-

less of whether all the occurrences refer to the same file or segment.

As a directory is itself a file, it may be associated with a symbolic hame
and inserted in another directory (or in fact, in itself if one cares to do
so). Thus a directory structure, for example a tree, may be built. Some
particular directory will at any given time be considered to be the current
directory, and many system directory references will go through this di-

rectory, specifically those having to do with link resolution.

Overview, Robusthess

At this point we may illustrate (by a rather sketchy diagram) how a file
is represented in the system. The file in Fig. 8 consists of 7 pages, and
is associated with the name "MATRIX". "DATA!" in the depicted directo~
ry; it has value f and the title "MATRIX". As illustrated, the heading for
f contains the addresses of the first and last page in the file; the remai-
ning pages are addressed using a chain Whichr Occupies one word of the
header of each page in the file. For a segment, one disk page is alloca-
ted to hold a table of pointers to all the segment's constituent pages (this
information is needed when the segment is swapped out on disk). The ad-
~dress of this page is kept in the heading instead of the first and last
page addresses.

(Fig. 8 - see next page)

Directory file

s

TMATRIDX!
NDATA!
f

Master file

FILETYPE

vy ey Gmm e = oEe aom e o

joor aor ©xn owme cme @ cowe wwe w

oo oo asoe e woms mws coww @R

TMATRIX!

(atmim,m
.F
W to second
page
5 pages
left out

from sixth
page

fos cmr ewm ewe comme eww o

oo oome oouny eoww ezow eme e

ENDBODY

36

37

The information which we have chosen to gather in a file heading could al-
so have been directly associated with a symbolic name in a directory en-
try, thus saving one physical disk access each time access is opened to a
file or segment. However this only occurs when a file is set up for reading
or writing, or when a segment is made known to a process, and there are
two important gains to be obtained from having separate file (segment)

headers.

1) There may be any number of directory entries (including none) in any
number of directories associated with a given file or segment. This
allows sharing of information among users, each having his own pri-

vate directory.

2) It follows that directory entries are not essential for the well-being
of files; a file may exist without any directory entries referring to it.
However if this state is permanent, i.e. it lasts beyond the duration
of a process, it is likely to be.the result of the corruption of one or
more directories. Indeed the disk will from time to time be cleaned,
implying that any page which does not belong to any file or segment
referenced from some diredory is made a free disk page, i.e. avial-
able for allocation. When corruption of directories occurs, the head-
ing information may be used to re-establish symbolic access to "lost!
files; this is the reason for having file titles. Ordinarily a file's
title will be identical to the first name in the most important directo-
ry entry for the file. Thus the redundant information. in headings makes the
filing system robust in the sense that it can withstand directory cor-

ruption.

Similarly, the information in page headers serves to preserve a file's or
segmentls integrity even if its heading should become corrupted. In this
case, however, the type of file or segment is lost as well as the title.

We see that corruption of the master file is not fatal for the actual stored
information. It should be noted that tolerance to corruption of directories
and themaster file is an essential aspect of robustness of the filing system
as a permanent storage mechanism, because directories and the master file

are accessed very often and are therefore vulnerable to random errors.

38

Access to Files

The RIKKE BCPL system uses streams [5] to read and write file contents.
The already existing software for this purpose is also used in the multi-
emulation system. This approach means. that the routines for creating and
handling streams must be made externally available; For the sake of effi-
ciency the stream primitives: NEXT which gets the next word from a
stream, i.e. file; ENDOF which tests for end of file; and OUT which adds
a word to the end of a file, are made callable at the micro-level. The ne-
cessity of starting the somewhat heavy machinery for external calls once
for every word transferred to or from a file is thus avoided. Moreover,
this approach provides one more kind of equality between files and seg-

ments: both may be accessed at the micro-level.

In the initial implementation, all calls on NEXT, ENDOF, and OUT will

be referred to the BCPL level, where these functions exist already. How-
ever one may later choose to microprogram these functions, or major parts
of them, in a tuning process similar to that of the Oxford OS-~-system, where
Next, Endof, and Out have become single instructions of the interpreter

used with that system.

5. System Overview

After the features of the RIKKE multi-emulator system have been described,
two questions (at least) remain unanswered: How are processes started,
and how does the system react to errors? These questions both relate to
the framework within which the multi emulationfacilities are provided. We
have explained that important system modules have been programmed in
BCPL; in fact these parts have been added to the existing RIKKE BCPL
system, in a sense integrated into that system. It has therefore been natu-
ral also to use the basic command interpreter loop of the BCPL system

as the place from where multi-~emulation processes are initiated. This

has been accomplished by adding to the routine which restores the BCPL
system to its standard initial state a part which restores the multi-emu-
lation environment to its configuration at process start. We could how
redefine a process to be that computation which takes place between two

succesive calls to the command interpreter form the basic system loop.

39

Error conditions in the OCODE machine on which the BCPL system runs
cause the OCODE emulator to generate a trap, i.e. a call to a general
error handling routine which is in fact a modified command interpreter
loop, used to obtain debugging information interactively. The error hand-
ler is also called by the BCPL system routines in error situations. It

is simple and natural also to use this facility for the multi—emulation
system. From the modules which have been integrated into the BCPL
system it is easy enough to make an ordinary routine call to the error
handler, and for the microprogrammed parts a bit of trickery has been
invented in order to bring about an OCODE machine trap whenever an

error occurs,

The debugging tools in the existing error handler consist basically of
facilities for inspecting relevant parts of the OCODE machine!s store,
with particular attention given to the stack; Facilities extending these
may be created, allowing the operator to inspect the contents of any
segment, addressed symbolically or by segment number, and the su-

per-stack.

A third area where the BCPL system becomes useful is i/o. It is expec-
ted that programs which run on virtual machines other than the OCODE
machine will do their i/o to or from files {spooling). The BCPL system
command interpreter makes it easy to.transfer files to and from periphe~
ral devices. Finally we note that the BCPL system also includes an inter-

active text editor.

This discussion of the relationship between the multi—emulation facilities
and the RIKKE BCPL system concludes our presentation of the RIKKE mul-

ti—~emulation system.

40

IV. ALTERNATIVE MODELS FOR MUL TI-EMULATION

In this chapter we consider some models for multi-emulation systenis which
differ from the system described in the previous chapter. Some of the
ideas which are mentioned come from discussions about multi—emulation
which have taken place within DAIMI, and some come from the meagre

published literature on the subject;

In the latter catagory we find reports on the Burroughs B1700 system and
on the compatibility features of the IBM 360 models. There are other:
(mosﬂy small) computers besides . the B1700 which allow user micro-
programming. A number of these are mentioned and discussed with re-
spect to their microprogrammability in [H],'but a perusal of the descrip-
tions found there does not reveal that multi—emulation in the sense defined
in chapter 1l is supported in a general fashion by any of these systems. We
therefore limit our discussion of existing computer systems to the above men-
tioned two. Since little is known to this author about the real multi-emula-
tion capability of the B1700, the discussion of that system becomes pri-
marily a comparison of the suitability of the B1700 hardware and of the

RIKKE-1 hardware with respect to multi-emulation.

We open the chapter with a section on the relation of multi-emulation to
multi-programming, a question which seems to be basic also to some of the
subsequent discussions. Other sections are devoted to the paper by Taf-
velin [7], to the concept of a multi-interpreter system as opposed to a

multi—-emulator system, and to ideas of generalised transfer of control.

The Inclusion of this chapter in the present report is intended to serve a
double purpose. One purpose is to put the designed multi—-emulation system
in perspective compared to other similar Implementations and ideas, thereby
indicating both its power and its limitations. Another purpose is to justify

some of the more important design choices which have been made.

For the sake of brevity we shall refer in the following to our multi—emula-

tion system simply as the ME-system.

41

1. Multi-programming

The designers of the RIKKE and MATHILDA computers have written [14

"A core project in the systems area is to define and implement
a micro-monitor, resident in RIKKE control store, to allocate
the resources of the system, l/O as well as processors, and

which will allow multi-programming among emulators!.

In this view the hardware organisation of working registers into groups
would be used to allow the state vectors of several emulators to be in
physical registers simultaneously, with basically one state vector or
ltontext block!' per group. The so-called micro-monitor should

be very simple, its task being basically to multiplex emong emulators

by controlling the value of the register group pointer and the micro-
program counter. In this scheme the active emulators, several of which
may be the same if desired, provide a number of virtual machines, exe-
cuting in parallel. In the resulting model, cooperation between programs
on different emulators would take place using process-synchronisation
and inter-process communication tools such as semaphores and message
queues. These would then have to be implemented as part of the micro-
monitor. It was thought important that supervisory functions be confined
to the micro-programmed monitor — no emulator should be preferred to
any other, there should not be some virtual machine in charge of the others,
no master, no slaves. Comparing this approach with the ME~system, there

are three major differences.

1) Instead of external subroutine calls this model provides inter-pro-
cess communication. This difference is a consequence of two dif-
ferent philosophies in viewing a multi-emulation system: n one view,
there are a number of virtual processors operating in parallel with
tasks distributed properly among them; in the other, there is only
one processor, the physical machine, which acquires different
"virtual characteristics, depending on the task it is dealing with.
The author contends that the latter view is more natural from a user
point of view in the many situations where a user program invokes a
subroutine, which just happens to run on a different emulator. In
the adopted design this fact is represented by the emulator name

fleld within an RCB. As discussed near the end of section 11l the

42

existence of external calls may be more or less hidden from users.
In the micro-monitor multi-programming model, explicit communi-
cation with some particular virtual machine must take place depen-
ding on the subroutine in question. It is admitted , however, that

it may be possible to hide the dirt away in compilers.

The stumbling block in discussions about the micro-monitor was
always the management of core storage. An idea was presented that
each virtual processor should have its own private portion of storage
to be administered using base and limit registers. As a possible
hierarchy of processes developed, these units of storage would

be subdivided, to correspond to a tree-structure of processes.
These ideas never developed satisfactorily. The fixed amount

of physical core storage actually available would be incompatible
with variable demands from a variable number of processes. It

is an important idea of the ME-system design that a general and -
flexible core management scheme is a basic necessity for multi-
emulation. However, this can hardly be achieved without higher -
level programming, and this again implies that some interpreter
will be running programs which manage resources for all, and in
that sense it becomes a master. Actually though, it is the core ma-
nagement program which is master, but it does mean in the ME—
system that the OCODE emulator obtains a special status; in fact

it is indispensable, which cannot be said of any other emulator.

It is not clear whether the term i/o devices in the above quotation
-also covered a disk unit. In the philosophy of the ME-system, a disk
is considered as a storage device, the utilisation of which must

be integrated with that of core storage in order to provide memo-

ry space for several virtual processors. The tasks of administer—
ing permanent information on disk is also seen as a necessary .func-
tion which must be included in any set of basic programs, whether
they be called operating system, multi-emulation system, or micro-
monitor Again this implies that a set of disk management programs
must be placed between the physical disk and "user!! programs, which
access information stored on disk. In this author's view it is imprac-
ticable to perform reasonable disk storage management on RIKKE-1

by micro-program alone; higher-level programs are necessary.

43

To expand this point: RIKKE microcode is not suited for systems
programming, but at most for implementing virtual machines and
algorithms of the kind for which it has been designed, such as .
arithmetic ones. Thus any system providing basic services must
make use of higher-level programming. The problem must be faced
of Interfacing services at the micro-lével to higher~level programs

running on at least one selected emulator.

3) A micro-monitor for the multi-programming of virtual processes
including process—-communication mechanisms would provide a gene-
ral opportunity for work with multi-programming appl‘icat'ion_s. The ME-
system seems not to accomplish this. This |limitation deserves some

further consideration.

Emulation of systems for parallel computation

Emulators defining virtual machines which permit algorithms to be orga-
nised into parallel or pseudo-parallel computations are not excluded from
the ME-system. In par‘ticglar‘, emulators which uti‘lise the two physical
processors of the system, RIKKE and MATHILDA, in parallel, are heartily
welcomed, along with any designs which merely simulate parallelism, per-
haps for the sake of experiment. It is only where such emulators interface
to other virtual machines, running under the ME-system, that a stack-orien-
ted discipline is imposed. Drawing a network picture of the logical movement
of control over time, we see that the notion of parallelism is subjected to
serialism at the outer level as illustrated in Fig. 9, where & is used to mark
transfer of control across emulator boundaries, either external calls, or

external returns.

control B S = B
distribution /

time

44

Multi-tasking at system level

Fig. 9 still shows the limitation that m's are forced to occur serial-

ly. Applications in which parallel computations are each distributed over
several virtual processors are excluded from the ME-system. Neverthe-
less this kind of generality may be desirable with respect to possible future
applications. It is therefore of some importance that the system design

does not preclude extensions aimed at accommodating such applications.
Stated more positively, there should be a natural way to implement suit—

able extensions.
In section V.1 we suggest a possible (natural) extension similar to that by
which multiple tasks are provided in the B6700; this will allow for example

coroutines as separate co-operating tasks.

Multi-user service

The discussion of multi-programming has so far been concerned with the
demands on system facilities by algorithms which are parallel in nature,
realised through one form or another of parallel computation The idea of
time-sharing among several users, situated at so many terminals, has not
been touched upon; Nor will it really be dealt with here, simply because
the RIKKE-1 processor is not deemed to have the capacity to serve more
than one user with reasonable performance. There is nothing in the RIKKE
configuration, i.e. no hardware interrupts and no channels, which points
toward such use. Based on experience with the BCPL system the judge-
ment is passed that RIKKE, when emulating virtual machines, will not be
fast enough for physical processor time to be devided so as to serve a num-
ber of users simultaneously, unless these users refrain from activities
which consume more processor time than does simple editing. Design ef-
forts aimed at producing a time-sharing system wQuld only produce bore-
dom and irritation, according to users! inclination. Moreover, the crea-
tion of a multi-user system on RIKKE would not meet any real need.

:

2, Compatibility Features on the IBM 360 Computer‘s

As mentioned in the introduction (chapter 1), the microprogrammed pro-
cessors which are used to implement most of the models in the IBM 360
line of computers, may be switched to imitate older IBM models, notably

models from the 1400 and 7000 ser‘ies; In fact compatibility features for

45

second generation machines are quite common on commercial third gene~
ration computers. These features are supplied to assist with the tasks of
program conversion involved In the installation of new equipment. The
following brief comparison is based on the paper of Rosin

[8], which provides a good overview of these techniques as well as an
interesting discussion of IBM policy with respect to user microprogram-—
ming. Several references to more specific IBM documentation are inclu-
ded. Incidentally, Rosin's paper also foresaw some of the important
questions pertaining to a more general form of multi—emulation such as
the passing of information between emulators, the problems of assuring
that one gets back into the right emulator after some type of external
call, and the formulation of a common filing system; This is remark-

able if only because the paper appeared a relatively long time agoi(1 969).

Comparing the 360 compability features to the ME-systiem it is interesting
to note that in the IBM 2025 processor (ordinarily used for model 360/25)
which supports a compability switch to a mode so that it acts as a 1400
model, a writeable control store is used (for other processors read-only
control . store is employed). Thus potentially an effect similar to our
emulator switches could be realised. Another interesting aspect is that
in several cases the i/o instructions of an emulated machine are imple-
mented by means of simulation in the corresponding 360 model, a situa-
tion which is reminiscent of the ME-system where the capabilities of the
OCODE machine are employed to provide a filing system also for other

machines.

The scope of this comparison is, however, limited. The kind of emulator
switching provided on the 360 does not support general external calls
across emulator boundaries. Emulator switching is accomplished by such
means as the reading of a card deck and thus requires operator inter-
vention. Nor are the processors intended for user microprogramming.
We therefore have no opportunity to evaluate the more powerful aspects

of the ME~system in this comparison.

The point of importance in this discussion of the IBM 360 models {and simi-

lar third generation machines) is that they testified to the validity of emu-

46

lation and of a limited form of multi-emulation as techniques for reali-
sing computing machines, even on a large scale. For the ME-system

these systems are therefore important as an historical background.

3. The Burroughs B1700 Computer System

The only microprogrammable computer system known to the author which
is widely available and supports multiple emulators in a general fashion,
is the Burroughs B1700. Only '"high level! information on the mechanisms
whereby multiple emulators are supported may be found in the generally
accessible literature; facilities a~e described mostly in terms of what

they do for the user, whereas little insight is provided into how they

are implemented. As information involving implementation details is
difficult to obtain the following short discussion is based on two papers
by Wilnher in the 1972 FJUCC proceedings [9]

At the outset we remark that the B1700 system and the RIKKE ME-system
show some similarity, at least superficially. Both claim to flexibly sup-
port multiple emulators, and both involve a central storage management
program to serve as an arbiter of claims for physical resources. The
OCODE emulator and the SDL. S~ machine which interprets the Master
Control Program (MCP) are both resident to secure availability of sy-
stem functions. Similarly, both the MCP and the ME~-system contain a

microprogrammed resident part.

Hardware aspects

Some of the major differences between the B1700 and the RIKKE ME-gsy-

stem are, of course, due to hardware differences between the physical
processors. A very general comment about the RIKKE~1 hardware de-
sign [14, 15] is that it lacks structuring elements which support gene-
ral low-level systems programs, such as the ME-system. In particular,
all three physical storage media, main store, wide memory, and control
store, are plain random access devices, each having only a simple me-

~mory address register. All binding of addresses must be programmed, and

therefore any structuring of storage contents must be enforced by layers of

program placed between the hardware and user programs. The reasons
for this design characteristic probably lie partly in considerations of

cost, and partly in the notion that by imposing no structure, the hard-

47

ware allows any structure, i.e. a generality argument. By making no de-
cision, one does not make the wrong decision, However, if one wants micro-
programming experiments to take place in a common supportive environment
such as the ME-system, one only postpones the decision until this system or
environment is designed, and at that time the system designer wishes it had

already been made and implemented in hardware.

Like RIKKE, the B1700 is intended to have no pre-defined processor-structure
but rather to be an efficient general emulation vehicle. However, its hardware
includes several important structuring features: defined-field memory addres-
sing, (capability of addressing arbitrary bit strings as units of memory); virtual
addresses both for ordinary storage and microprogram storage; also micro-
programs may overflow from M-memory (fast control store) into S—memory

(ordinary slower memory), and still be fetchable for execution.

Wilner argues strongly that the defined-field addressability eminently supports
the building of efficient emulators. In our context, where relationships between
emulators,and problems arising from their coexistence are of greater interest
than emulators! internal problems, it should be clear from previous discussions
that suitable hardware-supported virtual addressing schemes would have been

very helpful as a groundwork for the ME~system.

It should perhaps be clarified that no assertion has been made to the effect that
RIKKE lacks hardware structure in general. For example, at register group
level, there is (optional) stack structure which may eminently serve particular
processors. Our claim is that structure is lacking for the support of an over-

all system.

A similar problem arises over physical processor registers. While the number
of registers available for user microprogramming in the B1700 is large and
flexible [1 1] it is still possible to present these registers in one or two pages
of text and tables. Wilner states that emulator switching on the B1700 is hard-
ware assisted, but does not go into detail about the kind of assistance. One may
guess that there are particular hardware facilities present for the saving of re-
gister values (virtual processor state vectors) in particular memory locations.
On RIKKE, such a scheme would first of all be impossible, because so many

registers are in blind alleys, and moreover also unreasonable, since most of

48

the information kept in the totality of registers is not likely to be relevant
to a particular virtual processor. Thus, by the inclusion of a multitude of
facilities for the individual emulator writer, (facilities which may either
assist or confuse him) management across emulators is made difficult. The
ME-system approach to emulator switching - that emulators are themselves
responsible for saving and initialisingtheir states - in a sense amounts to

giving up management of emulator switches.

In conclusion we state that as a general emulation vehicle the B1700 has

a number of advantages compared to RIKKE-1 by being structured to run
multiple emuliators. We shall not comment on the relative merits of

the two machines as hosts for individual emulators on their own, other than

noting the truism that these must depend on the kind of emulator in question,

External calls

From Wilner'!s description it appears that the emulator switching mechanism

of the B1700 serves two purposes:

1) To provide the right emulator for the MCP upon interrupts

which must be handled by the system.

2) To allow different versions of the same emulator (S-machine) to
be used interchangably during interpretation of a program in a
particular S~language. This provides, for example, switches

between a tracing and a non-—tracing version of an emulator,

Comparing this to the ME-system, the idea of general external procedure
calls across emulator boundaries is conspicuousily absent. A restricted form
of such calls must be available to allow requests to MCP-procedures, It is
difficult to see why the general facility should not be available, when inter-
preter switching is claimed to be so simple, considering the avowed B1700
philosophy of attaining efficiency by flexible processor reconfiguration ac-

cording to the task at hand.

4, Supporting User-Microprogram Development

The idea of employing MULLTICS~type dynamic linking in a multi-emulation

environment is taken from Tafvelin who has described the use of external

49

subroutine calls in a situation with developing user microprograms [7] Tafve~
lin's paper has two concerns : the general linking problem; and the

problem of flexible microprogram simulation. A scheme for microprogram
development is presented which involves running newly constructed micro-
programs on a host machine simulator rather than directly on the host machine
until they have been tested and debugged. Microprograms are at least as
error-prone as any other kind of programs; for this reason special fools

for revealing and locating microprogram. errors are desirable. Such tools
may be included in a simulator. Tafvelin therefore introduces a special kind
of RCB which is used (among other purposes) to indicate that a given micro-
program which is called (ENTERed) should be simulated. Such a system, of

course, must be integrated with a host machine simulator,

True simulation of an apparatus. as complex as RIKKE is difficult to realise,
in particular with respest to the question of compatibility in a multi-emulation
environment. A microprogram may run perfectly well when simulated alose,
but in hard life, where other microprograms contest for register resources,
it may cause disaster. The problem is that the multi-emulation system adds a
layer to the actual hardware which may be very difficult to simulate. Also it
is likely to change more often than the hardware. Furthermore, experience
with RIKKE indicates that hardware timing problems diminish the value of si-
mulation. This is not to deny that useful results may be obtained from si~
mulation, but complete verification of micro-programs by simulation is
unrealistic on RIKKE. Nevertheless the implementation of a good simula-~

tor which will fit into the ME~system, appears as a useful next project
toward building a convenient environment for microprogramming experi-

menits.

5. Nested Interpreters

Multi-programmed multi-—emulation (section 1) is a general notion of which
the ME~system may be seen as a special case. Another generalisation, which
may be reduced to the ME-system as a special case, is multi-—emulation with
nested interpreters. The ME-system design started with the problem of or-
ganising a system in which a number of microprograms, called emulators, dis-
guise the physical processor to make it appear different at different times. If
attention is turned away from the physical machine, and the things emulators
do for it, towards the virtual machines they implement, the key notion becomes

that of machines implemented through interpretation. Abstracting from the con-

50

ditioning of microprogramming experience, one sees a program interpreting
something understood to be instructions for a processor, thereby realising

that pr‘ocessor‘.. To a degree, depending on onels ability for abstractions, it
becomes unimportant that emulators reside in control store, which is technically
different from other stores, particularly in that its contents actually deter-
mine physical processor behaviour; and similarly it becomes unimportant

that emulators are written in a particular language, known as micro-code.

In the ensuing generalisation, an interpreter may be written in the code of

any machine, and consequently the actual algorithm being executed in such

a system may be realised through several layers of interpretation. A code
stream is interpreted by an interpreter, which itself is a code stream which
is interpreted etc., .until in n steps the hardware is reached. It is then seen
as a hardwired interpreter, and the fact that it is micro-programmable is

logically insignificant,

Derrett and Manthey [13], in a discussion of multi-interpreter systems, state
as a requirement to such a system that it must be possible to write emulators
in high level languages, and immediately reach the generalised model alluded

to above, calling the structure ''"nested interpreters!! for obvious reasons.

This discussion of the relation of Derrett!s and Manthey!s views to the ME~
system must begin by acknowledging that the ME~system design was deeply
influenced by discussions of their ideas, a point that will become clear when
testing the ME-system against the requirements they formulated for a general

multi—interpreter system,

Requirement 1: A program running on one emulator should be able to call
a procedure which runs on another.

This is certainly true in the ME-system for the kinds of emulators allowed.

Requirement 2: 1t should be possible to write a procedure in host machine
code {microcode) and call it from a program running on an
interpreter,

This requirement is also satisfied.' According to taste one may dislike the

fact that micro-procedures are forced to look rather like emulators. But

they are certainly allowed in the ME-system.

51

Requirement 3: It should be possible to write an interpreter in a high level
language.
This is where our ways part. In section V.2 we will discuss what extensions

to the ME~system are necessary to allow interpreters at any level.

Requirement 4: It should be possible for an interpreter to call a program
which runs at any level of interpretation.
The point here is that the procedure call may originate from the interpreter
itself, not from the program it interprets. The example given is an emulator
calling a garbage collector program exiernally. In the framework of the ME~
system such a call is completely possible, regardless of whether the exter~
nal procedure is microprogrammed or interpreted. It should be admitted that
the inclusion of symbolic references in a micro-program presents a practical
problem, the solution of which may require !"cheating! the current linkage
segment; for example a compiler may include the external references, which
really originate from the emulator for which it generates code, at an agreed

location in all code/linkage segment pairs.

Requirement 5: The calling sequence for a procedure should be independent
of the interpreter nest on which it runs.

If we replace interpreter nest by emulator this requirement is satisfied.

Requirement 6: The representation of a procedure should be, as far as possible,
independent of the interpreter nest on which it runs.

The point of this requirement is that the representation of data structures should

not be dependent on interpreter nesis, and the requirement does not really

apply for the restricted kind of interpretation allowed in the ME~system. It

will, however, be kept in mind in the development of a suggestion for an ex-

tension to the ME-system to allow general interpreter nests in section V. 2.

The reason why the suggested extension towards allowing interpreter nests
which is presented in the next chapter has not been implemented is twofold:
First, the necessary understanding of the problem was reached relatively late.
Second, this author considers interpreter nests to be of very limited value in
the context of RIKKE projects. It is evident that if nests of depth greater than
one are used for extensive calculations abominable slowness will result. The

potentially useful applications of interpreter nests seem to lie where interpre-

52

tation is used not for raw execution but as an organisational principle in
programs which have the common characteristic of essentially consisting

of a loop which uses a pointer into some data structure to keep track of how

far execution has progressed. We may think of a job control language in-
terpreter or a program which manages a data base by processing trans-

actions. However applications of this kind are a long way from the problems which
motivated the presently described project. One interpreter nest of depth

two which has our interest is the execution of a host machine program on

a simulator written in a high level language (see also section 4).

Addressing Environments

A further difference between the ME~system and the views of Derrett and
Manthey has to do with a procedure!s addressing environment. They repre-

sent a procedure (externally callable program) in a record with three fields:

1. Type of code,
2. Address of code,
3. Environment.

Comparing this to a Routine Control Block it becomes evident that fields 1

and 2 have exact equivalents in the emulator name and entry point address
fields of an RCB, whereas the "environment! proposed by Derrett and Manthey
has no counterpart in an RCB. The environment is intended as a means (some
type of general pointer) of getting at storage which is not local to the proce-~
dure. It corresponds to for example a display or static chain in an ALLGOL.~
type run—time system., When an addressing environment is supplied along

with the code for a procedure we get a structure which is named a !"closure!l

or in LISP terminology a "funarg!',

In a block structured language like ALGOL such a data structure is necessary
in order to represent a procedure which may refer to variables at outer block
levels, i.e. all procedures except a whole ALGOL. program considered as a
procedure at'lSlock level 0. Similarly in a classical LISP interpreter [21],
the recursive EVAL routine works on two arguments, a L.ISP-expression and
an environment. Ruling out the environment component from the data structure
describing a procedure restricts the kind of procedure which may be described

to a block level 0 program in an ALGOL.~type situation or to the initial ex-

53

pression which is the argument of EVALQUOTE (with an initial NIL en~

vironment) in a LISP situation.

The scratch data segments which may be specified in RCBs provide only
local storage to procedures. lt is therefore clear that the restrictions
described above are imposed on the kind of procedures which may be called
externally in the ME-system. There are non-trivial problems involved in
allowing the more general form ofprocedure proposed by Derrett and Man-
they. Consider a call to procedure A declared at block level .n in an AL-
GOL program. In the ordinary execution of the ALGOL program this call
cannot occur before control has passed to the enclosing block at level n-1
from where the procedure A may be named. And whether or not A has been
passed one or more times by name before being called, an activation record
for the enclosing block must be on the stack at the time of call. Now if A is
known, say, to a BCPL program, by symbolic name, how do we assure that
its addressing environment exists at the time when it is called from the
BCPL program? This difficult question which involves general retention
must be answered before more powerful RCBs can safely be allowed; Even
then, the usefulness of allowing external knowledge of the kind of addres-
sing environment which is essentially an internal feature of a given virtual
machine architecture, must be argued. For the initial ME-system it has been
deemed sufficient and safe to include symbolic naming as the only means of

external addressing.

6. Generalised Transfer of Control

The super-stack mechanism which is employed to represent saved virtual
processor state vectors and externally passed parameters in the ME-system
has caused a subroutine call and return discipline to be imposed on all ex-
ternal control transfers. Programming applications are conceivable, indeed
some are mentioned in the existing literature, in connection with which the
availability of more general control transfer primitives is desirable. We may
think in particular of coroutines. There are two reasons why such transfers

of control are not supportedby the ME-system.

1) The super-stack neatly encapsulates all the information associated with
external transfers of control; in this respect it functions as a simple and

compact record of execution for a process. This simplicity is not merely con-

54

venient for the implementer, it also serves to lessen the likelihood of

errors as compared with a more complicated situation, not only the like-
lihood of system implementation bugs, but also of user errors arising

later because of a scheme which might be difficult to comprehend. Allowing
a very general transfer primitive, such as suggested in [22] , would certain-
ly force us to adopt a more complex structure for the (system level) record
of execution; the simple linear organisation of "activation records" in the
super-stack would have to be given up. In this context it is also significant
that the applications which motivated the designh of the ME-system (see
chapter 1) are naturally accommodated in the framework of a subrouiine

discipline.

2) We mentioned in section 1 of this chapter that individual emulated virtual
machines may allow multi-programming. Similarly, individual virtual machines
may support any conceivable kind of control transfer internally. Only ex-
ternal control transfers, which are assumed to be relatively rare, are

forced by the super-stack structure to be subroutine calls or returns.

As far as coroutines are concerned it is suggested that these may naturally
be understood as cooperating pseudo-parallel tasks (processes). In [4] it
is described how process synchronisation primitives may be used in a na-
tural way to achieve coroutine sequencing. We therefore suggest that an
extension to the ME-system allowing multiple parallel tasks at the system
level may also be used to support coroutines if at some stage this should be

considered desirable. Such an extension is described briefly in section V. 1.

55

V. SUGGESTED EXTENSIONS TO THE MULTI-EMULATION SYSTEM

In this chapter we suggest possible future extensions to the ME~-system in

two directions: first an extension allowing multiple tasks to execute in pseudo-
parallel at the system level (as opposed to internally in emulated machines)

is briefly indicated, and then the data structures which are necessary to

allow general interpreter nests are considered at more length.

1. Multi~tasking

There is only one physical processor directly involved in the ME-system,
namely RIKKE-1, Coordinating the use of RIKKE and MATHILDA is con-
sidered a separate problem, left to individual virtual machines which may .
utilise MATHILDA as well as RIKKE. Multiple tasks (or processes) cannot
therefore . be executed in true parallel. Only pseudo-parallel or concep-
tually parallel tasks may be realised. Such organisation is used in com-
puting applications to provide time-sharing among several users of the same
processor or to facilitate efficient batch processing overlapped with i/o
taking place via channels. Neither of these uses are relevant in the RIKKE
situation (see section 1VV. 1). However there exist algorithms which may na-
turally be divided into (conceptually) parallel tasks or organised as co-
routines which may also be considered as pseudo-parallel iasks. For this
reason we give some hints as to how multiple tasks may be represented in an

extension to the ME-~system and how task switching may be accomplished.

In the Burroughs B6700 [4] the state of each task is represented and com-
pletely defined by the task'!s stack. Multiple tasks are allowed, the tasks
belonging to a given job being organised in a tree structure, reflecting a
parent-offspring relationship between tasks. Task switching is accomplished
by adjusting a few machine registers which point to . the stack. Similarly,
in the ME-system, the state of a process is at least to an extent defined by
the super-stack. It is therefore suggested that multi-tasking could be

achieved by allowing multiple super-stacks, one per task.

Drawing on the analogy to the B6700 situation we further state that switching

from task A t{o task B could be accomplished by

56

1. Saving the current virtual processor state of A on Als super-stack

as if A were making an external call.

2. Switching the system registers which point to A's super-stack to

point to B's super-stack.

3. Effecting a RETURN; assuming B's virtual processor state had pre-
viously been saved as was done for A in step 1, this would cause

B to continue naturally.

For process synchronisation it seems natural to extend the analogy and use
a vector of task attributes kept in the bottom of the task stack. These attri-
butes may then be operated on by a suitable set of synchronisation primitives.

We offer no details on this point.

So far, essentially the same mechanisms have been recommended as are em-
ployed in the B6700. However, the B6700 stacks also contain all information
needed to reference data, given the block structured architecture of that
system. The same is not necessarily true about the super-~stack. In the 86700
two sibling tasks, initiated by the same parent task, share a portion of their
stacks, namely some part of the parent's stack. This scheme provides data
sharing, and also protection of private data. A similar mechanism could not
be had for nothing in an extended ME~system, but would require a way of
representing task ownership of segments, segments being the most appro-
priate counterpart of the activation records in the B6700 stack for purposes
of data reference. However the only problem is protection failure in the
case where a task requesting a virtual memory access uses a segment
number belonging to another task. Correct access is certainly possible

within the segmentation framework we have presented in section Ill. 1.

No further investigation into the problem of address space will be undertaken.
Hopefully the point has been demonstrated that the ME-system design is ex-
tensible in the direction of multi-tasking, although much detailed work remains

to be done before such an extension can be realised.

2. Structures for Nested Interpretation

We now return to the concept of nested interpretation which was introduced

in section V.5 to discuss what structures are necessary to accommodaie

57

general nests. Two main questions must be answered,

1) How should storage be organised for code and data areas of the
necessary layers of interpreters, given that what is data to

one level, is really code to the next one up?

2) How can primitives for external entry and return be implemented ?
In other words, how is the multi-layer interpreter nest structure which is
necessary to interpret an actual useful algorithm initialised and set in mo-

tion?

Derrett and Manthey state that the second problem may be solved by an ite-
rative mechanism which initialises interpreter states at all levels in a nest
from top to bottom before passing actual microprogram control to the emu-~
lator which carries the weight of the nest. In fact return is much simpler

than entry, and can be achieved exactly as in the ME-system, since the state
vectors of all interpreters, except the bottom-level emulator, will have been
saved in virtual memory, in exactly those locations where they will be needed.
Problem 1 is not treated by Derrett and Mantehy, but since it has always
appeared to the author as a significant conceptual obstacle, it will be

examined in the following.

Consider a program Fred *) running on the interpreted (hypothetical) XCODE
machine. It is not important at what level of an interpreter nest the XCODE
interpreter sits; indeed for the sake of the generality of this discussion it
should not be. The storage seen by the XCODE machine may naturally be
divided into a code area and a data area. The code area contains Fred, in
fact those XCODE instructions into which Fred was once compiled. The

data area contains a record of execution for Fred and other data structures
which Fred is processing. Values held in XCODE machine registers -~ these
are data at the next level -down ~ provide a means of interpreting Fred's data
area, pbssibﬁy they point fo a stack which describes the computation,s'téte.

Among these values there will also be a program counter, pointing into Fred's

*) In all the discussions about multi-interpretation, that program for whose
sake the whole interpreter nest is constructed, the only program which is
not itself an interpreter, has been called Fred. The fact that the name Fred
is ordinarily used for humans made it natural to nourish love/hate feelings
toward the subject.

58

code area. The situation is illustrated in Fig. 10. So far, all is well and

simple enough.

XCODE machine store

i
code area data area
Program: Data for Fred
Fred
AN T
\ L

Fred execution stack

: Data fetch address
XCODE machine registers: \\

¢ Stacktop pointer

e DProgram counter

Fig. 10

Now see what happens if we replace Fred by an interpreter, say the YCODE
interpreter, written in XCODE. Inside the code area of the XCODE machine
store we now have the code of the YCODE interpreter. In this situation we
know more about the contents of the data area than we did in the case with
Fred, since we have some knowledge about what the YCODE interpreter is
doing, whereas we explicitly did not care what Fred was doing. The YCODE
interpreter is realising the YCODE machine; let us assume that the architecture
of the YCODE machine, like that of the XCODE machine, involves some re-
gisters, which hold the usual state vector, .some storage organised into a
code area and a data area, and some functional units. In the realisation of
the YCODE machine by XCODE programming, the functional units, with in-
struction sequencing foremost among them, are mapped into the XCODE pro-
gram which we called the YCODE interpreter. The other three components,
registers, code, and data storage, must be mapped into the data area of the
XCODE machine. This is illustrated in Fig. 11.

59

XCODE machine store

YCODEZ |
Program: machine | YCODE machine store —
YCODE registers] ~— —1
interpreter i YCODE VCODE
machine machine
i code area data area

E———

\.. YCODE interpreter execution stack
(XCODE machine registers left out)

Fig. 11

As our next complication we rewrite Fred in YCODE and draw a picture of
Fred running on the YCODE machine which we have just described. So far

we have assumed the same things about the YCODE machine as we have about
XCODE; let us continue in this path and assume the YCODE machine is also
some Kind of stack machine; thus part of the YCODE machine'!s data area holds
an execution stack for Fred, while other Fred-data are elsewhere in that
area. Fig. 12 is then a special case of Fig. 11.

XKCODE machine store

YCODE ;
machine v w oms s e
registers) |
Program:
VCODE l Data for
; N Fred
interpreter Program:
! Fred
«
YCOD E machine Fred execution
execution stack stack

Fig. 12

60

Instead of now replacing Fred by the ZCODE interpreter to see what happens,
we jump to the conclusion that interpreter nests involve a nesting of storage
areas, which may be recursively defined by the equation: data for 1'th level
machine equals (processor state plus data plus code) for i+1'st level machine,

the numbering being from hardware level towards Fred.

With this understanding, let us think about the compiler which produces an
executable (interpretable) version of Fred from some source text, in the
light of requirement 6 of Derrett and Manthey, that the representation of a
procedure should be independent of the interpreter nest on which it runs.
Such independence would obviously be advantageous for compiler writers
and updaters. Comparing Figs. 10 and 12, we see that the requirement is
certainly not satisfied for Fred, at least not as long as we interpret the
pictures naively and think of boxes depicted within boxes as representing
containment. It would be unreasonable to ask a compiler to produce code for
a procedure embedded in a set of chinese boxes, which are irrelevant for that
procedure per se. One.might also consider the task of placing code inside
the chinese boxes as belonging to a loader. Special purpose loaders are un-

desirable in a general systemso the situation remains unsatisfactory.

The troubling phenomenon is the recursive embedding. However, with in-
spiration from the B6700 philosophy, we may choose to replace the physical
embedding by descriptors of external storage units. In the B6700 this is
achieved by means of specially tagged data descriptors. In the ME-system,
the virtual memory with <segment number, word number> addresses fits
the problem as a glove does the hand, providing a simpie means to represent
inside one segment the fact that some other segment is in a sense a part of it,
or rather that ownership of and access to the former segment implies access

also to the latter.

Turning attention for a moment to the registers of interpreted machines,

which have so far been kept in a corner, we realise that there is really no
reason to draw them separately or otherwise to - think of them as separate

from the record of execution of the interpreter program. Referring expli-

citly to Figs. 11 and 12 we may as well draw the YCODE machine registers with-

in the YCODE interpreter execution stack. To Justify this, we consider an

61

interpreter written in a block structured language; the registers, being of
elementary data types, will then naturally be mapped into local variables

at some level, and therefore kept in the stack. Continuing in this line, des-
criptors for code and data areas are naturally kept in registers of virtual
machines; at least they are themselves simple and may be kept in the record
of execution. Having thus effectively factored the embedding out, we draw

a new picture of Fred running on YCODE on XCODE, Fig. 13. The arrows
represent descriptors; in the ME-system they may be implemented simply as

segment numbers.

Program: Data for

Fred Fred

Program: record of
YCODE YCOD? interpreter
execution

interpreter

>
Program: record of
XCODE XCODE interpreter
interpreter execution

o
g
Fig. 13

Fig. 13 is much nicer than Fig. 12. The addition of a new interpreter in
the nest no longer renders the picture more difficult to discern, it only
makes it taller. It should be possible to devise an implementation which re-

flects this simplicity. The important characteristic which is apparent from

62

Fig. 13 is that the representation of Fred, in terms of a code segment and

a data segment in no way depends on the nest beneath it with respect to in~ ..
ternal structure; excepting of course, that Fred must be in YCODE format.
Thus an implementation which reflects Fig. 13 will satisfy requirement 6

of Derrett and Manthey.

Let us consider in more detail how an interpreter as depicted in Fig. 13 may
be represented and built. Apparently it consists of two segments placed on
the same level in the drawing, namely a code segment and a data segment.
These segments must be in a format which Is understood by the interpreter
immediately beneath. If that interpreter is the hardware, in other words

if we are dealing with a microprogrammed interpreter, the code segment
will be a microprogram kept in control store, and the data segment is Hkély
to 'be placed in host registers. For higher level interpreters ordinary seg-
ments of the kind introduced in section 1.1 may be used. The contents of an
interpreter code segment (like those of any other code segment) need not
change during the life of the Interpreter program; it may be created by com-
pilation of the interpreter program source text. The data segment is in a
sense more complicated since it changes with interpretation of a program

on the virtual machine in question. We will,however, assume that the state
of the data segment as it looks when execution of an interpreted program
begins is well defined and independent of the particular interpreted program
in question, indeed we assume that the contents of the data segment at such

a moment are known when the interpreter is created except for two items:

1. Program counter, a pointer into the interpreted code segment

defining where execution is to take place.

2. Data segment pointer, the number of the segment which contains

the data area of the interpreted program.

ltem 2 and the segment number part of item 1 are represented as upward

directed arrows in Fig. 13.

The assumption that these items are the only variable pieces of information
needed to initialise the processor state of the machine being realised by an
interpreter before it may be started is equivalent to the assumption that a

new-entry module of a microprogrammed emulator may be defined which can

63

initialise the emulator state properly. With higher level interpreters we
are in the fortunate situation that the initial state may be represented once
and for all in a data segment ''template!, because data segments in the
filing system integrated with virtual memory may have permanent existence

as opposed to states represented in host registers.

We now turn to problem 2 given at the beginning of this section, i.e. the
problem of ENTERIiIng a routine which runs on an interpreter nest. It is

clear that ENTER must set up the whole.interpreter nest, working its way

from top to bottom. At each step (level) the code segment part of an inter-
preter is created by making it. known unless it is already known, and the

data segment is created by copying the template which is stored permanent—

ly in the filing system and then inserting the two above mentioned items pointing
to code and data segments at the level above. For this scheme to work a table

is needed with information about each interpreter, including:

1. Name of the virtual machine (interpreter) on which it runs; if the in-

terpreter is microprogrammed, this is "host machine!.
2, Symbolic addressing information for its code and data segments.

3. The relative location within the data segment where items 1 and 2

from above should be inserted at initialisation time.

4, The relative location within the code segment where the interpreter

should be entered.

We are now in a position to indicate concisely how ENTER could be im-
plemented in the current framework by presentiing a version written in
pseudo-BCPL. As always the argument for ENTER is an RCB where we
have replaced the emulator name field by an interpreter name; this is
merely. a change of name and does not imply a more complicated field. The
present version of ENTER uses a recursive routine EnterOnelL.evel which
is called once for each level in a nest. Some undefined simple routines
which access the Iinformation in 1-4 above are called. The program should

be self-explanatory.

64

let Enter(RCB) be
$(let DS=MakeScratchSegment(RCB |SCRATCHSEGSIZE)
EnterOnel_evel (RCB |ENTRYPOINT, DS, RCB | INTERPRE TERNAME) $)

let EnterOnel_evel (EP, DS, Interpreter) be

$(E if RunsOn(Interpreter)=""host machine" do // as described
//in section 111. 2

else $(let DS1=InitTemplateCopy(interpreter, EP, DS) // inserts
//EP and DS at locations found in the interpreter table
and Offset=FindEntryPoint(Interpreter)
and CS=MakelntrprtrKnown(interpreter)
EnterOnel.evel(<CS, Offset> , DS1, RunsOn(interpreter)) $)E

At this stage it should be pointed out that certain assumptions about the in-
terpreters which may occur in interpreter nests are implicit in the pre-

ceding discussion.

1) An interpreter sees its storage as divided into a code area and a data

area; both of these are ordinary segments.

2) An interpreter must support instructions to read and write a word
referenced by general virtual address; this is necessary in order to pass

storage references downward in a nest.

3) Since the concept of a current linkage segment in the ME-system implies
a unique linkage segment, which is associated with a code segment being
executed, a problem arises when several code segments are being executed
in a nest at the same time, namely the target program as well as some number
of interpreters.There seems to be a need for a linkage segment per code
segment. The fastest way out of this dilemma is to declare that interpreters
must live without linkage segments. In so doing we cannot satisfy require-
ment 4 of Derrett and Manthey that interpreters should have the same rights
as any other programs to make external calls. It should be fairly simple to
provide an ad hoc solution to this problem by the creation of phony RCBs for
the programs interpreters wish to call. It may also be possible to develop

a more general model for an instruction pointer which will accomodate pro-
cedure calls from interpreters in a completely general fashion. Perhaps an
instruction pointer should be considered a vector of instruction pointers at

different levels of a nest, somehow similar to an ALGOL -type runtime display,

65

although this analogy should not be stretched too far. However more
study and better understanding is necessary before we can decide whether

a sound model can be found and also whether it will really be very useful,

The point of this section has been to provide an understanding of the data
structures involved in nested interpretation, and to indicate a way in which
the ME-system may be augmented to support applications of nested inter-
preters. We have not been able to do so without making certain (restric-
tive) assumptions about interpreters, nor is it claimed that the final word
has been said about nested interpreters, or for that matter that they are

worth a lot of effort.

66

Vi. USER MANUAL

0. Introduction

This manual is intended for the user of the RIKKE multi-emulation system.
By user we mean "immediate user!, i.e. a person who undertakes one of the

following tasks:

1. Implementation of a virtual processor by microprogrammed inter-

pretation.

2. Construction of other - special purpose - microprograms which must

be interfaced to the multi-~emulation systiem.

3. Writing a compiler to translate 'progr*ams in a high level language

into some corresponding virtual machine code.

4, Writing a program distributed across emulator boundaries, i.e.

a program consisting of parts running on different virtual machines.

The writer of simple programs which may be run within the boundary of an
individual virtual machine may be seen as a user of the multi—emulation
system one step removed. It should not be necessary for users of this
category to be directly acquainted with this manual. However the material
on system services provided via external entry points into the BCPL. system
should be available to a general user community, probably propagated
through manuals for individual language systems. People with tasks of type 4
above may also be sufficiently served by manuals for the individual virtual
machines (most likely this means programming languages)in question, par-—
ticularly the information on how external calls are supported by a given
emulator/compiler couple. All users should be familiar with the BCPL
system from the console operator's point of view. For this purpose we

refer to the BCPL system manual [16].

The material in this manual cannot stand alone. To understand what goes
on, the user must also have read chapters Il and lll. Before undertaking a
‘microprogramming project in the multi—emulation framework it is of course
also necessary to be familiar with the actual hardware, microinstructions,
etc, of RIKKE-1 [15]. In fact we suggest the following schedule for the
learning, thinking, design effort, and actual implementation involved in such

a project:

67

1. Get interested in some problem, e.g. building an ALGOL. machine.
2, Get to know and understand that problem.
3. Get the idea of using RIKKE for an implementation (someone

comes along and points out its existence).
4. Get to know RIKKE/MATHILDA.
5. Read chapters Il and I1l1.
6. Carry out a detailed design.

7. Write microprograms (or other programs) using this manual as a
handbook. *)

Roughly speaking the contents of thé manual fall in three parts: information
useful for the microprogrammer, information primarily intended for the com-
piler writer, and finally a section (section 9) listing those system routines
which may be called externally. The first part consists of sections 1-6, It
begins with a discussion of how emulators should provide input and output
facilities. Then follow the detailed rules for sharing the microprogram-
accessible registers of . RIKKE~1. . Sections 3 and 4 discuss questions
related to the interfacing of user and system microprograms. The problem
of organising microprograms too large to fit in the user microprogram part
of control store is treated in section 5. Section 6 is useful for the program-
mer wishing to access segments directly, without using READ and WRITE.
Whether section 7 should be seen as belonging to the first or the second part
of the manual depends on the user's approach. It defines the common data
formats recommended particularly for information in the super-stack. Sec-
tion 8 is for the compiler writer. It discusses the formats for code and

linkage segments.

One convention should be presented at the outset., At various points in
the following sections information: in terms of actual numbers is shown,

e. g. control store addresses of system entry poinis. Since these numbers
are likely to change with program adjustments, they are represented by
BCPL.~like manifest names, i.e. by strings of upper case alphabetical cha-
racters. It is the responsibility of the system upkeeper io maintain a list

of manifest values and make this list available to users.

*) It is logically ironic that the schedule is presented as part of step 7,
but also logically impossible to present it at the head of the schedule.

68

1. 1/O and Files

One problem facing the emulator designer is to provide a mechanism for
input and output in the emulated machine. This will often be one of the odd
problems, not related to the real purpose of an emulation project, par-
ticularly when the purpose is to implement a given high level language. It
will often be desirable not to have to think about microprogramming i/o.
Nevertheless it is necessary to be able to transfer information beitween
programs running on the emulated machine and external sources or desti-

nations.

The mechanism provided in the multi—emulation system to assist with input and
output to and from user programs outside the OCODE machine is the filing
system. System routines are available to provide access to symbolically
named files (see READFILE and WRITEFILE in section 9), and routines

to read or write individual words from/to files may be called at the micro-
level (see NEXT, ENDOF, and OUT in section 3, and also RESET and
CLOSE in section 9).

Using programs callable from the BCPL system command interpreter, sym-

bolically named files may be read in from or output to peripheral devices,

In the initial design external access has not been provided to those streams
in the BCPL system which handle peripheral devices such as the line prin-
ter, the paper tape reader and punch, and the console terminal. It will

be simple to provide these streams if they are deemed desirable at some
later time. In the initial implementation users wishing to do i/o directly with
these devices must write their own micr~0pr‘bg|~ams (or interfaces to the

i/o nucleus [20]). Such practice is not recommended, except for one in-
stance: Emulators for machines intended to accommodate programs which un-
dertake a dialogue with the operator should contain in their repertoires
simple instructions for reading and writing one character to or from the
operator'!s console. Such instructions are easy to provide by microprogram.

Otherwise, the recommended approach is to spool i/o on files,

2. Conventions for the Use of RIKKE's Registers

RIKKE~1 contains a myriad of registers: working registers, mask re-

gisters, shifter registers, pointer registers, register save groups etc. The

69

programmer intending to fit his microprogram into the multi-emulation
system framework needs to know which registers he may use at what time.
. Given the large number of registers it is unreasonable (as well as im-
possible) to save the complete register status of the physical RIKKE when
transferring control from one microprogram to another. Instead it is left
to the individual emulator to save those register values which are impor-

tant to It.

Normal state

The normal state of RIKKE-1 is defined by a certain set of values which
are present in a collection of important registers. When control is trans-
ferred from the system to a ' user microprogram RIKKE will always be in
the normal state, and this must also be the case when control goes back
into the system. The following list defines the normal state: (throughout
the discussion of registers we use ALGOL ~type subscripts within square

brackets to indicate a given register in a register group)

1l

MA[0] = PA[0] = LA[0] = LB[0] = all ones (ho mask)

MA[1] = PA[1] = all zeroes (full mask)

MAP = PAP = LAP =LBP =0

VS(0)S = AS(0) S =DS(0:1)S = VS(15)S = AS(15)S =DS(14:15)S =0
(shifter registers set to logical left and right shift)

AS(V)S = 15

ws[o0,1...15] =0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, -1

(it is convenient to have these small constants at hand)

CUALF = A+B (relative addressing used in micro-sequencing)

Register Categories

The remaining conventions for use of registers are explained by means of
a principle of categorisation. The registers used by a given microprogram

may be divided into three categcdries:

1. Those which are permanently allocated to that microprogram, i.e.

by convention no other microprogram may overwrite them.

2. Those not in category 1 which also have permanent significance

for the microprogram: they hold part of its state vector.

70

3. Those only occupied temporarily by one or more paprts of the mi-
Ccro program, parts which do not contain branches to other micro-

programs.

We suggest that the emulator writer should have these categories in mind,
so that the microprogram state at external branch points always agrees with
the chosen categorisation. It should be clear that no overlapping must occur
between category 1 of one microprogram and categories 2 and 3 of any other.
Similarly it is clear that the registers in category 2 are those which must
be saved on the super-~stack during external calls. In general only the re-
gister values in category 1 can be expected to remain unchanged while
another microprogram has control. However it must be possible to call cer-
tain system microprograms without first having to save the whole register
state away; this is particularly true for the primitive used to save register
values on the super-stack (Push), but obviously also for READ and WRITE
to name just a couple. Thus there is a need for particular conventions spe-
cifying, for each possible call to system microroutines, exactly which re-
gisters are in categories 2 and 3 of the relevant part of the system. With
such information it suffices for a user microprogram to save its values out~
side of the registers known to be endangered before making a call to the

system. For example, working registers may be used for such a purpose.

The registers permanently allocated exclusively for system use (category 1)

are:

WA groups 0, 1,11, and 12; WB groups 4-7.
MB[12-14], and LA[14-15].

Category 2 may be considered empty for the system; all the registers of per-

manent significance are in category 1, or are part of the normal state.

Category 3 depends on the routine in question. However all system micro-
routines except the super-stack primitives may involve calls to BCPL rou-
tines, i.e. the OCODE machine, and therefore we may define category 3 once

and for all to be the following:

71

WAU, WAG, WBU, WBG, DS, VS, AS, LR[0-3], ALF,

SA, 1A, 1B, OA, OB, OC, IBD, OBD, OCD, ODD,

MSA, MBP, KD, KC, LRIP, LROP;

The RA-stack may have its contents changed arbitrarily, RAP may
also change;

The RB-~stack is used to return to the calling microprogram by the
specification RB+1 in the sequencing field of the last microinstruc-
tion of each system routine; the RB-stack contents will not be
violated by system routines; the idea is that the RA-stack is used
locally, the RB-stack externally;

In each of these save register groups: WAUS, WAGS, WBUS,
WBGS, CBS, BSSG, PGSG, the register pointed at by the group
pointer is use.d; the remaining registers in the groups remain

unchanged, and so do the group pointers.

For the super-stack primitives category 3 is specified in section 3 for each

entry point separately.

We remark that only for the system is it of interest to know category 3.
For all external calls, except to the system, category 2 registers should
be saved on the super-stack. Category 1, however, will be the object of
batile between future emulator owners. [t is suggested that it will be wrong
to include working registers in this category; apart from the chunk already
allocated to the system these should always be at the disposal of whatever

microprogram possesses control.

3. System Microprogram Entry Points

The purposes and workings of system facilities such as super-stack pri-
mitives, access to virtual memory and file streams, link resolution, and ex~
ternal calls and returns are presented and explained in chapter [Il. To in-
voke any of these services conirol must pass from a user microprogram into
the system microprograms. A specification of system microprogram entry
points is therefore needed. For each of these we give in the following list
its name, the parameters which must be passed in RIKKE registers, and a
brief description. Except for ENTER and RETURN - all the entry points re-
present subroutines which return by the specification of RB+1 in the se-

quencing field of the last micro-instruction.

72

The format used for each entry point is
EPNAME[a1 inR,, a, iInR,,...]; Description,

where EPNAME is the manifest name of the entry point; a4; @g,... are
names of parameters, the use of which is explained in Description; and
R1, Rz, ... are the RIKKE registers in which the parameters must be
placed. Values which are returned to calling microprograms may be spe-

cified in a similar format.

The list begins with the super-stack primitives. They have been introduced
and explained in section Ill. 2. For each of these, the registers in category
3 (see preceding section) are listed. They all assume LRIP = LROP at en-

try. The common value is denoted L_.RP.

PUSH[x in VS]; x is' pushed onto the super-stack.
Category 3: WAU, WAG, AS, LR[LRP], ALF, MSA, OA, WBU.

GPAR[I in LR[LRP]]; GetParam[i].
GREG[i in LR[LRP]]; GetRegister[i].
Both of these return a result in IA.
Category 3: WAU, WAG, ALF, AS, MSA.

PRES[i in LR[LRP], x in VST]; PutResult[i, x].
Category 3: WAU, WAG, AS, ALF, LR[LRP, OA, MSA, WBU.

MSF |]; MarkStackFrame.
Category 3: WAU, WAG, AS, LR[LRP], ALF, MSA, OA, VS, WBU.

UMSF []; UnmarkStackFrame.
Category 3: WAU, WAG, VS, MSA.

Now follows the remaining entry points. For these category 3 is specified

above (in section 2).

READ[SN in AS, WN in VS];
reads the contents of virtual address <SN, WN> and returns it in LR[0];
at exit LRP'= 0,

73

WRITE[SN in AS, WN in VS, x in LR[0]];
assumes LRIP = LROP = 0 at entry; writes x into the location with virtual
address <SN, WN>,

LINKREF[WN in VS];

reads the link reference atvlocation WN in the current linkage segment,
resolves it if it is unresolved; the virtual address referred to is passed
back [SN in AS, WN in VS].

ENTER[SN in AS, WN in VS];

ENTER passes conirol to the routine described in the RCB at location

<SN, WN>, ENTER assumes the calling emulator has done a MarkStackFrame
and then pushed some register values including at least its own name on the
super-stack, so that the name is now at the top of the stack. Notice that
ENTER does not assume that an RCB is necessarily placed in a linkage seg-
ment; thus the user may build RCBs and place them anywhere in virtual memo-
ry. This possibility is particularly useful for calling micro-procedures which
are not automatically associated with RCBs in linkage segments. See also the
description of RCB format in section 8, and of information passed to user

microprogram new-entry points in section 4,
RETURN,; effects an external return.

NEXT[S in AS]; gets the next word from the stream S and returns it in
DS. Section 9 tells how to get hold of S.

OUT[S in AS, x in LR[LROP]]; outputs x along stream S.

ENDOF[S in AS]; returns a boolean value in DS, true if the end of

stream S has been reached, otherwise false.

4, [nterfacing User Microprograms to the System

This topic is discussed extensively in section Ill. 2. It therefore suffices

here to state a few simple facts.

Emulator names and emulator segment numbers, both of which are merely
small integers, are assigned for new emulation projects by the system main-

tenance staff.

74

At new-entry into an emulator the following values are passed in registers:
the virtual entry point address (PC-field) from the RCB handed to ENTER
is passed [SN in AS, WN in VS]; LR[0] contains the segment number of
the data segment defined in the RCB, or 0 if this option is not used (0 spe-
cified).

At re-entry no values are passed to the emulator.

5. Use of Control Store

The resident system microprograms, including the OCODE emulator and
i/o-nucleus, occupy approximately 750 words of control store (micro-instruc-—
tions). We denote the exact humber by SYSCSLENGTH. Approximately

1300 words out of the 2K of control store remain for user microprograms.
User emulators to be included in the system's table of emulators should
always be micro-assembled starting in location SYSCSLENGTH in order

for the emulator swap mechanism employed by ENTER and RETURN to work.
For users whose microprograms fit in the available 1300 words this is all

there is to know about placing the microprogram in control store.

Problems arise only in connection with very large microprograms. As

RIKKE hardware (micro-instruction sequencing mechanism) does not allow
the building of a control store address space larger than the physical con-
trol store, all overlaying must be achieved under explicit program control.

The following scheme is suggested for organising large microprograms:

The program is organised into a central module and some overlays. The
central module contains all externally visible entry points and all external
branches as well as a central part of the algorithm in question which invokes
the overlays, for example an instruction fetch and decode loop. The over-
lays may for example contain rarely executed instructions in a virtual ma-
chine, or instructions which require bulky microcode. Now, to conveniently
invoke the overlays they may be given status of emulators in the system,
thereby enabling the use of the emulator swapping routine built into the
system!'s ENTER and RETURN. Before ENTERIiIng an overlay it is necessary
to build a phony RCB containing its emulator name and then go through an
ordinary calling sequence, excepting that it should not be necessary to save
the processor state. The re-entry point of the central module, of course,

should be prepared for the subsequent return. Another way to achieve the

75

overlaying is to handle control store swaps explicitly within the central
module. This, of course, reduces the amount of control store available for
each overlay, since some part of the central module must be resident as

long as any part of the microprogram is active. Perhaps more importantly,
the approach described above also saves the user microprogram from
dealing explicitly with segments containing microprograms. On the other
hand, if swapping is handled within the central module, there is no bothering

with super-stack complications.

6. Segments

Each segment has a number of attributes recorded in its heading and, when
it is known, also in its segment descriptor. Those potentially of interest to

the user are:

1) Segment size. This is specified when a segment is created. A segment

with size s contains words addressed by the integers 0 through s.

2) Segment type. The type word has bits for various purposes:
a. A segment is either a main store segment or a wide store segment.
It will always be loaded in the same physical store. The creator of
a segment determines this attribute. Scratch data segments created
by ENTER are always wide store segments. The maximum size of
main store segments is 10K, the maximum size of a wide store seg-
ment is 40K,
b. Another bit is the linkage segment indicator.

c. A segment may be write-protected, e.g. a pure code segment.

3) For segments locked in core so that they may be directly accessed by user

microprogram the core base address is also of interest,

The system routines described in section 9 may be used to manage segments,

including alteration of segment types.

7. Common Data Formats

The need for common data formats was argued in section Il. 2 and detailed
conventions promised in section I1l. 2. These are not complicated. Simplest
of all is the type boolean. A boolean value is held in one 16 bit word, in

which bit 15 is significant. 1 means true, 0 false. Integers are also simple;

76

they are represented in 2's complement in single 16 bit words, so that

the value range is from -32768 to +32767.

Characters are represented in ASCII code, with the parity bit irrelevant.

Thus each character is encoded as an integer in the range 0 through 127.

Since characters occupy 7 bits each they may be packed two per word for
character strings, and so they are. A siring of length n occupies n/2+1
consecutive words; the first word contains n and the first character,

word two contains the second and third character, etc. Odd numbered cha-
racters occupy bits 0-6 of the words in which they sit, even numbered
characters occupy bits 8-~14; whereas n occupies bits 8-15 of the first word.
Thus the length of a character string must be in the range 0 through 255.
For strings of even length, the unnecessary byte in the last word must con-

tain 0.

Fig. 14 shows the super-stack with 3 parameters pushed: the integer 37,
the string '"banana'', and the boolean faise. It is clearly necessary to know

the number and types of the parameters in order to interpret them sensibly.

S_aro
a 0
a n
a n
6 b
37
P
Fig. 14

Character strings and integers are also used extensively in connection with

linking. See the next section.

77

8. Formats of Code and L inkage Segments

This section is intended for the compiler writer who wishes to utilise the
system facilities for external calls and data references in a natural way.
It describes the formats code and linkage information must satisfy in order

to make full use of the system.

We will assume a virtual processor design which separates code and data
into different segments, so that the contents of a code segment may be in-
variable after it has been created by a compiler. In this situation we know
from section 111. 3 that all the variable information associated with loading
may be kept in a linkage segment. Code and linkage segments exist in a
one-to-one correspondence. A compiler should always produce one of each
at a time. They will have the same first name in directory entries, whereas
the extension should be "CODE" for_code segments and "L INK!" for linkage

segments.

As the linkage segment is accessed for all external references (calls) to
the code segment it must in various places contain the segment number of
the code segment. This number is unknown at compile time and must be in~
serted when the two segments are made khown as a result of a symbolic
reference being made. To allow this insertion all words in the linkage
segment which are to contain the code segment number must be chained to-
gether. That is, the compiler should initialise each of these words to con-
tain the address within the linkage segment of the next word in the chain,

and the last word in the chain to contain the value CHAINEND (~1).

As explained in section Ill.3, the contents of linkage segments are of three

kinds. The exact forms of these are as follows,

a) The linkage segment must begin with a table of symbolic names of external
eniry points in the corresponding code segment. This table must begin in
location 1. Each entry is a character string - the symbolic hame - followed
by the address within the linkage segment iiself of the RCB for the entry -
point. These entries must be placed in contiguous locations so the table
occupies an unbroken section of the segment. Word 0 of the linkage segment
should contain p, the address fo the last word of this table, and word p+1

is head of the chain of references to the code segment introduced above.

78

b) An RCB describing an external entry point into the code segment occupies

four words which contain:

1. An integer giving the size of a scratch data segment to be created
when ENTERIing the code at the point described by this RCB. If the
value is 0 no segment is created.

2. The name of the emulator which interprets the code.

3. Code segment number; this word must be part of the code segment
reference chain.

4, Word number of the entry point.within the code segment; this value
should be chosen so that the emulator which interprets the code may

use it to initialise its program counter.

c) A link reference consists of three words. Initially it will be unresolved,

and the compiler should therefore initialise it to contain:

1. The boolean false.
2. A word in the chain of code segment references.
3. The address within the code segment where the symbolic reference

begins. A symbolic reference consists of three character strings,
which must be placed immediately following each other. The first
two strings make up the segment name, the third is the symbolic

word hame,

We are now in a position to give an example of the appearance of a code seg-
ment and its associated linkage segment. The code segment contains itwo ex-—
ternal references, a code reference to the entry point "POP!" within the

code segment whose first name is "PROGX!", and a data reference to the word
named '""ROOT!" in the data segment named "OAKTREE!". '"DATA!; notice the
extension of the symbolic segment name for the code reference is "LINK!,

There are two external entry points in the segment, named "PAP!" and "PEP",

9. System Routines

The facilities provided by microprogram entry points into the system do not
satisfy all user program needs for system services. Some routines in the

BCPL part of the system have therefore been made callable as ordinary ex-
ternal entry points, i.e. via ENTER. The new-entry point into the OCODE

machine has been pasted onto the already existing emulator and it does not

code segment

code for PAP

code for PEP

5 P
R o
G X
4 [
-1 N
K 0
3 P
O P
7 0
A K
T R
E E
4 D
A T
A 0
4 R
O O
T 0

linkage segment

7
3 P
P

8
3 P
E =

7

{

PAP Data-size

PAP Emul Name

109

/4R

/4

:

k1

PEP Data size

PEP Emul Name

y

14

/4

. /4T

k2

false

y
s

17

/4

N/

3

false

20

/4

/A

4

79

PAP
RCB

PEP
RCB

I Tnk
reference

link
reference

80

understand virtual address PCs. Therefore the system really has only one
external entry point; the type of service required must be specified as a
parameter. Depending on the value of this parameter, additional parameters
are also required to further specify the request. Some of the system
routines return values in the parameter locations of the super-stack. The
RCB providing external entry into the system is always located at virtual

address <0,0>,

Most of these routines provide access to the filing system or serve to change
the state of a file or segment. More facilities may be added at a later time;

the initial set described here is rather rudimentary.

For each routine we give the manifest representing the value of the first
(integer) parameter which causes that particular routine to be invoked, then
a specification of the types of the remaining necessary parameters, and a

description of the service provided.

LOCK (SN:integer); locks the segment with number SN in core and returns
its base address in core memory in parameter location 1 and its size in pa-
rameter location 2. LOCK may be used when a user program wishes to have

direct access to a segment in core.
UNLOCK(SN:integer); unlocks segment.
CL.OSE(S:integer); closes the stream which has value S.

RESET(S:integer); resets the stream which has value S.

We refer to the BCPL system manual for the meaning of Reset and Close.

MAK ESEG(SegName: string, Extension: string; MSSeg: boolean; Size:integer)'7
creates a segment of size Size, a main store segment if MSSeg is true,
otherwise a wide store segment. The segment becomes associated with the

name SegName. Extension. in the current directory.

SECGNUMB(SegName:string, Extension:string); if the segment named
SegName. Extension is not already known it is made known by referring to the
current directory. Its segment number is then returned in parameter location

1. This provides a sort of high level link resolution.

81

MAK ESEGNUMB(SegName:string, Extension:string, MSSeg:boolean,
Size:integer); equivalent to MAKESEG followed by SEGNUMB.

WRITEFILE(FileName:string, Extension:string, Bytes:boolean); returns
in parameter location 1 the value of a stream which may be used to write
a file named FileName. Extension in the current directory. The name must
not exist in the directory prior to the call. If Bytes is true, the file will
be written as a file of bytes, i.e. each word written must contain a zero
left byte; bytes will be packed two to a word. This is useful for text files,
where it is natural to write one character at a time. Bytes does not affect
the type of the file, only the way it is written; thus the same value should

be specified when the file is later read, by means of READF ILE.

READF ILE(F ileName:string, Extension:string, Bytes:boolean); returns the
value of a stream to read the file named FileName. Extension In the current
Directory (in parameter location 1). Bytes is explained above under WRITE~
FILE.

SETSEGTYPE(SegName:string, Extension:string, Type:lnteger)‘, modifies

the type of the segment nhamed SegName. Extension in the current directory,
depending on the value of Type. The following values may be used: NULL

(= 0) causing no change, PROTECT (= 1), causing the segment to become write
protected, and L.INK (= 2), causing the segment to achieve status of linkage
segment. Further values may be specified later. Caution: the type of a seg-

ment may not be changed while it is known.

FILEFROMSEG(SegName:string, Extension:string); the segment named
SegName. Extension in the current directory becomes a file with exactly

the same contents.

SEGFROMFILE(FileName:string, Extension:string, MSSeg:boolean,
Type:integer); the file named FileName. Extension in the current directory
becomes a segment, a main store segment if MSSeg is true, otherwise a

wide store segment. Type is used exactly as for SETSEGTYPE above.

It is suggested that a compiler may initially write a code segment and the
corresponding linkage segments as files, and later change these files to seg-

ments, setting the type appropriately.

VIl

82
REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[9]

Jack B. Dennis: Segmentation and the Design of Multiprogrammed
Computer Systems. JACM, vol. 12 (1965), No. 4, pp. 589-602,.

A. Bensoussan, C.T. Clingen & R.C. Daley: The MULTICS
Virtual Memory. CACM, vol 15 (1972), No. 5, pp. 308-318,

R. C: Daley & J.B. Dennis: Virtual Memory, Processes, and
Sharing in MULTICS. CACM, vol. 11 (1968), No. 5,
pp. 306-312.

Elliott I. Organick: Computer System Organization, The B5700/B6700

Series. Academic Press, New York 1973.

J.E. Stoy & C. Strachey: An Experimental Operating System for
a small Computer. Part 1: General Principles and Structure.
Computer Journal, vol. 15 (1972), No. 2, pp. 117-124.

Part 2: lnput/Output and Filing System. Computer Journal,
vol. 15 (1972), No. 3, pp. 195-203.

Butler W. Lampson: An Operating System for a Single-User Ma-
chine. Lecture Notes in Computer Science, vol 16 (1974),
pp. 208-217. Springer Verlag, Berlin 1974.

Sven Tafvelin: Dynamic Microprogramming and External Subroutine
Calls in a MULTICS-Type Environment. BIT, bind 15 (1975)
No. 2, pp. 192-202.

Robert F. Rosin: Contemporary Concepts of Microprogramming
and Emulation. Computing Surveys, vol. 1 (1969), No. 4,
pp. 197-212.

W. T. Wilner: Design of the B1700. Proc. FJCC 1972, pp. 489-497.
See also B1700 Memory Utilization, same volume, pp. 579-586.

[10] S.G Tucker: Emulation of Large Systems. CACM, vol. 8, (1965),

No. 12, pp. 753-761.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

83

A.K. Agrawala & T.C. Rauscher: Foundation of Microprogramming,
Architecture, Software, and Applications. Academic Press,
New York 1976.

J. K. Broadbent: Microprogramming and System Architecture.

Computer Journal, vol. 17 (1974, No. 1, pp. 2-8.

N. Derrett & M. J. Manthey: Multi-Interpreter Systems. DAIMI PB-55,
January 1976,

P. Kornerup & B. D. Shriver: An Overview of the MATHILDA
System. DAIMI PB-34, August 1974.

Jgrgen Staunstrup: A Description of the RIKKE-1 System.
DAIMI PB-29, May 1974.

Ejvind Lynning: The RIKKE BCPL System, A Programmer's
Manual. DAIMI MD-22, February 1976.

B.B. Kristensen, O.L.. Madsen & B.B. Jensen: A PASCAL
Environment Machine (PCODE). DAIMI PB-28, April 1974,

Ole S¢grensen: The Emulated OCODE Machine for the Support of
BCPL.. DAIMI PB-45, April 1975.

S.E. Clausen, B. Madsen & E. Madsen: A Description of the
LCODE-Interpreter on RIKKE-1. DAIMI MD-20, January 1976.

E. Kressel & E. Lynning: The 1/O-Nucleus on RIKKE-1. DAIMI
MD-21, October 1975.

J. McCarthy et al.: LLISP 1.5 Programmer'!s Manual. The MIT Press,
Cambridge, Mass. 1965.

B. W. Lampson, J.G. Mitchell & E. H. Satterthwaite: On the Transfer
of Control between Contexts. Lecture Notes in Computer Science
vol, 19 (1974), pp. 181-203, Springer Verlag, Berlin 1974,

	20050926150948.pdf
	20050926151101.pdf

