AN INVESTIGATION

INTO DIFFERENT SEMANTIC APPROACHES

by

Kurt Jensen

DAIMI PB-61
June 1976

Institute of Mathematics University of Aarhus

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06-1283 55

L]

=]
=

AN INVESTIGATION INTO DIFFERENT
SEMANTIC APPROACHES

Hoare and lauer
reformulation to
the notation of

math, semantice)

Mathematjical
Semantics
continuations

Hoare and Laue
original for=
mulation

Interpretive Interp. Interp. Mathematical
Model S Modelr | _ N Model cont-sem
. L~ - I
result gr grc i g (?) s
!
| N
O) [| @®
|
4 |) . \
Computational t Comput. : Mathematical
Model 1 \’ Model ' sem., ASSLA
A
last o {
as comp N g& i C/q <‘(F)
! 1
i i
i |
' [
! |

relational deductive
theory theory

3

n

page

13
15
23
26
27
28
29
31

35

39
L3
hs
L6
ho
50
53

59

63
64

67
68

73
Th

76
(o
78

80
82
37

oL
96
98
99
100

O,
1.
e
3.
I,

Te

contents:

INTRODUCTION

A LANGUAGE CALLED SNAIL -~ INFORMAL DESCRIPTION
MATHEMATICAL SEMANTIC - STRUCTURE AND CONVENTIONS
MATHEMATICAL SEMANTIC FOR SNAIL

HOARE AND LAUER - 4 DIFFERNT SEMANTICS

k,1 Interpretive Model
4.,1.1 Interpretive Model used on SNATL

k.2 Computational Model
L,2,1 Computational Model used on SNAIL
k2,2 Proof for Theorem 1 applied to SNAIL

ko3 Relational Theory
4o,3.1 Relational Theory used on SNAIL
4e3.2 Proof for Theorem 2 applied to SNAIL

Lol Deductive Theory

44,1 Deductive Theory used on SNAIL

4,2 Proof for Theorem 3 applied to SNATL
A REFORMULATION OF THE IDEAS GIVEN BY HOARE AND LAUER
5.1 Interpretive Model

5.2 Computational Model
5e2.1 Equivalence of the two models
5.2.2 Proof for Theorem U4

5.3 Relational Theory
5,3,1 Proof for Theorem 6

5.4 Deductive Theory
5.4,1 Proof for Theorem 7

5.5 Predicate=~transformer Theory
5.5.1 Predicate-~transformer Theory used on SNAIL

5.6 Continuations
5¢6.1 Relational Theory
5.6,2 Deductive Theory
5,6.3 Predicate-~transformer Theory

PREDICATE-TRANSFORMERS AND CONTINUATION SEMANTICS
61 Proof for Theorem 9
6.2 Proof for Theorem 10

COMPILER CORRECTNESS - TOY LANGUAGES

7¢l Algorithmic language = Ll

7.2 Assembly language - L2

7¢3 Definition of compiler and compiler correctness

7.4 Compiler correctness

103 8. MATHEMATICAL SEMANTIC FOR ASSLA
108 9, COMPILATION FROM SNAIL TO ASSLA
110 10, CORRECTNESS OF COMPILATION FROM SNAIL TO ASSLA

112 10,1 Proof of Theorem 12

113 10.1.1 Proof of (II)

121 10.,1.2 Proof of (III)

123 1l1. PREDICATE=~TRANSFORMER THEORY ~ VIA ASSLA
124 11.1 Proof for Theorem 13

131 12, CONCLUSION

134 12,1 Diagram showing the connection between the
different theorems

136 appendix A: EVALUATION OF GUARDS FOR DIJKSTRA'S
GUARDED COMMANDS
141 appendix B: COLLECTION OF DEFINITIONS.

153 appendix C: AN ALTERNATIVE DEFINITION Of IF-COMMANDS

155 REFERENCES

acknowl edegecment

I want to express the warmest thanks
to my adviser BRIAN MAYOH who did an
excellent work in providing new ideas

and inspiration for this papers,

INTRODUCTION

ot sidpaniismiioncgiang i oposardinignd

In this paper I shall investigate different semantic approaches,
I shall use them all on an example language called SNAIL, This
language is small enough to make such an investigation possible.
On the other hand SNAIL is strong enough to represent most pro-
blems met in pratical programming languages, Chapter 1 is an in-
formal description of SNAIL. This paper makes very heavy use of
the mathematical semantic as developed by Strachey, Scott and
others at Oxford University., A short review of this descrip-
tion-method is given in chapter 2, Chapter 3 gives a mathematical

semantics for SNAIL.

Chapter 4 describes some ideas given by Hoare and Lauer at IBM
laboratory Vienna, Two different models and two different theories
are defined for SNAIL., The models are proved equivalent - and

they are proved to satisfy the theories,

Chapter 5 reformulates the result and proposals from chapter k4,
The notation is now following the line of the Oxford-approach,
This gives a more straightforward and convenient notation,.
Moreover chapter 5 introduces a third theory - predicate-~trans=-
former theory proposed by Dijkstra in Eindhoven.At last it is
shown that the addition of command-continuations eases the de-

scription - especially for this last theory,

The connection between continuation-semantics and Dijkstra's

predicate~transformer theory are further developed in chapter 6,

Chapter 7 describes a methoed for proving compiler correctness
using mathematical semantics. A very simple example language is

used.

Chapter 8 defines the mathematical semantics for an assembly
language specially designed to fit as target-=language for a
SNAIL~compiler. Chapter 9 defines such a compilation and in
chapter 10 this compilation is proved correct in a certain

specified sense,

The existence of the compilation from SNAIL to ASSLA opens a new
possibility for interpreting Dijkstrats theory since this
now can be done via the compilation., This approach is described

and verified in chapter 11.

Chapter 12 is a conclusion of the derived results.

Appendix A describes the connection between sideeffects, infi-
nite loops and abnormal termination on the one side and two
nondeterministic commandtypes,proposed by Dijkstra and enclosed
in SNAIL in a deterministic version, on the other side.

Appendix B is merely a collection of the given definitions.

Appendix C draws a connection between Dijkstra's guarded IF~-com-

mand and an unguarded IF-command proposed by Scott,

It should be mentioned, that to keep this paper on a reasonable
lenght, I have not included in considerations the recent letters
between Robert Milne and Tony Hoare about predicate-transformers
as a tool in semantic descriptions. Nore have I included any <coms
ments about the work done at Copenhagen University by Dines
Bjerner and others. I have tried to include the formalism suggew=
sted by de Bakker in /B/, but without much progress. It looks as
this formalism transformed to the notation of mathematical seman-—
tics gives very little which is not already provided by the de=
ductive theory., Moreover the axioms for de Bakkers theory beco=

mes more clumsy and inelegant than the corresponding Hoare-axioms,

Dijkstra' s new book /DL/ became avaibale so late that it had
very little influence on the work in this paper. It should be
stressed that /D4/contains a much more profound discussion of
the weakest predicate~transformer theory and the nondeterministic

IF= and DO~commands,

N T e e S mer S et g Tt e G S T R S S M s G o T YA P S S W S o ey s SR At G5 e M W e o e S e e S
T T e W e s S s e o v S s e T o S _———— —— LD OmDINDIIDRNNDET =N

In this paper I shall always use the same example-language

called SNAIL (simple nontrivial algorithmic language).

SNAIL will incorporate many different commandclasses, but inside
each such class only one or two representatives will be dealt
withs, For example SNAIL includes WHILE-commands, but not UNTIL-,
REPEAT-, REPEATWHILE~, or REPEATUNTIL-commands (speaking in
BCPL—terminology).

The commandclasses incorporated in SNAIL are:

1. Assignment.

Simple assignment, where left hand side is an identifier

and right hand side an arbitrary expression,

2. Deterministic conditional.
TEST (IF-THEN-ELSE), Neither of the conditional commands
can be omitted, but both may be the empty string, e.
If the expression neither evaluates to true or false

the entire command is undefined (program abortion),

3. Nondeterministic conditional.
IF-command. This is described in Dijkstra /D1/ and /D2/.

An IF-command consists of one or more guarded commands
(enclosed by IF and FI and separated by #). Fach guar-—
ded command consists of a guard (boolean expression)
followed by — and a command., The idea is now to do a non-
deterministic choice between those commands whose guards
evaluate to true. Only one command is executed. If all
guards evaluate to false the IF~command yields program

abortion,

In a deterministic language as SNAIL some rules most be
imposed on the selection between guards‘evaluating to
true, For a discussion of the most obvious selection
rules please see appendix A, In the rest of this

paper I shall use the following rule:

5

The guards will be evaluated in order of
appearence until the first true guard is
found. Then evaluation of guards stops
and the command corresponding to this
guard is executed,

Please note that the TEST~command mentioned above can
be regarded as syntactic suggaring since it is easy to

verify

TEST & DOﬂ OR a/z TSET = IF 6-’9'6/1# VE-?A/Z FI

where = denotes program equivalence.
It is here essential that evaluation of & does not have

sideeffects,

Deterministic loop.

WHILE=-command.

Nondeterministic loop.
DO-command., This is described in Dijkstra /D1/ and /D2/.

It is the repetitive counterpart of the IF-command.

The syntax is ddentical to that used for the IF-~-command
except that the enclosing brackets now are DO and 0D,

The semantic meaning of this command is to do a repetitive
execution of the corresponding IF-~command until a situation

is reached where all guards evaluate to false., Then control

is passed to the next command in the program, Thus the
DO~command can be viewed as a conjunction of the ideas

behind the IF- and WHILE-command,.

In the same manner as TEST was as special case of IF,

we have that WHILE is a special case of DO:
WHILE £ DO 6/ OD = DO 8-—3’6/ 0D

but this time the equivalence also holds if evaluation

of £ has sideeffects,

6. Blocks.
These are used to declare identifiers, Since SNAIL fol-
lows BCPL in having only one single type (bitpattern),
the main purpose of a declaration is to define the scope
for the identifier in question, The scope rules are as
for ALGOL=60:

An identifiers scope is the block in which it
is defined and all inner blocks, which does
not declare an identifier of the same name,

Besides defining the scope a declaration initializes the
identifier, but this is only simple syntactic suggaring:
Let BEGIN DEC ?)a/ END be semantic equivalent to

BEGIN DEFE:=£;d/ END except that the former does not

initialize ; .

Then we will have

BEGIN DEF =€, ¢ END =
= fi=& BEGIN DEC ;,'(;:-.-3’,6, END

where g'is a new identifier (declared in a block
sourrounding this construction and used no other

places).
If £ does not involve (: we simply have

BEGIN DEF (f = S)d/ END
Z BEGIN DEC(F;Q?”szd/ END .

Each block has exactly one declaration (which may be
empty). This is done to avoid using too much effort
on problems of techmnical nature such as indexing etc.,

It is no severe restriction since a command of the type
BEGIN DEF cti:gii"""'lcz":é“id’ END

(equipped with a semantic which is a straightforward
generalisation of the semantic for BEGIN DEF c?:é‘,‘d/ END)

can be shown equivalent to

’ .
E1 'T E4;

i
?’" HE é’”)'
BEGIN

}
DEF JFg= 34;
ppoIn ® € %7

DEF %, "-"(Tz,j

.

BEGIN ,
DEF & = Fn;

'

END
END
END
END
or, in the case where &4;...--- &y does not involve the
identifiers ?14'""?n-
BEGIN
DEF J4= 5'_‘_)'
BEGIN

.

DR RN

BEGIN
DEF F,= &,;

END 3/

cv e v

END
END
END .

To avoid confusion the reader should notice that only
BEGIN DEF Fi=g;) END (and not BEGIN DEC j ; ¥ END) is incor-
porated into SNAIL, This guarantees that all defined

identifiers actually have an assigned value at all times,

10

10 a

7. Input-output.

READ~ and WRITE-commands, Simple sequential dinput and
output. These commands has many properties which resembles
those of assignment. This commandclass is incorporated in
SNAIL to give it a smooth 4, gentle surface, The presence
of these commands allows us to define the semantic meaning
og a SNAIL-~program as a function defined on inputs and

with values in the domain of outputs.

Not included in SNAIL are commandclasses as:

1. Procedures.

For non recursive procedures this is only syntactic
suggaring -~ but a very convenient help for fast and

understandable programming,

2. Transfer of control.
GOTO~, RETURN~, BREAK~, ENDCASE-, RESULTIS~commands

(nor is VALOF-expressions included in SNAIL).

i1

An expression in SNAIL will be either

1 a constant

2 an identifier

3 7€ where € allready is a SNAIL-expression

4 E,PE, where & and &, allready are SNAIL-expressions and @
is either one of the four arithmetic operators (+,-,%,/)
or one of the dyadic operators from propositional logic
(MV, 2 =),

Since SNAIL only has one type there is mno destinction between
boolean and arithmetic expressions,., This allows us to use

such cumbersome expressions as:
(1A3)+ 1T

(provided 1, 3 and TT are constants).
In the rest of this paper TT and FF will denote TRUE and FALSE

respectively,

In most programming languages evaluation of expressions involve
sideeffects, This is for instance the situation when procedures,
functions or input-output routines are incorporated in expressions,
By this reason this paper to maintain generality does mnot use

that SNAIL-expressions are evaluated without sideeffects,unless

explicitely mentioned,

Evaluation of dyadic operators follow the weak truth-tables,
which yvields an undefined result whenever at least one of the
operands are undefined., For the arithmetic operators this is
the only reasonable possibility. This is mnot the case for the

propositional operators.

A (and) has at least 3 possibilities :

SNATL LISP most powerfull, but
difficult to implement

where the leftmost coloumn indicate the value of the leftside
operand and the upper row indicate the value of the rightside

operand = | denotes undefined.

In fact SNAIL is a whole class of languages since the value
domains V and L representing storable values and locations as
well as the funotionAx'assigning values to constants are left
undefined together with the syntactic domains of identifiers
and constants, This part of a semantic description is normally

machine dependent,

In many of the proofs in this paper I shall restrict myself

to a subset of SNAIL called MINI-SNAIL, This contains:

assignment
IF=command
WHILE-command

declaration (not empty)

This subset represents in most aspects the whole language. DBe-
sides the empty command and the empty declaration 4 different

commands are omitted:

TEST=command ,but this is a special case of IF

DO-command, but this gives no problems which is
not &already given by WHILE or IF.
(see appendix C page 154).

READ and WRITE, but in most questions they behave

exactly as assignment,.

12

preig—t

T T T O T T o o o I o T S 2o e s s e v e o St e e e o o oo e s e o
D B s e s S ey it o S o e e e L T RS NN TmEm
e mEmERED ST =

Whenever giving a mathematical semantic for a language I shall

use the notation developed in Oxford by Strachey , Scott and

others.lt will be assumed that the reader is familiar to

this type of notation as described in the Oxford Technical
Monographs /S/, /si/, /s2/, /sk/ and /M3/.

I shall always follow Ligler /L2/ in dividing such a description

into 6 different parts:

1.

3e

b,

Syntactic domains

The detailed nature of these domains can be derived from

the syntax-part (paragraph 3) but this part establish the
mnemonics used, There is 2 kinds of syntactic domains,
Elementary domains such as identifiers and constants,

Most times these will mnot be detailed specified in a general
approach as this, since they constitute a more machine de~
pendent part. All other syntactic domains are build from
these elementary ones by using the domain operators

+, x, * and =,

Value domains

These are all other domains used in the semantic equations,
Again some of these will be considered elementary and all
others will be build from these and from the syntactic
domains by using the same domain operators as above.

As examples of elementary domains can be mentioned locations

and storable values (which clearly are machine dependent) .

Syntax

BNFF-like description, where nonterminals are indicated by

greek letters as introduced in paragraph 1.

Semantic functions

Describes the names and functionality of the used functions,

13

5e

Semantic equations

This is the most important part of the semantic description,
All other paragraphs can be seen as auxilliary,

I shall (briefly) descibe some of the conventions used:

a) programtext are enclosed in ﬂfﬂ ~parentheses

b) application of functions associates from left to
right: £ g a = (f(g))(a)

¢c) continuations will often be enclosed in }} -parentheses

d) lambda-notation is used

e) gfo(/f'_] denotes the enviroment identical to ¢ except
that the identifier} now is bound to location & .

f) FIX 6. = Y (A¢. where Y is the least-fixpoint operator,

g) @ is used in two different ways. It denotes elements in
the syntactic domain DOP, but is also used as an operator
in the metalanguage.,

h) <ay, wiie., @n»> denotes tuples

<@gy......p@n> Ve = ay 1s<c <n
<ag....;an>tre = <2, @, - ,2u> 1S sy
i) "|" denotes domain-projection.

j) At the other hand "in" should be used to 1ift an element
from one domain to another containing the first as an ad~
dend. Since this does not give the reader any ususble infore-
mation it will be omitted,

For a detailed description of domain structures and the

suitable operators see Peter Mosses /M4/.

Auxilliary functions.

In this paragraph is described functions, which perform
elementary operations such as updating store, input-output
and so on, These functions can so to speak be appended to
the total semantic description at run-time. One could say
that they constitute the conmnection between a machine inde-
pendent description (paragraph l~5) and the actual physical
machine, By drawing these functions outside the semantic
equations machine independence can be maintained as long as

possible,

14

MATHEMATICAL SEMANTIC FOR SNAIL

B e el e e e e D iyt
T T T e e T L SRS SE NS Do mmm s

In this section I shall give an exact and unambigious

description of SNAIL using the notation described in the

last section,

1.

2

Syntactic domains

b/ & PROG
&»é; CcoM

5 & DEC

) éE GBLOCK
&g & EXP

Eﬁe‘ ID

& &« consT

P € Dor

Value domains

—————

W& R= SxITnxOut
2« S=[L=>v]
Mre In= V*
o & Gt = v*

e C= [R>HA]
we K = l:V-a-Ci]

¥e X = [ENV>C]
he 6= [Ww*¥=c]
€e Y= [L>c]
ps Vv
Xe L

Qe ENV=[Td> 0]
D= L+C

programs
commands
declarations
guarded blocks
expressions
identifiers
constants

dyadic operators

configurations
states

inputs

outputs

command continuations
expression cont,
declaration cont,
guardedblock cont.
location cont,
values

locations
enviroments

denotations

15

16

A answers

v e H-= EK*? C] guards

2 € T= EC»C] guarded lines
W= Hx I guard components

where a configuration ;0:.-. <2’//(I//¢(o>

describes

&

— current state (store)

/{I — remaining input

/‘(o - output until now

3. Syntax

i

&l)'d/z , =& |
TEST & Do %OR Je TSET J
IF o FI | Do @w OD |

BEGIV & t END |
WHILE & DO d/OD
RERD (§) | WRITE (g) | e

DEF =& | e
51"3’6’1#"""4‘55»:9{” n= 4

TRVE |FALSE IF | A& | 16 | &4 @ &,

+/=-1l» |7) AlvVv]I=>)|=

17

L, Semantic functions

PROG =3 IN - OUT

@
€: coM - ENV —» C = C
®: DEC ~> ENV = X —» C
&: EXP - ENV -» K -» C
g GLOCK -» ENV —» G -» C
K

CONST ->» V

5¢ Semantic equations

PLyl pe = (ECplQwOm Yiw)V 3

Sw = A& L Yw = <Ew1 M) Moy >
=AYy 2y = Ax 1

fon, = MIL

i

The initial situation can be characterized by

1. Enviroment where all identifiers are undefined.

2, State, where the contents of all locations are undefined.

3. Empty outputfile.

4, Identityfunction as continuation, This shows that a SNAIL-
program is considered to be a closed unit, after which
nothing remains to be done. An alternative view would be
to consider programcontinuations, processcontinuations
or even operating system continuations.

For a discussion of this see /S4/ p. 9.

18

It is possible to give a more elegant definition of §> "
We can use the initial command-~continuation éav to express
that we only are interested in the third component of the final

configuration. We would then have

Pyl pr = EQGS 65 Yw
&, = Ay. (y¥3)

where all other symbols are as before.

Later on I shall give a proof for correctness of a SNAIL=-compiler,.
In this proof it is convenient to consider the whole configuration

and not ounly its third component,

19

ELyij 196 - Elyls 1 Elp15 6 5
Ele-z1s6= ELe1g 1p. Updete (LELIL,B)O§

Z[TEST & PO y1 OR g5 TSET [g = 51{2]}366@%% (5[51/1]/ 5@/27)59}
FLF w Flloe = Flelg { Pmcle (&,1) §

g Ivo worle& = FAx & é?[fﬂ/g{ﬁrzzc/e(@,’f?)})
Z I BEGIN Sj'd/ END]e & = o@l[’é]{g{ﬁ’g. g/[a/]/y@}

£ Lwhite £ po popT 9o = Fix & ElElp jcons (ElploS)2)5
£ LREAD B)Up& = Reaet (pllfllL) &

ELWRITE 1o -~ EZlely {Ap. Wite (8)E3
glelo® = &

ELwUETgK = K (TT)

Z [FRsE Is W = W« (FF)

ElFlsox = A% W (Contewts (lEl [L) (#V4))
ElkTs K = w (K [CAT)

Ezlox = E[2]s { 4. w(Tpe)]
Elcios, Ik = ElETs 1Ap,. 121 {75, W (@ 503

9 [per 3= =lo - EEIviAp Mow){An Lpdate)17 (oI55
PleloX = 7E)

FLE> it Fa—>juley
~<KELz 1, Elpade>,. ... < ElE.Te, ELfnlS>>

20

6., Auxilliary functions

Update: Lx V> C—=C

V/&a/e*z‘e CA///S) E= A <Z//4(r//%a> . @ <F75515M C‘X//@)é//‘(r//lo>)

Assign: LxV =S >35S

P Assign (xf8) &

=>

I

<

2&') Afor &'+ K

& 7Lm- x'= w

if X or [3 is equal to 1 assign yields L .

PACOE

Contents: L=>S = \/

Conteuts (x)(2) = 2&)

Cond: FXF-=TxF

where F is any domain g gi fﬁ A= TT

Cﬂ%&f(gijgz)(f): Z/-_’_>§¢/XZ=< gz]Lm' £= FF
L 4 else

New: EAMNV—= Y= C

New (@)5) = § (x)

where & is a new location mot bound to any identifier by 5)

21

Read: L= C—=C

Reaed! (&) & = & o Rl (k)

Rd: L= R=>"7R
<2y il g > = R () <2k >
0
(clm () > 4 1 [-0
Z/: Rssign (% (ub1)) g} 4 Z/: ‘Qeaa/errm/?
/T et M Ve
4 JoooLele

where it moreover is assumed that all command continua-
tions are strict on Readerror,.

.

Write: V= =C

Wite () & = & oWr(p)

Wr: V= R=>K
N2 R > = W) <2 o>
T

(2= =

| <5 = e

o= e @ ()

-

where @ is the append operator for lists.

22

%.
Oracle: cxC —= W= C

ﬁmC/e (91/ @2) <<< 1/1/ Z‘1>)"--)] <l/h; ZVI>>) ’Sﬁ

.
Zj (6.) %/ where j is the least number so that

= (A Ay p) ¥ =TT

L_égzep if such a j does not exists

The auxilliary functions are implicit defined, By this I mean,
that I have specified some properties which these functions should
posses, but not proposed how this actual should be implemented.
This is reasonable since an implementation nescessarely must

depend on the actual target machine,

Nevertheless most of these auxilliary functions have straight-
forward implementations, For instance on most machines it would
be quite natural to consider the domain L as a contigeous block

of store equipped by some pointer to indicate the first free cell.
Then New would simply return the specified location continuation
applied to the value of this pointer (and increment the pointer by
1).

23

S e S ey S W o Ay D Wy Wik e ms e e s o Mot W G Bt Sy 4 e e o M Srn e e S s e Seom S e oo e e
b . Qs I et e e € s o e o Wk S e G B S S P L et wam e e MR PR AN MmN ET =

In/H1/ Hoare and Lauer describes U4 different ways of giving
semantic definitions for a language. These four descriptions
range from the extreme constructive approach, where a langue=
age is described step by step by its effect on a particular
(abstract) machine to the extreme implicit approach, where

a language is characterized by connecting logical deduction
rules to each command type. Lauer and Hoare argues that the
different kinds of computer scientists needs different semantic
approaches. The implementator of a compilator wants a construce
tive approach, while the user wanting to prove his program
correct needs an implicit approach, where he is not bored

by a lot of more or less irrelevant machine-dependent details.
By this reason Lauer and Hoare suggests that a language designer
should give (at least) 2 different semantic descriptions for

his language = and prove them equivalent,

Zh1/Hl/the 4 proposed semantic approaches are used on a very
simple language giving a clear and easy understandable

picture of their connections. In /L/ Lauer uses the same 4
approaches on a much richer language (same complexity as
SNAIL)., Now the notation becomes a bit more unapprochable, but
still /L/ shows that the 4 approaches are possible for practie

cal programming languages.

In this section I shall use the 4 proposed semantic definition
methods on SNAIL, In many of the proofs I shall restrict the
argumentation to MINI-SNAIL (see page 12),

To ease later comparison with mathematical semantics T shall

use a notation differing a little from Hoare and Lauers.

There is especially one point which may cause some confusion =
the binding of identifiers (declarations). In mathematical
semantics the standard treatment is to define an enviroment.
This is a function from the syntactic domain of identifiers

to the value domain of locations and tells which locations

are bound to which identifiers. Hoare and Lauer follow

another idea., They speak of the domain of unique identifiers,
where uniqueness is maintained by text substitutions when nes-
cessarily. Such an approach is in the terminology of mathema-
tical semantics equivalent to discarding the notion of envi-
roment and identifying the domains of unique identifiers and
iocations (L = ID, Fe<l).

There is no conceptual difference between the notations used
here and the notation used in/L/ and /H1/, The main differen-
ces lay in such trivial things as choice of names, order of

parameters and so on.

I shall now give a very brief description of the used
notation. For a more strict and profound definition of this

please see /L/ or /H1/.

1. The CASES-notation is due to Burstall and descrimi-
nates on the syntactic structure of the object under

consideration.

CeZe CASES J’ IN

first altern, S first action

. .
. .

»
s

last alterm, . last action
ENDCASE

(Hoare and Lauer omits "IN" and "ENDCASE").,

2e [bi > Ay)

b - An]

yields Ay , where i is the minimal number so that
by = true. If no such i exists the value of this

construction is I I

3. The domain structure and the auxilliary functions
used will unless explicitely mentioned be exactly

as in the mathematical semantics for SNAIL,

b,

5

9.

10e

25

NéwI : R-¥1 returns an unused location,

(Hoare and Lauer calls this function "un"),

augmentI ¢ RXL-» R

Since we have no enviroment the state must be
viewed as a partial function with domain equal

to the used identifiers, augmentI(W)g) appends a
new identifier g to the domain of ?h

éi‘:ﬁﬂw evaluates the expression & in the configura=-
tion ¥ o It is supposed in this section, that such

an evaluation is done without sideeffects,

A formal definition of & [Elywill be left to the reader,
It follows exactly the same lines as the definition of
£ on page 19 « Since identifiers and locations are
identified giving an enviroment equal to the identity

function we have in pariticular:

grlff:(/% = contents(?)(ﬁblxi}

I shall often use & as an abbreviation of é[a]?.
(Hoare and Lauer use val(%, &)).

assign LXV >R *R is defined in terms of assign

-
(see page 20):

assignl() 3) <é//(,r///o> =<assign x B) Z//(I//(a>

RdI : L-»R-»> R

WrI t: V+ R -» R

is exactly as Rd and Wr on page 21.

tail is a list function which yields its argument
with initial item removed, and is undefined for

empty argument.,

last is a list function yielding the last item of

a non~empty list. It is undefined for empty argument,

4.1

26

Interpretive Model

This represents the extreme constructive approach., It describes
exactly how a given (abstract) machine would execute a given
program step by step, The method is due to the IBM Laboratory

Vienna,

A machine state of this abstract machine is a pair <1f,d/>é R xcoM
As usual,y'denotes the current configuration (we shall often

use the word state since we are not very concerned about input
and output), 3/ is called the control state and contains tho-

s5e commands remaining to be executed.
The heart of this semantic approach is definition of a function
next R X COM — R X COM

Intuitively one single application of next corresponce to a

single step in the execution (altering of machine state).

Having this explanation in mind it cannot be a surprise that
the result of interpreting a program &’starting in configuration

Y will be defined as result(\}l,d/), where

result ¢ R X COM ~ R

result(?ﬁ,d/) =

CASES d’ IN

NIL - Y

T ~» result(next(y%r))
ENDCASE

(this specifies an iterated application of next until the cpntraln

state becomes empty).

4.1.1

27

Interpretive model used on SNATIL

next CV/J/D) =

CASES I N

= Ej'é/{ — (czsszﬁnI(;, E4) ¥, 3//))

TEST & Do d/loﬁd/Lngvjd/* [&y = (¥, d/i)-d/'),
ey = @ gD 1

IF e jab -k S=iaFlip = [Ehy > @) gy,

Gy > Pof)) T
DO Ei-?&/ldt--“'%g”»d/b,om‘&/» [dy= &) fajfe),

E)y= @ fife)

T () 1
WHLE & DO f Dp,'d/’ = L&y » (¥,15p),

185 = (Y 1,
BEG&IN PEF f’—‘EJ’&/[:/VD)‘é/, > LET g'= NewsCy) IV

(amcgmemfl (¥, ¢) ,;':=6)' rEniy),
BEsSIV < r END; OV{ e (}V/ d/)J/I))
RERD <g>;{' — (%Z,(g)%/gl/’))
WRITE (g),'d/‘ = (&)Y ’OV())
vt Gy
ENDCRSE

where a/(?V?)denotes substitution of }J for all free F e

In this formulationwy'is assumed to be a command or the empty
Iist NIL., Please note that next is undefived if the control

state 1s emptye

4.2

28

Computational Model

This differs from the previous one in that it discards the
notion of control state. Now a program is mapped into a
list of machine states representing its entire computation.
The basic function will be

comp ¢ R X COM —> R*
and it is established by a recursive definition.

The connection between the two models is described by

Theorem 1 last o comp = result

As usual "3;" acts as append~operator,.

: 29
421 Computational model used on SNAIL

comp C?//&ﬁp)

CHSES d/o IN
NIL —= ()

7

Ol/i)d/ —= co'm{/a(;ﬂ/ﬁ)/ tal o cpm}g(/agz‘ocm/a(yd/ ’f?-b
= m Gy,

e vy wsign(ne)?))

TEST £ DO gy OR fz TSET —+ [&y = comp (yf2),
12y & lomp CV/d/z)J,

= Ec ik ¥e,—= o= fol)zp“? comp C%J/i)/

(é)zk > CM/V(%OVM]/
—& [—Céi)zp "’P m}’@ﬂ dé)d/o)/

€y = comp (¥ iifs),

TT+& (%) _'l/
WHILE £ DOy OD = [&y > complypip)
&y () i

/,
BEGIV DEF F=e€;y £WD = LET Fl= Newszcyp) v

comp (augmenty (4, 5'), g'm 5,-{(5'/(':),)'}

e (v,
RERD(E) —= Cy, R 3),

WRITE (2) -= &y, Wiley)¥)
ENDCRSE

BE&/V = e £END

30

At a first glance the expression for comp used on a list of two
commands,dg&, can look rather complicated. The idea behind the
definition of comp is that comp(y@&g) should be the list of con-
figurations traversed during execution of the command &3 starting
in the configuration.-y ¢ Having this in mind it is easy to under-~

stand the expression:

comp(&v@&) = comp(yg&ﬁ) ; taile comp(1ast°>comp(;ZJ1),&£)

We first compute the list comp(zhég) of configurations traver-
sed during execution of &_with start-configuration y) ¢« We mnext
add to this the list of configurations traversed during execu-
tion of the oommand(&»with a start-configuration which is identi-~
cal to the final=-configuration for the former execution of Jﬁ .
This configuration is 1last o comp(#ﬁka). Tail is used to avoid
that this configuration is included twice in the resulting list

of configurations,

422 Proof for Theorem 1 applied to SNAIL

The proof is done by showing, that the two sides of the equali=~
tysign, result and lastecomp, has the same recursive definition.,

In the case of {,_)6/‘ is used that

result(:mb{”’%) = result(result ('lp, 1), A/z)

This is not proved in this paper., The proof can be taken di-
rectly from Hoare and Lauer /H1/ p. 141-142 and p. 151-152,

reswult (y,d/a) =

G%Es&g/v

NIL —= z// ,

g==£ —> reswlt (next (2/// g€)

reswlt (6&55/5141 (;, 6%) Y, ML)

@s55181 1 CEI 5}0) 30 ,

TEST £ DO 42 OR 5 TSET —= reswult (L &y —= (z,u,&/i)/
ey () 1)

= L&y = tesult (z/,d/i)}
TEy = tesce/f(z//d/&)] ,

1= o>y b Sy Fl reswelt (L &)y = (%{i),
&)y = @)1)
= E(g.t)l//—? &5@/#(%&4))
(€.)y —> teswlt C%/ﬂ a1,

32
DO &> pat o HE= g O = result (L ey =) piy yo),
Ey = G fui o),
™ =@M 1)
= E(fg_)qu “> ’ﬁSLL//:C;ﬂ/d@-d/D))
(&) . fé&o/ﬁ@ﬁ,d/n}-d@)}
TT7 —= §V N

/
WHILE € DO (0P —= result (Cey = (&, t342),
= [y —= result CZ///J/Jj/o),

gy > o]

/
BEGIN DEF 3=¢€;) END —>

teswul/t (L ET g'z A/ew/rCy) IN (aé(gymenﬁlflﬁf’),f?=£_J"&/C(€l/;)))
= /_44'7”6':’.- Nevy () N vesult (cmgmémér(zﬁf’),f’r=8/'0&/(;‘/;)),

BE &/ <) ¢ END = reswlt (%A/) ;
RERD (F) —= reswl? (Rl (3)y, ML)
=RL (2 Y,

reswl/é (Wi (&), VL)

= W’i(‘fy)% ,
€ —= reswlt C;U/ N/L)

=7,
J/ijd/z = tresult (result (;y/d/i)} d/z)

ENDCHS E

WRITE () —>

which shall be compared with

33

Last o comp (ZW/JVO) =

CHSES 0% /N

ML —= _cesz ()= o,
FimE == Casz (comp (Y, Fi=g))
= Cast ((% QSSISML— (E/ 5;1/)%)
= a@ssigny (§,€3)Y%
TEST € DO YL OR fz TSET = Last ([& = Comp (¥, fa),
Ty = com/pcwﬂt/aﬂ)
= [&y = lestocomp (pa),
7 Ey %/%fomp C?’///z) J)
[Fgl"?d/i"#: gb‘:ghm_?d/h Fl —=> %é([(équ# QWW(WJ/\L)/
)y — comp () 1)
=L (E)w = /@xfoCM/Q(;ﬁ,ﬁ)/
(€.)y —;/mfom/o (%0%.) jj
PO &> it H &> ;0D > Lest (I Gy T emnp (Y fafe)

(5»,)30 - CWWP(%ﬁ/%),
TT = (&) 1)

= [_'(61)?, > ,&gjom/w(%/%/d/o)l

(Bly > st o compCy, pi; o),

m =21,

34

WHLE € DO |- OP ~= Zast (L&y comp Hfife)
‘7£?,%> C;W)_] ()
T Ly = Lastocomp (¥yf5 fe),
“757// — ’%/ J)
BE&/N DEF F=E; &/EA/D —=

Last (LET Fwew () INComp (augments (Y g), 52, f511))
= /LT (?’: /VeW/(%) MW (,&stoca;/ﬂ/o(ezﬁmewz‘rcw £), L E {:=£/' d/[/f//(e’))))

BE&/N <) END —> asZe comp (V/gy)
REHD (g) —= _¢ast ((%7?5{((?) w))

= Reg(p) ¥
WRITE () ~> _cest ((% Wiley)y))
= Wriey)y
e = @f(C%?)/

=Y,

Ol/ij'é/z = tast (com (%dé) ; fa/‘lamf (/“"ﬂé"m/ﬁ(%dé)/fa))
= Last o comp (Lasl e o (7///6_)///2)

ENDCHS &

end of proof
for Theorem 1

4.3

35

Relational Theory

We now move into the implicit approaches by discarding all
intermediate steps in the computation., This can be compared
with the difference between a procedure in some programming
language and a mathematical function. The former contains

a detailed specification of each step in an evaluation algo=-
rithm, while the letter merely is a relation and says nothing
about how the result-value can be obtained from the parameter—
values., In proving proterties of programming parts we want

the last alternative., If using for example a sine-function

we want to know that it computes the right answers, How they
actually is found is irrelevant (if one is assured that there
exists an evaluation algorithm)., For a further discussion of
this difference between abstraction and realization please see

D. Scott /S/ and C, Strachey /S2/.

In the relational theory each command are connected to a relation

in RxR, A straightforward notation is to write

v Ky v

to indicate that (yyy@ is a member of the relation 1%/ con=

nected to the command,d/ .

This notation will often be abbreviated (removing the redun-
dant "R"):

v(&>y’

The semantics for a language is given in form of a set of axioms
- a theory, It is possible to interpret this theory in the

computational model:

zy?d/%k{ = WI=/€¢3t°CWF (%V/d/) .

It is now possible to prove the axioms correct (satisfied)

under this interpretation:

Theorem 23 Relational theory is satisfied by the computa-

tional model

Corellary: The relational theory is satisfied by the inter-

pretive model.

For an introduction to mathematical logics especially

aimed for computer scientists see Levin /Ll/.

It should be stressed that the relations are total.’ w(*d?/

can be true or false - but not undefined,

36

4.3.1 Relational theory used on SNAIL

ALy (g v = 3y Dyquy’ » ygoy’d
HZ Z//(gr= £) Z/' = 7/'= QéS/ﬁV)I(C‘f, Ey,)y
F3 Y (TEsT £ Do gy OR fr TsET)Y !

= Cepn pgoy) v (15 PP
H4 Y (IF fi——>d/1 qﬁh-—'--q@#gh—e»(f/n F/)?//

= Bzﬂ‘#/@//\ ;ﬂ(d/mmggp);ﬂ/
rs Y (PO a=fy#-- ¥e,= 0 op) Y =By =7

"4 vy LI@) & ¥ B,)Y = Iy 1 =

voy' [Tp)r y(oar=fa - # 5,=p0P)p' = Tp) 1
A7 @ (WHILE £ DO p op)y' = &y
As V' LI g yyly' = I] ==

V' [L)« y(wwit cpypop)y’ = T(y')]
H7 v (BEGIN PEF g=&; e enP)y!

= 5[5= Newg) 1 aggment(y5) (5'-z, Ov(;’/;)) 2’1

A10 Y (BEGIN € pEvp) = oy y
AL Y (RERP (Fy' = Y= RLG) Y
g1z ¥ (WRITECG)y' = o'= Wr(g)y
713 vy = y-v

where BZ]U = {,& f (54>§V§
and 'B-(// = & = J/mm’j,?z/, = £,

I("z]u) is any first order logical formula possibly depending on l// o

38

Before Al - A13 can be viewed as a theory we must give axioms

defining New augmentl, assignl, RdI and Wr._..

1’ I

N%WIC?)= K == « & QQWQM(Cyvi)

4 Fgmentc (<2 pr f>, F) =<2 bl ol >
@/
[f<5 omra (2)

Homaw (2') = clowamn (2) © 1FS
{ 2'(x) = NoTIMIT

! =

L =

where domain is the operator which gives the definition~domain

for partial functions, NOTINIT is an errorvalue in domain V.

assignI, RdI and WrI are defined by 7 and 8 on page 25 together

with page 20=21.,

From A4 and A6 follows imediately the weaker axioms:

!

H4 (:5@,,#@“ Ao Ve [E)y = W(Cfé;)?':})
= Y(IF ecrfit - # £, 17 Fi)zy/
re' Ve Yy [T@)a)y a p)y! = Iy 1 ==
V' [Tw)a (D0 s pak - €amgh 0PIy = Ty .

If our approach had been nondeterministic in the selection

of guards,the axioms Al and A6 would have been replaced by
At (with = substituted for the last =>) and A6' (no substi-
tution} respectivelys

39

4,3.2 Proof for Theorem 2 applied to SNAIL

To: avoid boring the reader (and myself) too much I shall now

restrict the examination to MINI-SNAIL (see page 12).

In the proof is used the expression for last e comp derived

on page 33,

Al - Command lists

¥ (faj o) ¥

¢

£ Y= st ocomp (¥, 44 45)

\f{ 3yzz Cust (Cm/g (%d{q)/' ézx’lam/?(&sfowm/ﬁ(gﬂ,ﬁ)/%))
v Hgy” fz/'-—- Lust e com o C%d/") A

\l/l} ?V/= st (Cam/d(;ﬂ,d/i),; .L‘&/ZOCM/?(;/;///&))
@ I [p'= Last o comp Cz//,ﬁ) T A!?esz‘ocm/@[%”d/z) T

37#!/[‘ ,%(6/1)7////\ %//QJ/?)%/]

4 \ L)
where it is used that comp(#&%} always has at least two

elements « except in trivial cases,

A2 -~ Assignment

¢ vig=2)y
7/' = /&5£dcm/ﬁ C;V/ Fi= £)

0
2//= assigny (g, €9)Y

%

Al ~ IF-command

Y (IF ggmfit * &, 1 Fl)y

/\

\; %ﬂ /&5é9607%/7<?/ V= >d/_g; —/ﬁép;%d/ /:/)

14 %p/ - T Cgi)qj —= _fust © CW/@ (7/%/)
(E.) —= Zust o Coper Cg% H) j

’ v p

By + .G A ;/= /@stCM/ﬂ C%d%mgy)
/ley¢/9/ A ;y(O(/MIMBy/)gﬂ/

¢

A7 = A8 « WHILE-command

In both cases we start with the following rewriting:

¥ (WHLE € bo job)
| Y'= st o comp (Y, WHILE £ DO 4=OD)
v p'= [&y —= cast ocomp o fide))
§ ney = ¢l

V' = [ey = lust (comp(yp); tadoconp(lestocomp (), 1),
N
U Ey =y d
ZV/Z [£y = (gsfocmép(/esz‘ocaw/@ C%df/)/d%))/

ey = Y]

> <>

where é/o = WHILE & DO d/ oD

AZ:

The proof is mow finished by induction after the lenght of
comp(¥ , WHILE & DO J OD) = Comp(#/;dé)e

lenght = 1: Then it follows that =&y and z'=% , which

immediately gives the desired result,

lenght > 1: The desired result follows from the inductional
hypothesis since the lenght of |

comp (1ast o comp(%), o)

is less than the lenght of comp(;&&é) whenever

the latter is definede.

A8 ¢

mm—

Again the proof is done by induction after the lenght of
comp(¥ , WHILE £ DOd/ OD) = comp(’tfl,d/o),

We first write A8 in our interpretation:
V?@p’[I(’?f/) A E#, N (§Vl= /asZoCMF (7//14/‘)) = I(_;Ul) J =
V?yvaI%)A(#ﬂ: MjfoCyW%gcyﬁznzg> I?CyQJ

Assumes 1e The antecedent of A8:

Yy [TQp) 4 £y 4 (3= last o comp W g) == IF9]

2. I(y) A = La;stocm,o(i/z,a/o)

!
lenght = 1: It follows that Y= which immediately gives I(%'),

42

lenght > 1: From the definition of comp follows: Eyp

From this and from assumption 1 and 2 above

follows by modus ponens that

*) IC?,U"')= I(/QSZOCOWFC%{)) = Zrue

From our rewriting on page 40 and from s#
follows that

/

xx) @' = lesto cowp(/asfom/@(%d/),{aj

The lenght of comp(1astc>comp(4%/),gg) is less
than the lenght of comp (ng) whenever the latter

is defined,
The inductional hypothesis together with =«) and x%)

therefore gives the desired I(yﬂ). - Set ?r:
lastoe comp(@%x) in the consequent of A8,

A9 = DECLARATION

b ¥ (BEGIN DEF 5= =, END)Y

0
5 Y's LET 5 New () W (Lustocomp Cagment(yf) F=E4))

FE L= Mew@) A Y= Leste comp (augmentlyish), 2=y Gip))
:}(Z{ E(?‘= A/eWC?/)/\ a,tcﬁmemirﬁ/’/f') (gl‘éi}'&/((f'/(‘» %V{J

2///= Last o comz p Co, BEGIV DEF g=<; 1~ END)

0

end of proof
for Theorem 2

The corollary follows from Theorem 1 and Theorem 2,

43

Deductive theory

We now make another big jump toward abstraction by entirely
discarding the notion of configurations (states). Instead
our relations now are defined over PRED X PRED ,where PRED
is the set of all first order logical predicates with free
variables in the domains of identifiers, inputs and outputs.
We wuse P, Q or R (possibly indexed) to denote elements of
PRED. For a definition of first order logic see Levin /Li/.

As in the relational theory we will connect a relation to each

command., In /H/ Hoare suggest the notation:

1P§ y 1%

to indicate that (P,Q) is a member of the relation connected to:
the cammand,d/ e We shall by convenience instead use the anae

logue notation:

P 43/}6? .

As before the semantics for a language is specified in form
of a set of actions and deduction rules. It is possible to

interpret these in terms of the relational thery:

Piyie = Vyy' [P pyy' = Q']

which intuitively means that PiEQ is true iff P satisfied
before execution of Y implies that Q is satisfied after exee
cution if this execution stops. Since ?@4&> = true does not
guarantee that execution actually stops we are said to deal

with partial correctness. A seperate proof must be dome to

show that execution of our Program really stops.
It is now possible to show

Iheorem 3: The deductive theory is conservative as

regards the relational theory,

Corollary: The deductive theory is satisfied by the computa-

tional model and by the interpretive model,

44

That one theory is conservative as regards another theory means
that everything which can be deduced in the second theory also
has a deduction in the first theorye. To shown conservatism it

is enough to show that all axioms constituting the second theory
can be proved in the first theory under the given interpretation.

For further information about this see Leven /Ll/ page 99.

4.41

Deductive theory used on SNATL

D1

D2

D3

D4

D5

D7

D&

D4D

DAL

?43/.4.362/\ &éd/zm
P RdR
Ple/g) {gmg} P

(Pa 6)4}43@ ~ (PaTg) 6,[43&7

P4 TESTe Dod/,_OROV TSET}@

Vien [(Pag) {6}/{} Q1
P liFE EcP i # T #HE, T FIt &

Vi<n [P £2) be$ P 1
T {po e b b 03 (P17)

(Pag) {C{/K P
P {wHLE £ DO (093 (PaCE)

5/; Ej A/(;'éf)} K& where }'is a new
P { BFsIV DEI— F=€) J/E/\/Dg & unused identifier,
T3 &

/PJ, BEGIN e,&M/D}Q

P b d), Yat2) [/ §) {RERD ()3 P

P (@), o) S WRITE () P

P {el P

45

4.4.2 Proof for Theorem 3 applied to SNATL

Once more I shall only consider MINI~SNATL.

D1 = Command lists

(Vz{/'q/' E/sz A 7//(5/1)771/' = 532(/1:(A
Vyyp' [Qu 4 y%ﬁ%'=€>?¢f]) =
Vg [Py A vy’ = Ky']

Proof:

Assume 1. The two antecedents.

2. Py plfhjf)y’

(Sa; Ve :
Qa 4 5/)§/)¥/
Iy Lyy)y' « 9"y] by Al.

The first antecedent gives &7

and then the second antecedent gives 122#&

D2 -~ Assignment

vyy' LRC/5)Y + p(y = Ry']
Proof:

Let R = R(},}‘/‘??}/E”) , where },?7‘}7,5” are all free

variables in R.

We have

RCe/F)Y
’R(a/}j}ﬁ”m/;”)w
R Ceq 54 8w)

= =

46

47

and
f ¥y
4
z/'= st{gnr(g,gz//);u by A2,
The definition of assignI gives.
R !
l z n /
®?<2/252;-~-~-/5)y
!

o o Zps Ey Ep)
VR Cey, 35, EF e BV

We have now proved that

v (g=e)y == (Rlg/5)yp < Ry')

which is a stronger result than the desired,

D4 = TFRecommand

V%kq/' Ve E'T>2F A (52)1% A ‘yl(dﬁl)?ﬂ = szk,] :%;>
V?f/—ép' E’Pz,t/ Ay (IF Eo fado ¥, F’7’i"=> 62771/' 7

Proof:
Assume le Antecedent

2. Py Ay (IF 61476/1—#: #5“_74/” FI)Z,VI

A Y(IF Eswfik ¥ E, > p Fi) o'
1
/Bq'*/@/’\ W(d/mmBy/)?} by Ak,

: I
The antecedent (assumption 1) gives (vy' .

48

D6 = WHILE-command

vy [(Pre)y 4 yy' = Pyp']l ==
Vo' [Py s puwe ebo o)y = (Paca)y']

Proof:
Immediately from A7 and A8,

D7 = Declaration

Vo' [Py A w(gh-g; &/(g'/(z))y/' = Q'] ==
Vyy' [Py A o (eceiv DEF g=£ ;4 EWD) ' = Q9']
where g’is a new unused identifier.

Proof:
Assume 1. Antecedent
2., Py A o (BEGIN PEF ;:gjé/EuD)z,v’

’Z,V(Blzé-l\/ DEF 3=¢; é/l:}\/D)z//
\l/ 3} [f /\/ew/@/,) A aujmewt C?/,g) (5 ‘*5)&/{5'/;
by AQ.

The definition of augment, gives P(v) = P(augment1(¢ﬁf{))
since g'is a new unused identifier and therefore cannot be

a free variable of P,
!
The antecedent (assumption 1) gives CQ? .

end of proof

for Theorem 3

The corellary follows from Theorem 2, Cerollary of Theorem 2

and from Theorem 3,

5

L B R o A B S S b S ot o i £ e e e e e e L S R R R TN N I E NI I R I e

At a first glance it may be difficult to see any close connecw
tion between the ideas developed by Hoare and Lauer in /HL/
and mathematical semantics as described by Strachey, Scott

and Wadsworth in /S/, /Si/, /s2/ and /S3/. A more profound
examination however shows, that there is an indeed very strong
correspondence between these two apparently different approae

ches,

In this section I shall rewrite Hoares and Lauers ideas to the
notation of mathematical semantics., It turns out that such a
change of notation in many aspects makes the theorems and proofs

more straightforward and understandable,

As many times before I shall restrict the examination to
MINI=-SNAIL. The auxilliary functions and the notation used
will be as in my description of Hoares and Lauers original

formulation,

It. may be a help to know that the mnemonic subscripts I, C and

A stands for interpretive, computational and auxilliary,

49

5.1

50

Interpretive Model

In the original formulation of Hoare and Lauer result is a

member of the domain [[R % cOoM] -+ R] . Since it is trivial to
show that this domain is isomorph with [coM-»[R > R]], and
since the intuitive meaning of result(yhdz) is the configura-
tion reached when the command, & » is evaluated starting from

yg it would be mnatural to try the following substitution,

gj_-[{]/#’ = result ("U,X)

If this is inserted everywhere in the definition of result

and next we get a recursive definition of a function

Cre [con »[r>=r]]

In the following reformulation one further modification occurs,
Hoare and Lauer defines a state,; zyas a partial function whose
domain is the set of used (unique) identifiers. In mathematical
semantics it is common to view all functions as total allowing
them to take the value, L , for undefined., It is here important
to distinguish beween [which means undefined and NOTINIT

(2 in Hoare and Lauer) which means defined but not initialized.

Viewed in this frame the only action taken by augmentl(@%;') is
to change the value of ;’ from | to NOTINIT. Each declaration
in SNATL assigns an initial value to the declared identifier
and therefore any use of augmentl(g&;') is immediately followed
by an operation updating the value of ; +« By this reason augmentI
can be omitted simply replacing all occurences of augmentI(y7f)

by%o

Command lists

br L o 19
= reswlt (Y, da,4a)
result (reswlt (Y pa) fa)
&)1 (& Zgg]?)
e-lpd e E-Lply

1

"

1}

Assignment
G ly==1%
= restdt (Y, g:———é}

!

reswlt (hext (y, Fi=e))

#

reslz Cczss/éonz(g, Ey)y,)
@ssign. (5, ELAY)Y

i

IF«command

Cr [IF &>ja# ¥ 8> Fiay

vesult (et (;ﬁ/ /Ffiedq# ----- #Ehad/», F7))
result (L (20y = (Bfa),

"

= [(e1)y —= reswlt CZ/,d/j_))

(en)y —> vesult Czy,d/h) 1
- [& [E]ly — 5}[@/1]1//)

& l[=,1v . Glp 1y]

51

52

WHILE=-command

E. T WHILE & po f-ob 1%

I

reswlt Chevt (@, WHILE £ 900{/09)

"

reselt ([&y —> (?/d/; W#//_Ezt‘POO‘/OD))
'157/ — (%6) j

[€y — reswlit Cresult (2//)(}/)), WHILE £ Dod/OD))
18y > reselt (ye)]

\

[£ rely = & [whie e Popovle & Lply
& lEly = g d

- & [e1y = & lwwe s DopoD]e Glply , 2

- (Fix F.(y. Erl2ly = Feglyld, 7))y

Declarations

& [BEsW DEF =& p ENPT Y
= reswlt (next (y, BEGIN DEF F=€; " END))
- LET 3 '= News. (y) IV result (}y/g’ma)fov(;'/f))
- LET F'= Wewy () W (& [}’/-:f/’d/(f'/(?)] v)

As can be seen this differs very little from a Y"standard!
mathematical semantics, The main difference is the treatment
of declarations (identifier-bindings). Hoare and Lauer uses

unigque iddentifiers, where unigueness is assured by textsubsti-

tution , A v"standard" mathematical semantics would use the

notion of enviroment.

It should be stressed, that the omitted command-types in SNAIL
possesses no further difficulties. They are omitted simply to

keep this paper on a resonable lenght.

53

5.2 Computational Model

A first attempt to make an analogous transformation for this

model might be to make the substitution:

g,;l[}?l?f = comp(Y,47)

This would give a recursive definition for a function
s [com = [rR=>r*]]

This give however a rather nasty equation for simple sequen-

cing:

Caljajfly

Comp (¥, fajfz)

comp (y, fa); tarl e comp (/asz’acmf (7//0‘/1)/0(/2)
~ G lpaly ; 2/ (G I3 (Lt (Glply)) .

1

]

To avoid this we "1ire" €y to a function
€.e [com »[R*> r*]]
defined by
G317 = ¥, tal (G Uyl lest(F))
whero

YeR"

The idea behind this definition is that & [yl ¥ appends to ¥
the configurations traversed during execution of & Ly om
the last element of ¥ , The reader should compare this to the de~

finition of comp on page 29,

54

Command lists
&, lhi o1 14
V) tail (Cplia; sl Les? (Z))
V) teil (Golplest (B); Zail (Gl (last (G [l les? (X))
Y Zeil (&y Ljad las? (F) ; zei/ (&yly: 7 (lest (@@1/’2 7 las? ()
Y, tait (&0l fest (F)),
Zail (&5 Ly 7 tzs? (&) 22il (&5 L] T les? CZ)))
%C[Oyij/ ¥, Zail (gg[dé](/zsf(gc[ﬁ]?»)
el] (& lfad Z)
L L)l & Lpd 73

)

it

I

4

i

Assdignment

2. [5-€] ¥
= ¥, feil (G lFi=cl les? (Z)
=, tail (comp (lest (F), 7=)
= ¥, Zaid (tast (P, assigng (F, Eqpce) Vst CE))
~ T assign (3, & L2l Last (¥)) 2252 (¥)
= & assign, (3, E 1F) %

where QSS/SMC e [Lxyv— ER*”‘> R 17
Z. = [Exp = [R*>V]]
is defined by

ass/gn, Cxp3) P = casszsn(x,/a) fest (¥)
£ [€1 ¥ = £.1=7 lest (¥)

IF-command

& /[’/ng—yp&/------qeesb, SOk FIl ¥
- ¥ el (Cy L IF E1>)i # - # 5,2 17 Flh sz CE))
A Ccam/o(/sz@[)/ F =i ##8, F)
= ¥, feit ([CEe), s P = m/”(/%“g) /d/i)/

(€ oss T -—> comp Clast (T, 45) 1)
=T [, e = Zail o comp Clest c¥) 14),
() tast () ~—> Zail @ com p (/asrfcf)/d/h)]
= L ey = ¢, tail °W/”(/%Z/<ﬂ0‘/l)/
(€1) sy) ~—> %, Larl o comp (last (), 47,)]
- [&radi=s?) -7 Y tail (€5 LJad lest (7)),
£ 2,7 lest (Z) R T, tail (Ep L}l lest(T))]
- [&r=1? = Z1417,

£ &1 = Erpl?]

55

56

WHILE-command

G [WHLE £ D0y oD] 2
- ¥, tarl (& [wmie € pogob] last c¥))
- & tait (comp (lest CT) , WHILE £ D0 4O)
- Y @il (Le, 00 = comip (/zsidf)/j// WHILE £ DOYOD)
TE L L ewm = lesCF) T)

= [E st) T ?—) Lar/ (Cmﬁ;y (fzs? (?f)/d//‘ WHILE s DOUI/QP))/
TVE fst (T) T 7_,7}’ twil (les?z C¥F))]

- [E [l lest () —= ¥, tail (& Ly; wiiLE e Do OI/OD][Les?(Y))
TEED lest (F) > P]

[£.021% = £ [} W#/AEgDOJ/dD]ZZT
7£¢[[—£1? :ZE_J

£ . [€1 ¥ —= G L whlbsDoyop]e & 4&1 7, ¥
(Fix ROAY. 1T =F-ly1¥,%)7

1}

)}

57

Declaration

¢ [BE&IN DEF =g, (}/EA/D]/ 2

= 7,77/' Zerl (G [BESIN DEF ;=el'd/ END T last C¥)

it

¥ tail Ccomp (last CT), BESIV DEF feg, o £ND)
= D) tal (LET g'= New(last CT)) i

(cam‘p (Last (X), 5'=2,4 (5 7g)))
= LET §'s Newy Clast (Z)) IV

(2%, il (G lE'=2; p(3'75)] ast T
= LET g'= Mew, (E) IV

C& L=, Gl Z)

Again it is easy to see that this resembles a definition in

*standard®" mathematical semanticse.

In fact there is a very strong similarity between the definitions
of %: and gL.

5.21

58

Equvalence of the two models

In the original formulation of Hoare and Lauer equivalence
is expressed by

(Theorem 1) last o comp = result

®

In the new notation the corresponding theorem will be:

Theorem 4: Last (Z/[d_/] [) = %z/g(/_z//&ﬁ&‘(?)

which very informally can be said to illusitrate, that mathematie
cal semantics commute with the function last. It is the same

as saying that the following diagram commutes for all d/éCQMZ

& Lyl

last last

5.2.2

59

Proof for Theorem U:

The proof is done using induction after the complexity of er

This is called structural induction,

Command lists

Last (f/i[dﬁ;{z]/z?)
= /wf(g;%zpé[l]f)
~ st (ZCZ%Z/ (tesz (2. 4717)

where it is used that éienly appends to its argument list

and that the appended elements only depends on the last

element of the argument list

= st (G051 (G017 Lst FF)
Clf1 (Lest (&, L}iD 2st F)
%Ild?z]/ (%I.Z%Y/A,%sz)

- Crlpa A sz CF)

i

Assignment

Last (& L5==7 T)

Lest (¥ essign,. (5,4 Lc17)F
@SS /G, (f/fcl—é]f/f

= @ss/gng (3, Er Ll st ¥) Leest P
- Zr/[?-:é] Last ¥

[}

i1

60
IF=-command

lzst (Eo [[IF e=pi # - # 5,54, FIJZ)
st (Efcfflﬂzp—? %64717/?/

£ 1z17 = & U517 T

!

[Z[21¥ = &z (ELpl¥),

£ [51 7 = st (B L51F)]

i

[&, [=] @t (?) = £ Ll st (P,
£, [5,1 Gt (P) —= & L} st (F)]T

- G LFaTp e FE gy AT SRt ()

WHILE~¢command

ast (EIWHILE € DO d/OD] 7)
s lesZ(FIX F.(AT.E 117> Fo%/%]% 7)) &)
- lest CFIX F. Q. € (€] (Last (F)=>Fo //{10?7/333?)) Z)
st (FIX -~ F. (A%, Elel(lest ¥)=
po(&sz(gg@]/ﬁ/ sz F) ¥)

i1

st CEIX F.AP. EMEY (Zest ¥) —=
Feo G lyd (st 7)) Last Z)Z)

i

It

tusz (FIX F{dy. £ (217 =
Feerlildyy) Z)

(Fix F. (A & l2ly = Fe G lply v) Les(Z)
Er [wiLs & Do f- OD1 LasZ (#)

1}

)

with the same remark as for command lists,

Declarations

Last (G [BESH PEF F=g; 4 £MD 1 ¥Z)
Last (LET Fl= Vew, (Z) /N
(G Lp'=e, (¢ /E) 1 Z))

)

LET g/= Wew, (F) W
(st (& LF" =5 f(F/F)T Z))

]

LET §'= Newy (&est Z) IV
(&G L= 2, (/)] Last (D))

It

LET §'= Wewy (Last Z)
[gr[g'::g/' J/(;’/;)J %5%(?/)

!

Zr [BESIN DEFg=£,'d/EA/D_7/ st F

end of proof

for Theorem 4

61

We have the following connections between the two notations:

& L/g/]/ Last (Y)
vesult (Lasz(Y), <Y>

(%)

[}

and

-

=~ Last (Z_;/ Za// (%7/1?/2/ st CF)
()

= Lest (V) tail (comp (as? (.2_7//{)/)
= Las? o comp (&sz’(_f)/d/)

e

where it is used that:

1. comp(‘Wé/) has at least one element,

2. If comp(ZM) has exactly ome element, then
this element is 90 o

It is now easy to verify:
Theorem 5: Theorem 1 and Theorem 4 are equivalent,.

Proof: Assume Theorem 1l- then Theorem 4 follows directly
from (%) and (#%).

Assume Theorem 4 - then Theorem follows from (%)
and (#%) since the set of all single-element lists
is a subset of the range for the function

lasts [R*=>RT] .

end of proof

for Theorem 5

This give an alternative proof for Theorem 4: Prove Theorem 1

- use Theorem 5,

62

An altermnative proof for Theorem 1: Prove Theorem 4 ~use Theorem 5e

5.3

63

Relational Theorvy

Hoare and Lauer interprets this theory in terms of the computa-

tional model:

1/<RX)77V/ = z///:-. last ocomp(;//&/) .

Using that
result = lastecomp

and Z;@%]y’ result(y%d/)

i

we get an interpretational of the relational theory directly

in terms of £ :
/ ! —
¥ (R)y = ¢=Z;ldz]lglf .
This is a very natural way to describe in mathematical semantics
the relation connecting initial and final states for execution
of a given command,d/.

We can now prove the theorem corresponding te Theorem 2:

Theorem 6: Relational theory is satisfied by the mathematical

semantic model represented by g, .

5.3.1 Proof for Theorem 6:

Al = Command lists

4 1/(0%,5/1)2/
@ I" Zf Iaé)d/:I%D
¢ w'- &Iyl (e lply)

4 agu”[z/ g lply « ¥ ?4/22/;/’]
Fpr Ly " ~ ¥4y’

A2 = Assignment

Y(g=2)y

y = € lz=cly
;V'= @55’&”3: (g/ fr[a??)y

> &>

l

<

Al = IP-command

;V CIF g 7&/ - H 5/4_>0Vh F/}%/
yﬂ Zf fEWF 51 >_Ji #;.HH.A¥; g%.€>J41 FV] #f
y - Lélely = £, Lp1Y,

S &

£, =1y > & Lizly]

=

Bw%,@/ A Z/I= é-[d/-mmBz/]%p
Byt@ A ¥ fwme,) ¥’

G

64

65

A7 = A8 = WHILE-command

In both cases we start with the following rewriting:

N ¥ (WHILE £ Doé/OD)lP'

\E W' - Er [WHLE £ PO (- OD]

Q/”\ y'= (FIX F. (Ay. & lely = Fe&rl 1w, 9) ¥
() v W - (Eple]y = ngw#//,ggpod/oﬂ/ogf/[ﬂ/% ¥)

A7z

The proof is now finished using induction after the number of

times, n, the loop—command.{’is executed.

/
n_= 0: Then by (%) we have é;ié]w = false and ¢/=§P which
immediately gives =— Eyr ®

n >1: Let ¥ be a fixed configuration,

Let. y”’: gi@}ﬂ;y and let ?M be as above,

By (%) we deduce that 2///= &y TwHLE € 1706/00_7/%*“
and since é}@VMWuszOXGW];V+ executes the loop-command, 4,
one times less than ﬁ}dﬁvMLEZ:D%yOQﬁy'does, the inductional

hypothesis gives the desired A 6?: .

A8

Again the proof is done using induction after the number of times,

n, the loop-command y is executed.
We first write A8 in our current interpretation:

\/7#7/ [:I(";V) A 57/,/1 7//= 51-1%/]70 = I—(Yp’)] =
\/7//2//' [TG) A 7//’= E-LWHILE € D&{QD]/?/ = IC;M)]

Assume: 1., The antecedent of AS8:

V"’f?+ [T A&y o= %t[&/]% = I(}V+)j
2. I(%)r 3'= & OwWHLE € DO 4/017]/7,0

66

n = 0: By (%) gp’z;y which imediately gives I(?YV’).
n > 1: Let,y)be a fixed configuration.
Let %"= 5IQ/J/7//
and %’= grsz#mfgpafopjm/.
From (%) and from assumption 2 follows that the antecedent
of assumption 1 is satisfied (with yf=?/ and #;??+).
Assumption 1 then gives I(%").
From (¥) follows that o'- & llfur/#/u’?e:DangD]/7,V+
and since giETWWM£?£;&9 09]'%4 executes the loop-command,
Y» ome times less than 5}7E7V#M¢7£EWJ4ﬂﬂyfdoes, the in-
ductional hypothesis gives the desired I(w’).
A9 -~ Declaration
A v (BE&IN DEF ;=s)-d/£m>)z/
Voo
N Y= Zr [BEsIV DEF g=£)'d/ EA/D_’H%
Il
V I) /
= LET 3= i= £ ; ‘
A Vo= L ’ News () IN (&p [F a,é/(g/(r)llz/»)
W I_ I_ o o [
A LET g'= MNewg Cy) IV (o's E-L5" E_jd/((?/(?)ﬂz//)
Voo e I Lo ! /)
. LET 5'= Vawy (z) W (v (=g /o) ¢
vV

{ ! {
g Dp=vewp () &y (pime; (370 3]
where it should be remembered that we have made the follo~

wing identification %= &%%ﬂ%@%t nyg‘). (see page 50).

end of proof

for Theorem 6

5.4

67

Deductive Theory

At this stage we have two possible dirrections for progress.
The first possibility is to repeat the interpretation of the
dedeuctive theory in terms of the relational theory. Since this

interpretations:
(x) Pipie = Vyy' LP @) A vy = Q@)]

does not involve result, next or comp it remains unaltered in
the new notation of mathematical semantics and Theorem 3 can be

repeated without any changes,

The other possibility is to interpret the deductive theory

directly in terms of é}. From (*) and from

(x) p @)y = Y GLTY

we get the interpretation

P{J/E R = V—;y E P(?ﬁ) A gl—l[d‘/][?y defined =~ Q(grlg/]}”)j

Plr3 & = Yy L Py) = QU& LT y)]

where we use the convention, that Q{(L) = true for any predicate,

Qe

We can now prove a theorem corresponding to the corollary of

Theorem 3:

Theorem 7 Deductive theory is satisfied by the mathematical

semantic model represented by'ﬁ}.

54.1

68

Proof for Theorem 7T:

D1 - Command lists
A Phal@ ~n QHiRER
v [Pey) = & (Er ﬂ_“d/JIZ,V)J A
Vo [Q@) => R (& [pl)]

I

<

vy [Ply) == R (& L1 & g2 »)) 1
vy L Pep) => R (ErLpaip19) 1

S

Plraip§ R

D2 =~ Assignment

Ple/s){p=&5F

Vo [PCe/s)(p) = Pl =s1y)]

Vo [P (£/5) () = P (assign; (3,&=z19)v)]
Yy [P (g/3) &) =~ Ple/x) (%)]

B > & &>

true

Dt = IF=command

Vien CPrg)] &

Vo Visn [P&) r(EL)y = Q(%lf(,ﬂl%)j

Vo Visn [P&~ E[gly = Q(%Eﬁ]#):{
vy [Py) == @ (LELEly = & lpaly,

= e o

érféhliw%g}_f(ﬁ,ﬂwj)
vy [Py) == & (ELF exp-Fa>f Fl Ty)]

<>

—

P,{“: gl--"-?d/l*uﬂﬂ*gh'—-’d/“ {.’:[} &

69

D6 ~ WHILE~command

A (PAg)&gﬁ P

v Vy [(Pag)y =>?(£€Ilfd/11%u)]

vy [Pay) = (Pae) (G lrwhie epopoply)]
P iwHILE £ Dod/ODE (Pa1g)

Ge)

%

where (%) is proved by computational induction., This proof-

technique is described in Manna and Vuillemin /M/ page 530.

Proof for ():

Assume: Vo E<P/\ E)‘L{/ = P(@I [_d/ﬂ 2}”)]

Since & [wuile epo popl

= FIX F. (Ay. &, lely = Fe grzgyw,gm

it is enough to prove
(1) Vo [PCy) == Praae)(L)

ana (11) VO L Vo[P@) =((Prr1e)oy]
= yy [pap) = (Pr1e) (& [Ely>6-& Iy Y]

(It should also be proved that the used predicate is "admissible"

- see /M/ = but this is omitted).

(T):

This follows immediately from the convention P(l)=true for

all predicates, P,

(11):
Let &<[R > R1] be given

Assume: 1. \7131/'[_- CP/\E)%’ = P(g;c{f(}/ﬂ?U
2. VO [Py = (Prme)oy']

Prove: Vg [Py = (Pa 72)(£IB1¢—>§°%C[¢A/]%V/ZP)J

Let <R be given. There are 3 possibilities:
case 1: E:[lelsy = L

A F@) = (Paae)(EL[E1% = - & 1y 1y, %)

\l(/
Ply) == (Prre) (L)

which follows from the convention P(.L):‘true for all predicates,

P

case 2 Ex Celd/ = false

/n\ PCZU)=> (PaA 7£)<grf£]!?'“> 902[&/]/7#/?)
/\\/ Ply) == (Pr€) %

QL

PCy) = P & 1)

which is trivially true.

70

71

case 3: éz C=7 4 = true

@ CPC#A = (:PA 7éﬁ)<§ajméﬂiﬁ—a-é?csé%}[&];%/%p)
Y @) = (Prrg)(Ce&rlyly)

Assuming P(%) assumption 1 gives:

Ple Lyly)

Assumption 2 then gives:

Praz)(ee g [yl o)

|

(use Y = grlra/ﬂzﬁ)e

end of proof

for ()

D7 « Declaration

Pigi=-¢, d/(;'/;) fR A g' new unused identifier

: Vy 33 [§'- Vewg (3) » PGr) = Q&5 y(prply)]

vy [PGy) = LET sg-Wewy () W (R(G L5 =;p(s/5)1%))]
Voo [PG) = Q (LET - Ve () IV (5&[‘;'@5;{(}’?)1{?)}}
V%p T Ply) = & (& [BEeiV DEF E=£jd/51\/912k> T

> &> S =

<:=

P{BEGIN DEF E=£)'(§/EA/D} &

[
where it should be noticed, that P and Q cannot involve E

since they are defined outside the scope of }'.

end of proof

for Theorem 7.

On this place it is natural to make a short pause for doing some
comments about the work done in /D3/ by Donahue and in /L2/ by
Ligler.,

They both define a deductive theory in the style suggested by
Hoare. They introduce formally a mathematical model - interpret
the theory in this model -~ and show that the theory is satisfied
by the model., It should be stressed that none of them make the
full use of command-continuations., Ligler explicitly removes
continuvations as far as possible (no jumps). Donahue uses an in-
terpretation, where command~-continuations are universally quanti-
fied (see /D3/ page 359). This amounts to the same as an (impli-

cit) continuation-removal.,

Therefore /D3/ and /L2/ can be viewed as analogous to the inter-
pretation of the deductive theory in terms of the mathematical

semantics represented by 5&-(Theorem 7).

72

5.5

73

Predicate~transformer Theory

In /D/ Dijkstra presents a Theory called weakest predicate-
transformers, Its ideas are very close to those represented

by Hoares Deductive Theory, but there are 2 main differences:

1. Dijkstra demands total correctness while Hoare

uses partial correctness,

2. Dijkstra wants a sufficient and nescessary precon=-

dition while Hoare only demands sufficiency.

Dijkstra's predicate-~transformer called wp (Eeakest Rredicate)
is a member of [COM)<PRED > PREDJ s where PRED is the domain
of first order predicates with free variables in the domains of

identifiers, inputs and outputs. The intuitive meaning of wp will
bes

wp((,Q) is the weakest precondition (predicate)
which guarantees that execution of the command, Yoo
stops with the predicate Q satisfied,

Dijkstra imposes U4 restrictions on the possible wp-functions:

Lo wp(y,false) = false (excluded miracle)
2. (P=>Qq) = (wp(y,P) ==wp(y,Q))

3. wp(y,Pa) = wp(y,P) A wp(y,Q)

o WP((}/sPVQ) WP(G/!P) VWP(d/,Q)

tH

A wp-function satisfying 1-4 is called "healthy", If nondeter-
ministic commands are considered "=" must be replaced by "<& "
in b,

It should be noticed that

wp(&/,true)

is the predicéte telling iff K stopse.

74

5.5.1 Predicate=transformer Theory used on SNAIL

wp 4
W}az

w,os

WJM‘

WF‘S'

u//pé

\X/pé’
w/’wf
wp 10

wp (faj [y) = WP Cpa, WP ey &)
wp (3:=€, &) KR(e/g)

i

wp (TEST & DO d/LORd/aTSET} &)

= <£A WF(d/L)&)))\/ (1€ A Wlﬂ(d/z/@))

= A &
WP C”: 5196/1‘#;.....#.6”-9(‘/,, Fi,R)= B+& WF(%MB/)

where K= "{»f;fw\ 54'/}

WV CDO 519(3/1#: ----- # &, >k, OD, K) = <34;20:H,;(Q))
where Ho (®) = (8%9’) AR

and H,b C&) = WF({Fé‘i'?é/j#“""#;Eh—>d/h F// Hzt-l(&)))
v H, (R) (ez4)

wp (WHILE £ PO yep, &)z (diz0k(R))
where K, (®) = (ne)r &

and K, (&) = WP(TESTE DOJ/OR e TSE'F/ Pg__if@))
(cz=4d)

wp (BESIN DEF g=¢ ; (EVND &)

= 3heVi-£n W‘a(g==€,'d/, &Ckrg))]

wp (BESIV < END, &) = wp (4 &)

wp (RERD(F), &) = & ((Keb1), (rrt2) /5, /)
wp (WRITECE) , &) = & ((K@e) /)

wy (e &)= &

75

Our choeoice of selection rules for guards evaluated to true
influence wplt and wp5. If we had specified a rule selecting
at random between these true guards our weakest preconditions

would have been a little stronger:
wpH' wp (IF eyt o8, =0 Fl, Q) = Br& ~(Vi: g = wplpe,R)

wp5 would be as before, but since it refers to wpl its semantic
meaning would be altered too.

These new rules for IF- and DO-~commands corresponds with Dijke

stra's suggestions in /Di/ and /D2/.

In wp9 and WplO/Krand/g,refer to the input- and output-part of
the configuration on which the predicate is evaluated. In wp9
the presence of the fterm %&vi implies that the input-part of the
configuration before execution must have dimension greater than
zero. (If this was not the case‘/&ktwvuld be undefined and the

whole predicate would then yield false by convention).

It is easy to verify that wpl - wpll constitutes a healthy

predicate~transformer,

wpl ~ wpll comnstitutes a theory., This can be interpreted in

terms of mathematical semantics:

Wlﬂ(é/,é?)l// = C%I[d/];ﬂ)

where Q(L)=false for all predicates, Q.

It can now be shown:

Theorem 8 The predicate~transformer Theory is satisfied

by the mathematical semantic model represented
by &r.

The proof for Theorem 8 will be omitted. Later we shall invew
stigate in greater details the situation where this theory is

interpreted in terms of a mathematical continuation~semantics,

(see page 86~93),

76

5.6 Continuations

L.et C =[R-i>A], Then a mathematical semantics without continuations
£, e [com =R >R]]

can be 1ifted to a mathematical semantics involving continuations
g <[com »[c—=c]]

defined by

é'[d/]@= & & [T .

At the other hand given a mathematical semantics with continations
&< [com—=[c -=c]]
we can remove the continations by defining

Z.c [com—=[R>Rr]]

where

For a further discussion of continuation-removal see Donahue
/D3/ and Ligler /L2/.

T now want to investigate our different theories in terms of a

a mathematical semantics involving continuationse.

Let % <[coM =[C = C]] be defined by

. L/a/]/@ = e &yl .

77

5.6.1 Relational Theory

The interpretation

Il

¥ (RO Y- & Ly

now becomes

Il

¥ (RYY = Y- G 18,y

which adds very little to the clarity and understanding of this
theorve

5.6.2 Deductive Theory

Omitting continuations we used the interpretation

?{3’3 & = Vo [P 4 &, [{1{7{/ defined=> & (&. l[}] w) 1

The predicates comnsidered in this theory is contained in +the
domain

PRED = [R = TF]

where the domain TF of boolean values is the set 4true, false}

equipped with the partial ordering false = true .
Assume that the answer domain, A, contains TF, Then
PRED < C

and we can use the interpretation:

i

Tirsa Vo [Pa) 2 £ LyI1€ 2 aerinea = & @/]&7 y 1

where E%T = ﬂ'ya LrHie.

This can be rewritten to

' /p%j R = Yyleg) =G (ZR[LE/Z 9173# defined)V & ZZZ/]&)?/]
\/ﬁ/\ P 6&’}& = \7/77// E/WD@U) =><—1 ({gtc [[}][Q;V defined)) v gé:c [[5/_7[@ Z/)]
v Pla = vy [Fey) = (0 (B) 6))]

since false is the bottom (undefined) element of domain TF).

At last we receive our final interpretation:

PYiq = VL Grelyl GO)y = (Py)]

18

79

5.6.3 Predicate~transformer Theory

The use of continuations becomes much more convenient, when

we consider this theory.

Omitting continuations we used the interpretation

Il

wp (g Q)Y R (e ly1y)

with the convention Q(L)=false for all predicates, Q.

Using continuations we get

Ii

wp({,ﬁ?)gl/
or M49<2V762) = éZIC_Ha%ﬂcQ

Erc Lyl Ry

where Q(L)afalse merely reflects the fact that false is chosen

as the bottom—element in TF,

Thus we have established a connection between the two functions:

wp: |[coM x PRED][-> PRED |

bre. [com —-[c — cJ7

(2]

where it should be remembered that PRED = C,

This gives a much more elegant interpretation of DIJKSTRA's
theory for predicate-~transformers. Moreover it gives a connecC=
tion between program—execution represented by ﬁicand program=

verification represented by wps

80

6 PREDICATE~-TRANSFORMERS AND CONTINUATION SEMANTICS

ri o, s e i Gy s S o Covay G (D G G (K S Gas G B DvE T Grie e mmS G e G e s WwEe O me feve Geey S Giem Tom o A Sre3 tews S TN RS Sx3 e o Sws v
B R T e e R I R R R RS I I R S R N R S N NN I N E RS mo=mxma =

In this section I shall elaborate the ideas brought forward

on page 79 .

I shall not use the semantic function é%z , but instead the

semantic function £ defined on page 15-22.

Z and é%;are very close related, The main difference is

that & uses the notion of enviroment, while éﬁzdces not.

As pointed out on page 23-2L4 this amounts to the same as identi-

fying the domain of unique identifiers with the domain of loca-~

tions ®

It will we proved:

Theorem 93 z, /Z(_f’] & = Z@]flpﬁ
where @, is the enviroment mapping all

identifiers to ditself,

It should be noticed that using ¢, we start execution with uni-
que identifiers identical to the corresponding SNAIL-identifiers,
If one or more of these identifiers are redeclared in an inner

bilock we choose new unique identifiers different from the actu-
al SNATL-identifier,

The proof is done using structural induction on the complexity
Qfa/e

In fact we ought to use simultaneous induction on the complexity

of J/ and £ but it will be taken for given that:

(* w(& rely)= £LT76p wy.

(This is nescessary since we have left a formal definition

of‘éé to the reader).

It should be noticed that (%)

ation-removal for expressions,

is nothing else than continu-

81

6.1 Proof for Theorem

o: 82

Command lists

grcld'/l,"dxaj/é
= g %—_@@-(J/
= B o gr/[d“/zz o g{rz/gﬂ/
- (grcza@]@) E-ly 1
" Gl G L18F
- %Zg/i]g,p { & Ly 1§00 & §
= g/g@d/z]/g,oé

where the last but one equailitysign is achieved using the

inductional hypothesis,

Assignment

(%)

Cre L3 =]y
- O L lz-ely
= O (assigny (§, Eclely)
S lpatate (Qulfl 1L, Eclely) OY
- (Elrelg, {1p. Upctate Coplsl/l, ;8) 8 F) ¥
" Elp= 21900 7

where (x) is reached using the definition of the auxilliary
functions, assignt, update and assign, plus the fact that

Suoll.’;:((iuf for all identifiers,

IF-command

C.. [/Ffi—»d/d_#--'“#gh%d/h Fl]&y

u

& o &_LF Empit o #E, g FILY
& (L& rzly — Exifly,

]

£ U£,1Y . é/f%zy 1)

li

Egrl%]¢ —= @0%%1%)

E. [l -L> & o 5_,7[%] ¥ 1

i

[£le1g, Ko —= g[ﬁ]fw@p}

(Wi = Ats.ﬂz;/.ﬁ)
Elzdey iy —> Elpplgw Sy

where the inductional hypothesis is used.

By the definition of Oracle and the [J-notation we get:

il

(é?éféi'7cﬁ1%k-""ﬁeéiy‘;akk:Zj%p /éZZQZAf <Té%/4i/h§) ?b

W
N
N
I
\
*
#
|
X
R
S
o
)
AN

83

84

WHILE-command

KIL[W!//LE & POJ/ 09‘7/9;0

Eo E L WHLE £ po b1y

& CFix F.(dy. & lely = F & Ll g7) ¥
(Fix Fy. &1y —=F-&lpdy,) ¥
(Frx F. £lzlg, | Conct (EL7I0 <,)5 ¥
FUwwilE £ Po p OP] 01 & 3

)

)

n

"

§

where (x) is intuitive straightforward since every execution
of a WHILE~command is nonterminating or executes the first
alternative of the Condeconstruction a number of times fole=

lowed by exactly one execution of the second alternative.

A formal proof using computational induction is left to the

reader.

85

Declaration

Cre [BEeW DEF 3-8, END] @Y

&G o &, [Besm/ DEF f=g, y ENPIY

& (LT F'= Wew (y) IV (grlfg‘:--a,'d/(g//(z)]?/))
LET(?'a New, () W (&= gzl}/’”é////(g'/g)l/ v)

'

fi

1

LET 5'= Newy cy) W (GLF" =2 g (3@ loy)
LET ('e’ = Nevwy (p) W (ELg"=2, (375) Lo E)

]

i

where the inductional hypothesis is used.
LET §'= Wewy (p) W (€3 ~elgp | ELF(FIE IS0 ES 3)
LET 5= Mewp) IV

(€ [Elsy $1p. Lpatate (5ol TIL,p) 1 ELFGE IS0 EK 7)

il

LET §'= Newy cy) IV
(ELelgp (1. Vfd/gﬁf(g;ﬁ) 7/5@/({//;)]ﬁpﬁff7/)

= El[Top tAp. Mo (ep) L Lpelez= & p)
{ Ly G550 8 K5 ¥

assuming that New and NewI is implemented in analogous ways

(iees they select the locations in the same order).

- Elelop 175 vew (op) 1. Lipctee (4)
1. 51}2/36’)(99 [x/50) 35 ¥

Tt should be noticed that ¢,is updated so that E now is bound

to a new unique identifier o« .

- DU0EF 3-219, {15, Elfls © Jv
~ G [BEe/V DEF §=£, y END19p S ¥

end of proof

for Theorem 9

In fact the earlier description of the predicate~transformer
theory dis a little simplified since it does mnot involve envi-

roments. (see page 73-75).

Predicates uses identifiers and these should be bound to loca-

tions. Therefore a predicate is a member of the domain
PRED, = Cenv =R = o 7

Using the idea brought forward on page 76 where predicates are
viewed as special kind of continuations we receive an interpre-
tation of Dijkstra's theory in terms of the mathematical conti-

nuation-semantic, Z’, defined on page 15-22.
W (x C?(g?) = g[d/]g" Q(g)

In all cases except wp7 the inveolved enviroment,‘g , 18 kept
constant and to avoid a lot of redundant notation it will often

be omitted writing Q in place of Q(?).

86

In the rest of this section I shall again assume that expressions

can be evaluated in SNAIL without sideeffects. I shall use é#,as a

shorthand for the value of expression £ in configuration (7

(&y= ERL1gKpy where K= Ap.dy. p).

We can now show:

Theorem 10 : The predicate~transformer theory is satisfied

by the mathematical continuation-semantic model

represented by g .

The proof is done using structural induction.

6.2 Proof for Theorem 10:

wpl - Command lists

WFC(B/,_)'d/Z, K)
%[Ovi;(yzjfgé?
%[&,13 {%Zﬁlg@}
wp (4i) Elfls <)
wp (d/i) WFCJ/Z}Q))

il

]

M

wp2 - Assignment

WdOCgma,Q) W

Clz=c15 Ry

El£1s {Ap Lpaaie (QUETIL)RS ¥
Vpadaze (QLF1IL, &4) & P

R e Rssign (gLFllL ey)Y

= QR (C&yp/p) ¥

by the definition of the auxilliary function Assign.

L}

th

1y

i

Wp3 = TEST-command

wp (TEST &£ Do OVL OR d/?— TSET'/ XK) ;p

1

ElLTeEST £ PO fiOR i TSET LS Ry

ElzTs { Come (ELT, ELFal)Ry

(gg 2 Z[{ilg@y/) v (ley 4 ElfleR)
(g A wp (g, @)w) v (Tey & wp (@) %)
(er wplys &) v (7€ 4 wp ey &) Y

"

W

[l

n

87

88

wplt - IF—command

W

ELwEci=py # £, fn Fl loe Ry

@ [51_7&/&...... # £, =g 19 { Cracle (@,1L)F ¥

Gracle (6, L) K ElZdg, Elpls>, -, <ElE.1¢, ElF 18> ¥
@i @y) A Elyim e, 198%

C Bt) & wpliguns,) R)w

(B+eo & wp Cmn) &))Yy

1

[}

i}

[

lil

where 84»= 42‘”165;)¢'?

and B = &;snl 22,}

wp5 = DO=command

The proof of this axiom is omitted. It follows the same
i1ines as the proof for IF (wplk) and WHILE (wp6).

wpb = WHILE-command

\X/&&(WHILE £ DOé/OD} X)) Y

ErwiLE e Do)y oP13 R

(FlIx ©'. £Iele | Conct (El130, R)3) ¥
Zlélg{@n/(ggl/g{%[waga poyopIeRs, R)5y

1

1}

(+)

in

The proof is now finished using induction after the number of

times, n, the loop~command X’is executed.

In this proof I shall make use of continuation-removals. For
expressions this is the same as assuming that they can be eva-
luated without sideeffects or transfer of control (jumps). For

commands it only excludes transfer of control,

Formally this can be expressed by

h

) Fg, Vix o ElElY
tx) TPV %/Za/]/geil)

K (Ey)
e @*)

where £, 63\9 and y'are universally quantified,

)

n = 0

= C??/)A T Ey
where (%) is used.
= k@;(}@) (4 (see definition of K; on page 74)

and since 75? by a straightforward inductive argumentation

gives Ki(Q) y=K,(®Y¥ for all Lz 1 we have:

il

(Fize : K @)Y)
((3i=z0: K. @Q)) (4

M

89

90

= g{fd/ﬂgfglfw#/LEgDDOVODZ/gQ§3”
= FLWwEsDoporleQyt

where Y(ﬂ—‘" 5/1-0\/]/8 52% 7//3 4

(The existence of such an 7//" follows from (%—%)).

Since 5[&\//#&55 DQd/ ODISQ ZP-'_ executes the loop~command,
a/, one times less than g[fv\’/#iLEeboe(ODZ/?}/ does the in-

ductive hypothesis gives:

= (Jc=0: K (@)y*
= (Fi=z=0: K Q¥")

(+) and (ﬁ(—) then gives that:

yr- Elyls iy iy
= ELTEST £ PO/ OR & TSET [0 R {An. 93 3

and we can conclude using (%)

= (3iz0: K (&) (ELTEST£00y OR e TETIoR A9 93 1)
= (Fic=zo : E[TESTe Dod/OReTSETJ/g K@)y)

= (3iz0 wp (TEST e DOy Or e TSET, W, (&) 3)

= Gi=d: K &)y)

= (@izo k (Qly)

since £, = true implies that K (&y= false

= ((Fz0 ' K &) w

91

wp? - Declaration (not empty)

wp (BESIN DEF F=2, i EVD, ®Ce)) v

& [BEGIN DEF I=&; END]o X(g) ¥

@IreF g=€l5 145" 51(}]5”@@} i

£[5]§ 7/4%, New () {7 ﬂ/w/m C@ﬁ)
f(7¢". g@]y'@(gﬂ ColLwrp1)358 %

i

il

\l}

W

Vpdlat= (o LT IL, =5) 7/5%—/]5"*47@),; ¥

where X is a new unused location and 9"‘:: QLx/g 7.

If ; is not declared in any block sourrounding this one the
situation is rather simple. Then F is unknown outside this

block and neither Q or its precondition can have F as free

variable. By this reason Q(S) = Q(S*) and we get
= Update (TLET It ew) wﬂg*&(w Nz

which according to the proof for wp2, definition of our

interpretation and wpl can be rewritten as follows:

Wp(Fi=€ %[d’/]g”kﬁ(f*)) 4
wp (§roe, wpll; &G7) 3
wp Cg==, wp X)) ¥
wp Cg=2, ¢, X))y

il

il

1\

il

If F is declared in a sourrounding block the situation is a

bit more complicated. The equation derived tells us that g@ﬁﬂand
and Update is performed in a new enviroment where g is bound

to a new unused location; but after this the old enviroment

Q where ; is bound to the old location is reinstated.

Since Q refers to the old ? which cannot be altered during
execution of this block the value of this free variable

must be the same before and after execution, This is expressed

bys

wpa

92

dhev [Fyp Tk A Upclate (Q'LFIIL, £4)1 EUFI 9" QC/7)(5)f o]
= 3RV LFy=h 2 Upolate@UFIIL, ey) 1EL[IST R) 7]

since Q(/Qﬁz) no longer depends on the binding for F o

Now we can proceed as before:

= JpeV [Fy=ka wplz-¢, ff[{]/g*é?(x/g)(f*)) 1
= 3heV L gy=kn wp(p-g, WF(J// &(K/g)9+))7//:!
= FheV Lgy=Ar wp (zi-g) Wp G ®</F) S)y
= FheV Dgy-hk 2 wp Gg=2if) R/z)8) v
= FAsV [§ -k wp@Gi-e)p, @ (<zls) Do

(pleasa notice that the equation derived on page 91 is a

special case of this equation).

= Declaration (empty)

wp (BEGIN i END | &)
g [BEGIN ey END I R
Drels i19. ELISE S
Elyis @
wp (&)

I

il

m

I

wp9 = RIEAD=command

wp (RERD (), &) ¥
= EIRERD ()oY
= Reacl (QIF1IL) XY
= Qo RACoUFnIL) Y
= Q ((ehd), (pet2) /&)

by the definition of the auxilliary function Rd and the

remarks about wp9 on page 75.

wplO = WRITE~command

wp C WRITE (&), R)y

I

ZLwrITE (e)19 &

= Zlely {7p. Wiic ()R} Y
Wite (eq) Q¥

= Qo Wi(ey)w

= & ((p@&y) /) WP

by the definition of the auxilliary function Wr.

(w= <;//c<g/@>).

i

wpll - Empty=command
wple &)
glele&

&

il

i

end of proof
for Theorem 10O

93

COMPILER CORRECTNESS - TOY LANGUAGES

oo oo S s eetes T e ey G e T T b P s G G 70w e ST BONn S € EvR T Gww s oI gww wve GuO T o0 T G S
S T S N A I R T RSN SN RNE DR E R E 0w o ox e oo o o o o o

In the next pages of this paper I shall present a rather
complicated proof for correctness of a given compilere.

The languages involved in this proof are not toy-languages.
Therefore the proof will be lengthy and it may be difficult

to extract the main ideas from all the details,

By this reason I will now present a much simpler proof,
where the main ideas and the used notation will be iden-

tical to those in the complicated one,
A proof of this kind consits of 4 parts:

1. Definition of language Ll (mathematical semantics)

2. Definition of language L2 (mathematical semantics)
3, Definition of compilation from Ll to L, and
F
definition of compiler correctness.

i, The actual proof,

In very simple situations compiler correctness can be defined

as commutation of the following diagram:

compie
Ly) 1 R
lation
semantics semantics
for Ll for L2
state
transfor-
mations

but in most cases the functionality of state transformations

will differ for the two languages,

95

We then have a diagram of the type:

Ll compim > L2
lation
semantics semantics
for Ll for L2
Y J
state state
transfor- transfor-
mations {‘ " mations
for Ll for L2

where the definition of the function g is what is meant with
"definition of compiler correctness® in point 3 on the last

pPage.

In some cases the simple diagram from the last page can be
resumed by changing "state transformations" to "functions

from inputs to outputs®,

In the simple proof the situation will be as described by
the last diagram, In the complicated proof we first show
a diagram of the second type, then a diagram of the first

type with "functions from inputs to outputs®,

In /MZ/ Milner and Weyhrauch presents a very elegant proof
for compilercorrectness using algebraic methods. The langua-
ges are very simple and it is mnot proved that the method is
appliable to more practical languages, The proofs are done
using LCF, an interactive proof generator. LCF is described
in Milner /M1/,

For a very simple proof of compiler correctness see Strachey

/837

7.1

Algorithmic language - L

1

Ll is a very simple language., Commands are separated by ";"
and executed in order of appearence, The only command~type is

assignment,

Syntactis domains

K & COoM commands
} €& ID identifiers

Value domains

ne N natural numbers (0,1,2,39..90)
2e S = |ID>N] states

Syntax

pom i 18 E

g un= 0| E } sU¢c &

Semantic functions

g: COM — S —» S
&: EXP > S - N

Semantic equations

ECfigd = Ely.T o ELfd
ELF=£1&~ assign (5, Elz72)2

Elfro7s = ©
ElFl2 = &[E]
Elsvcele= Efede + 1

96

Auxilliary functions

assign:

A
0

IDX N —%» 5 —& S

assighn (Z, h)2 = 2'

2'¢s') - {

.

g]

2 el

for 8=

7.2 Assembly language -~ L

2

L2 is a simple assembly language. It is designed for a machine
with one single accumulator. A program censists of a list of
instructions, ";" acts as append-operator. Parentheses around

single=element lists are omitted,

A configuration is a pair whose first element describes the
value of the accumulater and whose second element describes
the state,

Syntactic domains

m e INSTR instructions
; = Ib identifiers

Value domains

ne N natural numbers (0,1,2,3,¢,e.)
e S = [ID->N] states
e T = NXS configurations

Syntax

T = Ty;m | ZERO | LoAD 1 STORE g | SUcc

Semantic functions

A INSTR —t= T — T

Semantic equations

AL Y = ALMT o ALY
ALZERO <n, 2> = <o 2>

ALLoAD§T <n 2> = <2lsl, &>
ALSTOREST <2 > = <h, assign(F,n) &>
Allsvecc] <n2>= <ned, 2>

Auxilliary functions

AS for Lle

7.3

Definition of compiler

99

and compiler correctness

I shall now define two

k @

COM -—w
EXP -¥»

functions

INSTR
INSTR

and show the following:

(1)

(I1)

where 30 £, n

dm [AL hpUVI<ne> =<m, Elyle>]
ALRILEL J<nma>=<Ellz, 2>

and & are universaly quantified over COM, EXP,

N and 5 respectively.

In other words:

Starting in a specified state the same state wilil
be reached by executing
BEvaluation of A&f&l will place the value of &€ in the
accumulator, but not ailter the state.

and by executing hIkL

(I) in the above definition can be seen as a case of

the diagram on page 95 if the function g is defined by

g: [T = 1] = [s —= s]

g(r) = d2. ((£<o2>)¥2)

.

7.4

Compiler Correctness

The preoof of I and II will be done by induction after the

complexity of and & = structural induction,.
&

In the proof every equalitysign will have a label indicating

how this equality was established,

I ~ inductional hypothesis I
IT - inductional hypothesis IT
AL - definition of Ll
AS - definition of L2

COM = definition of compilation

Proof of I:

Command lists

Al rhlja;pal 1 <#2>
<A Wpd; 11 <nz>
S (Al gl - ALWF 1T) <nz>

L ALhLR1] <n) elfl2>
=3 <m, g/["%]/o g[}/xig e

HL,

= <im, g[dé/{,_]/%}

100

Assignment

%[5[612]] <n 2>
S ALALED; STORE 7] <n 2>
%[ST‘@RE(?] o AUALIEI] <492>

I

z Al STORE b3] <&lz7z, 2>

X

{&l=l =z, a,ssig;n (Z’£ﬁ72)2;">
AL < m, %[5.-»:5]2,)

Proof of Il:

Zero

Al Llo]] <u 2>
= Alzero] <uz2>
As

= <o z=
HL ”
= <§fc9]/z/ 2>

101

Tdentifier

ALALED] <n2>
AU Lorp F1 < 2>
= <arx1,z2>

HL

{Elplz, 2>

Successoxr

AT#lsvc €77 <o 2>
A RIED, svcc] <u 2>

T rsvec o AVHIETT <w 2>
T Alscecd <Elele 2>
z <&lelz +1, 2 >

" <Elzec ez, 2z >

end of preof for

compiler correcitness

102

103

8 MATHEMATICAL SEMANTIC FOR ASSLA

Gnms e ey e v Sada Akt G S A A S Wt P St St Ty S o S s ST e e v e e ST W e
S e S e o e e o S . e e s T s £ .t o S T o S e i o e s T S St

In this section I shall define a language called ASSLA
Qgggembly language). It is especially designed to fit as
target-language for a SNAIL-compiler, It is a simple machine
language involving symbolic names and made for a machine with

one single pushdownlist, but no simple accumulators.

A program in ASSLA will consist of a list of instructions and
"s" will act as appendoperator, Parentheses arround unary

lists wille be omitted. NIL denotes the empty list,
Many comments in the semantic description of SNAIL on page 15-22
will apply equally well to this section. Such commands will

not be repeated,

l. Syntactic domains

T a SEG segments

W e INSTR instructions

? < ID identifiers

A& CONST constants

®c DOP dyadic operators

2 Value domains

T°e T = ?XR total configurations

7//6 R = SxTnxOut partial config,

2 S = [L-=>vVv] states

S € In= py* inputs

[€ Cwt = V* outputs

/(pé P = V* pushdownstacks
e M = L-T—%H] continuations
,35 v values

X e L locations

9 & ENV = L-I.d-? D] enviroments
D = L+M denotations
H answers

A total configuration T = </‘<p;?> describes

/e contents of stack
;& same as for SNATIL

3. Syntax

BLock Ty DEF 3; Ta EWD |

BEGIN Toj Fqoi Ty, Foi MyjoeoiFni Ty EWD |
;T | STORE § | LOAD F | CoWST p
RERD | WRITE | J§ 1 JTF | JF ¢
VEG| DO & | RBORT | e

I =

b = +/—l® V77]| Aalvi=ol=

4, Semantic functions

& SEG = IN —3=> OUT
A INSTR —3 ENV —3 M—3> M

104

105

5 Semantic equations

SL I fr = (ALTY S G Siv) V2 V3

9,~ = ﬂg-‘- : %4/"" <Z/0V//‘(I.'//‘(D/”>
455 M, = ML
Sw = <fe,) Vw2 2= AX. L

/é/” = A//L

O
%

where the initial situation is as for SNAIL - the

initial pushdownstack is emptye.

In the definition of<7? we shall use the theory of
fixpoints., This theory guarantees,under certain conditions
which are satisfied here, that a set of fixpointequations
has a minimal solution and moreover it gives a construce
tive way of finding this minimal solution. For further
information about this theory see de Bakker /BA.

For the use of this theory in mathematical semantics

see /S1/ and /SW/ which describe a situation analogous

with ourse.

106

A BESIN W) FotTaj ... s E el & = &

(&, - AlnTs' s,
91_ = &4[77}_]/3/92
Qh—/ = 04[7/7;—/];? /91«,
627 = 6%717Zﬂ75ﬂ69
L o' - ole,....00/ 8y Fu]

where the bracket indicate a set of fixpoint equations whose
minimal solution should be used.,

AL T 18 = Al 19 { AT TeE

A [BLocie T,y DEF g, ENPLe@ = Al I { New @) {x. oAl 1 [x/F1E §3
A LSTORE g156= A <ip, <2, 49 O<pt 2, < Hosign QIEIIL, pirb 1) 2 fiz fo 2>
ALLORD F1SE = A <)<z po 4 G< Contents (GIFIL)2 @ fip, <2 per fo >
ALCONST JI68 = A<upy 9> . & < ([8) @ K, 2/ >

ALRERPIo & = 4 </(P/(z//«z7/%>>. E cem Cur) =0 ~== <o, SRERDERROK, Koy fo,
< Q)@ p) <2, T2 0 2>)

A NVKIELSE = 4 Spr, <3, g 5. O o2, <2 40) fo & (papwd) 3>

ALIg]ge - LT | H
ALIT 3106 = A <pp > (vt =(QLLIM), €) Stz v2>)
ALIF 7156 = 1 <p #7. ((/(pwi -~ (& /@IZ‘gZ//M)) otz p>)

ALWEET9E = 1 <pipyp>.O<G (ppbt))@ e +2), ¥ =

ALvo @& = 4 Spp g2 €< (pp b2) @ (epid) Ept3) >
oA [RBORT 198 = 4 |

Alele& =€

107

ASSLA has two different block=structures, and it is

important to mnotice the difference between their use:

1. BLOCK,..END

This is used to simulate a SNAIlL~declaration. It is

executed as follows:

a) Ty is executed in the old enviroment

b) A new enviroment 'is formed from © by
binding identifier g to a new location

. N . 1
c) T, is executed in enviroment S

d) The enviroment is reset to S -

2. BEGIN, ,.END
This defines by fixpointtheory a set of labels,
The scope of these labels will be this block and all

inner blocks without labels of the same name,

6o Auxilliary functions

Contents and Assign is exactly as in the semantic for SNAIL,
New has another domain structure since ENV is different.

Beyond this New is as in the definition of SNAIL,

We have now defined two different functions with the

name New -~ context will show which one is meant,

108

9 COMPILATION FROM SNAIL TO ASSLA

v ot o st st o e iy oy e e o o et Moy s v Sve G Toms v TN oy DA s owts e o e
e et infosniiin e sieirsess i oadh el sl i il i o e i onie R e =

I shall now define a compilation with sourcelanguage SNAIL and
targetlanguage ASSLA., The compilation will be a function, h.
To ease the logical structuring of the following proofs, h

will be defined recursively in terms of itself and an auxilliary

function called k.

h: PROG —== SEG
k: EXP —>> SEG

K: CONST —= V

(J“ is exactly as in the mathematical semantics for SNAIL)

hlfdvi,-{z:// = /q/Q/J/, hlfd/ﬂ/
hiCg=ed = LI[EL; STORE ¢
h [TesT £ pO e O!Zd/L TSET]|
= BEGIVN AIe1L; TFE4; h{r(yi]j JFzj i h[d/zjlj Fai€ ENMD

i

h CIF éfagﬁ.#‘“'““ #;EL_>JQ 7 (n=4)
= BESIVN Rled; IT Faj......... j &L&T;ITF, j HBORT;
Gt Mljadly T Fugen; G /4[%],‘ Foi i€ END
h [oo E > g A 4tébd»6k2tl (szi)

= BESIN & 5 RIELITF ... ; Alz,1; ITEn) T Emest
Fo Iﬂﬂ:_dﬁ]/)‘ JEoj o) gh:h[& 1, TEnj Enva € EVD

h CwHLE £ Do d/OD 1
= BEGIN e; # AklEl; JF(?Z}'M[J/:H) JEsj E27€ LMD

109

h [BEGIN DEF F=¢€ e END T
= BLock _kl[=1; DEF 7z, DIORE &, h.@/] END

hiCBESIV <) k¥ END] = /mg/]
hiCRERD ()1 = READ j STORE
WiCVWRITE) D = ARIEL; WRITE
hife] =

where all the labels &, ------- ; &‘m_, are supposed to be new and
unused (generated by the compiler).,

BITRVE T = CouMST TT

K[Fasel = coksT FF

ACFL = LoAD

LRT = covsT XICET
Sl = KI[£1; VEG
Blews1 - H£lel, Llz1, PO &

110

10 CORRECTNESS OF COMPILATION TROM SNATIL, TO ASSLA

R R R N R R N N I R N NI NN TS T Tomm oo =

The main result in this section will be:

Theorem 11:

(1) SL hLp1T = ?lfd/]/

The contents of this theorem can also be expressed as commuta-—

tion of the following diagram :

PROG » SEG

[In —» ouT]

Proof:

SLhIEIT (g)
= ('M[’A/Z‘ﬂ 19w Gy Shy) b2 ¥ 3
K par,,) EGIGS EF t,, >)b2 b3
“(ECH1 Gy G Y) ¥ 3

= 57['3/] C/(r)

>
where 9wq$”/@w etc are as in the definition of & and ¥

(see page 105 and page 17).

The equility marked (*) follows from the following Theorem 12,

11
Theorem 12:

(11) 04[/7@/]]99</4p,?> = </¢(,,/ gl}]§*9*¢>
(111) ALRLEITE fry>= OKELETS R YI€Ko ElE1g" vy v >

vhere o = 44 (gLl e —=(9U3s1)7 L3l)
(oLs1)" = Ay. CQLFT <Kp, ¥V 2)
G* = Qo (G<pipy>)ibz)
Kp = A 41y, p
Ky = Ap. Ay

0

H

In the following proof each equalitysign will have a label

indicating how this equality was established,

COM «~ definition of compiler

AS - definition of ASSLA

AL - definition of SNAIL

IT = inductional hypothesis II

ITY = inductional hypothesis IIT

IND - "local" inductional hypothesis
SIMP -~ simple algebraic simplification

(it may refer to the definition of

auxilliary functions)

Some notational difficulties arise since SNAIL and ASSLA have
different functionality for their continuations.

The star-notation above should be viewed as an operator convere
ting enviroments and continuations of ASSLA to corresponding
enviroments and continuations for SNAIL. Please notice that

the names given to ow GW’/9; and é%:in the definition of

@’and #’are consistent with this use of star,.

10.1

Proof of Theorem 12:

This is dome by using simultaneous induction after the comple=
xity of(y and £ respectively.

It should however be noticed, that some of the proofs for (z1)
depend on the following assumption:

All continuations used on the left hand side of (II)
) applied to any configurations do not alter the push-

downstack. Or more precise: the stack is the same bee
fore and after execution,

This assumption can be justified using (II).

To avoid a circular argumentation (*) must be included in

the inductional hypothesis together with (II) and (III).

To some extent this resembles the notion of realizability in
Ligler /L2/. Ligler restricts himself to consider only those
states and enviroments which can actually be reached from a
given dinitial situation, I restrict myself to consider only
those command~continuations which are "wellbehaved"
sense described above.

in the

112

113
10.1.1 Proof of (II):

Command lists

AL Wl 119 <fe, 3>
T AChLEL W19 <>
T ALhLEI ¢ b AT M1l g0 S <o ¥>
< e %[J/i]g*{ Ay (ACHhLETLSO <ty >) va)dy
< Ko, Z[J/Jg*{ﬂgﬂ. gfdf/zjfg*e*;y}y/>
= <, Elpds*| ELpIgRe"F Y >

L

= </L(P} Z[d—(/i/dé]f*§*‘;#>

il

Assignment

AL h[5=21196 <po, 3>
=" AL LIEL; STORE Fls& <ppy>
S ALRLELTS { oA [STORE F19E 3 <>
A [STORE 319 & < (EL1" 1)@ fp , ELELP Ry >
& < Kp, <st:5n (oLEl L, Ele1¢) Y NE L2IS 4, %), firy f>>
& < jp, EL2IS*{Ap. Uptate (QUFIIL, 1) {1y p 3F v >
po , ELEle* A Upatte (PLFT /L, j5) ™ Fy >
o, ELFi=cD97E"Y >

n
TS 1133 u,*s] §%

&
X
v

10 ST
N~

wvhere Wy = A f3. 1 7. (ZV‘I/i)

14

TEST-command

ALhLTESTEDO i OR 2 TSET 1196 < 90>

A [BESIV £Lel; TFEL; WL, Tfe; Fu hijed; 5. € FVDIOE Sy >
7S

= @0 </(P130>

where ‘90= 04[/’@-/[_5]/ JF;if A%ZJAJEZ 15/91
<<§i= %[h[d/zﬂly’@
g= Alel¢'e

o= ol&,8 /5, 5]

.

(please notice that this is a simple seft of equations -

ne fixpoints are involved since all jumps are forward).

e 04[/@_[_57/]?{%[\7,5(2@ hifid; Iz, 7¢'6,§ < fioy >
oA LIFE) AL hlfal,; T5-19'E, §

/N

S(ELEIR Wy) @ pp , ELETS iy 9 >

Q" is used in place of(g')* since evaluation of £,fa and §2

de not depend on ('<i and fa since these are new unused labels,

case 1: 5[67/53*1?3 W= L
€§

L
7L

<wp, ELTEST & po FiOR fo TSET I9"&% 9 >

case 2; EIEI§™WpY = raise

D Gy < Mp, 5[5_7/9*;(¢¢>
AL EIISE <pp, EL2IS Yy y >

T

SKp, ELplo*e” (£lzls wyy)>

115

S < e, EUELS* Conet (ELi1, ELFi1) 9" F >
Re Ko, ELTEST £ DO 2 OR p TEET [*E "y >

case 3 f[EZG*K!@y/ = true

T A1 AT 9G] < ey ELZTS Ky >

- <pp) ELpIs {77 CALTFD9E,<pp, ELEIG Wy 9>) b2)5
(ELe19" kyp 3) >

T <, ELule {1y (& <Kp FEIS Ky >)02)]
(El19" kyy) >

= <icp, ELe]o™ | Conet (ELjad, ELpT8* 7 F >

#<L

<ip, ELTEST £ DOy OR TSET 19787y >

IFe-command

Proof omitted. It is guite analogous to the proof for TEST,

Both commands only have forward jumps. The main difference is

the increase in the number of labels,

DO=~command

Proof omitted. It is quite analogous to the proof for WHILE.
Both commands have forward and backward jumps and therefore

involve fixpointequations. The main difference is the number
of labels.

116

WHILE=-command

AL [wHite £ po y o011 98 < >
2 [BEs e, gi:,é[g]/r TEFe, /7[9/]/ J(ri}- gz:é‘A/P]S@ </‘</>/3”>
HS

= & <a/<é/§9;>

& = Alels'e,
G~ AUALED; TF 7 4L T, TF. 196,
where< é%== oéQQ1757%9

{

§ = §[91/9~a/(?1//¥4]

The equations in the bracket is fixpointequations. The

minimal solution should be chosen,

#s
= 90 </(P/ ¢>

& = ALLLE]; IFp hlydy T3 150
(%) o'~ 9[2@/9/(?1/({,_1

(again the minimal solution should be chosen).

SEE
NEXT
PRGL

= 9+</L(P/ %>

+
where @ is a minimal solution to the following equation

(r) O, y> = <pep, ELEL 9 Conct CELFTP"E, O 7)F 3>

S/HI

T otex ot (1 <y w>. <K, 5[6]3*f®%/(%4}]g*?§}+§?f%>)) K 9>
S o, (B O ELELSY Conet (ELFIPOTOF)y >
= </‘(P/ EJ wilE £ Do d/&z?]g*@’?ﬂ)

7

Proof for equivalence of (*) and (**):

ALRLED; TF 5, /7[(5/]/,' JFa 19'6 <pp¥>
W€ PRI D0 ALTF s hlpdy T3 D5 EFrn 7>
T L orp Ao ALH, TF T9E S

CELET9 sy) @ iy ELETS b p >

L
where we have used g*in place of(gU since evaluation of

and £ cannot depend on the new labels 3, and Fa

case 1: 5[27?*Vﬁ?=’L

s

= L

AL * ¥

Y e, ELFIST Conet (ELFTS G, E)F Y7
case 2 é/[’é]/q"ﬁ(/g?/ = false
25

& <up, ELET* Ky >

SIHP

Sup, ELEVS" Ty, Ep Sy >
RL

=

Sir, ELEISN] Comd CELFIG Z,) Iy >

case 33

ELel Q" <p y

= true

(]
V)

cﬁ[ﬁ/[g/]/]g//%[kf;i]y’é? Spp) ELETS "Ry 7 >
< <, ELFTS ATy (ALIFTRE

Spep, ELETo Ry P 2)3 (EUETS" Ky) >

| S, EUFISTIAYNE, <pp, ELEIS iy W) V2)] (Bl k) >
AL

Sp, ELEIS™ | Comat (ELpJrG, S) Fy >

end of proof

for equivalence

17

118

Declaration (not empty)

AL h L BESN PEF j=£; yEND 19 & <pp, @ >
T Al Block Brer,; PEFF STORE & j hiyT EXP]9E i, >
T ILEIrE1T e f New)ik AlSToRE I I/ F1EFF <S>
T (Wew@) i dx ot [5T0RE F 19 (55T {A THFIIG B FTE 5
(8Ll kpy) @ wp, ELelo*kyzp >
Y clrsTors 215 s 5T A L4yl L% 318 F
S(ELEIs* K9) &pcr, ELELP Ny >
where X, is a new unused location in 9 .
IRV Y NV
g, <Hssign (Ko, ELE] ey) (ELEIS W 30), e i 5>
Ke, ELrT(g[ae/;.])*@*
< Hssign (o, ELEIS kpy) (BLETS W, 1) | per i >
S, ELEIS I Ap. Garize Goyp) { ELFIE Fosp 1) O R >
Sk, ELIG A New @) AN Lectate Gyp) $ERI G R E Y D
i <Kp, OIPEF z=£]g*{7g" g@/]g’é*‘j¢>
z e, ELBESW Z%Zf(;==£?/d/'A5012j69*69*;9;>>

Declaration (empty)

Al hI BESHW < p ENVD IS E <ipy 3>
AL Lyl & <jpp, 7>
kv, ElyIo*e"y>
ke, BleTe*{do. Elyple e fp>>
<xp, %[556%/ e/ EMPTo*&" 2 >

1§

H

n

"'\

L

L]

19

READ~command

In the case where dim(/caf) # 0 we haves

ALH[RERD (IS E <ppy 7 >
AL REpD; STORE 518 € < <o, <2, fir, fS>

cor

As

AU STORE £ [0 & < (Ke¥l)@jp, <2, (512, fo >
7S §</(P/<#ssxf;4 (f[;{]/L} /C(J_—%.i)é//(rf‘z//(o >
sliP </P/ " <,47556n(5>1_?]/4//§-_‘/’1)%/<rf2/ L =
U (/(P/ &* Rl (g*l}j//i.) <~Z//Kr//(o >>
= <ap, Reat (QIFIIL)OTY >
Y <up, CURERD GG)I3*O Y>>
If dim(/(r) = 0 both sides of (II) yields </L(p/<Rezza/erm//L&r//{o>7.

WRITE~command
ALHLWRITE (£) 19 € <f<p, >
4 ALz, W/?/TEJSQ <tpp>
T A LEIETTS { AT WRITE oS f <fp, ¥>
A LwrTe]g & <(EIEIS Ky @ Kp , ELETO)G >
& <pp, < ELEIS* iy, FIEIOK Y, (ELETS "W\, 3) LT Ksp) >
T iy, &% 0 WR (ELET9 G) (BLETS sy) >
Al Spcp, WRITE (EI219 K 7) 9*(£[é75>*‘/\/;,3p)>
=" S g, ELEISY 1 A WRITE () E7Fy >
e o, ELWRITE) 1'e” [

ua n}E] i

where Kz = ﬂ/g ﬂ?- C?//‘I/i)
K= 4. Ay. (pi2)

Kie, = ﬂﬁ Ay. (yi3)

Emptyv-=command

AlLhlellg & </4(P/?/>

T AL2T90 < p>
Zs & </(P/ v~

§=/HP </(‘(P/ (9,\4% >

L

= </(p/ %(Z[Zf]f’né’rV}

end of proof
for (II)

120

10.1.2 Proof of (III):

TRUE=expression

A U4 [1ove] 19O < fipr>
LN A cowsT TTI9E <Ky >
T occmers, w>
& (ELTREIS K Y)@ Kp, ELETR hypp>

RL

==

FALSE=expression

Identical to proof for TRUE-expression,

Identifier
A LRIFTT5E <y 9>

< AU LopD f]yé? <fp, 4%/«://«0»

T O <(Cortents (plF1]L) D@ pp, <z for, p >
& {ELele)@ e, EFLR oy >

QL

Constant

AL ACLTTE < pep 9>
coM

2 AL consT HIAT) & <uwy 9>
o S KL @ fcp, v >

T o <(Erk1oYnpv)@ Ko, ELETS TRy Y >

121

122

Negation—expression

AL £L119E <jpp P >
L ARIEL,; WEST 08 <piiy 7>
A LRIED Do {7 [NECTOE S <fp, 3>
AlVEST o6& < (ELEIS s Y)@ ip, ELELS Ky 3>
E < (1 CEUETS ks Y@ i, ELELS" Ky >
& <(EL779"kp y) @ tep, El 709 1y o >

u R uﬁ u,&, ui(/t\r /

Dyadic expressions
AL 4, ®£,1108 <KV
M A RL,T; RUE,T,;, PO @TeE <jqp >
AULKRLEDT S {cAI£LE:T, DO &LE}<pp) >
ALLIe1]s {07 [P0 @ QO f<(EEIT K, y)@Kp, ELEToKyy >
ALPO @798 < (El£19"%) (EL2 10"y)
@ (Zlads'py)@ v), (EL219"ky)(ElE 15 "y 2) >
G (Elatp™g, v) @(E1Z,25%ks) (El=Ts i) @ e
ElwT9% Ky)(£L2T St i) >
= OK<K(Ele @ s,]/g"‘/(/3 3;)@/(,; | ELE D, P Ry o >

ug

1 E|

end of proof
for (III)

end of proof

for Theorem 12

11

123

PREDICATE-TRANSFORMER THEORY - VIA ASSLA

o ool ol svoierviier s ol nipvotpieieroni i bt itctpeinly i i eisai i e Ras e et s

In an earlier section of this paper (page 73 -75) I have defined
a theory wpl - wpll for SNAIL. I then used

il

wp () @ () = ELpls Q)

and showed that the theory was satisfied under this interpretation,
Since this approach I have defined a compilation from SNAIL to
ASSLA and proved that this compilation is correct in a certain
specified sense, This opens another possibility for proving The-
orem 103

We gives an interpretation of wpl - wpll in terms of ASSLA:

where Qe PRED, = [ENV->[T — TF]].

Now theorem 10 can be proved using theorem 12 and the following:

Theorem 173: The predicate-transformer theory is satisfied

by the mathematical semantic model represented by
the compilation, h, and the semantic function

for ASSLA, /&4

11.1 Proof for Theorem 173: 124

wpl =~ Command 1lists
Wiplyes §a &)
= ALy 115
= AL hEgl,) hlpplle&
= AL hifi11g 4 ALkl RF
= wp (a, WP (4, &)

wpR = Assignment
W/F(F::e} K) 5
= %Ih[gmz]]/gé?zs‘*

= 04 [[_/é /_.[Z]) STORE Zf Q@’ (%= </‘<P/<;//Kf//(°>>>

= AULARIENTs | ALSTORE] K § $fr) <2, Kz fo>>
¥y = 042[57—01?5]3& <£¢@/(P Y <z//(l'//z(a>>

& < p, <fssigh (Qo[g]/L/éy/,)é//(r//% =>>
) = <.£/(¥) 53

where (%) follows from (III) page

and (%x) from the definition of the auxilliary function
assigne

125

wp3 ~ TEST-command

wp (TEST 2 Do 14 O&d/z TSET, &) 7

i

I

= &3

[~

o~

where{

-

i

]

U

<57p

AL W[TEST £ PO f4 on/Z TSET 1 5&Q8
A [BEeW Rlel; IFFa; hlljal; Tfe) F2i hljeT) Fa @ ENPT o &5

= ALK IFFa; W1, T51e 6
&= AlThlp179'4

&= @
¢'= g L& & /82]

It should be mnoticed that this is a simple set

of equations not involwving fixpoints.

ALRED; TF hlpd,; 35,19 @0 <p<e 3>
04[[—:”—:?1]SI{M/ZIQ[@QZ// J(t’z,l/g’@i} < Ey @/é<p/ ?/>
(g9 r ALLE1TG (ALTETS'ReS 5 v (Hey 4 @5

nwpp, AL T3 1'QT)V ey 4 AL IR 118, 5-)

= (gqy A WP(d/i}Q)gv) v (TEy A Wp(d/zjﬁ)t?’)
= ((ga Wlp(d/u@)) v (1€ WPCJ/Z,G)))) 37

where it is used that Q cannot depend on § or g, since these

are new unused identifiers,

126

wplt = IF-command

W&&((F éied/ﬁk-—---#:g,,,»é/h FI/Q) -

1}

04[%[%3&9&1# #gw?iaFylg@&
AL BEGIN RIELL,; TT 4 oo jRLET; TTEn; ABORT

)

Fai IGT; T Fnegj oo ;) En MU T Fupg i e ENDISRS

= (30 E)v) MALAE Yunp JI§FS)

since execution of Abort would vield L= false .

I

(By * & I M?F’(&ﬂﬂquzu/ KR)E
(B+ A W}@(é/mms,Q))@’

il

(many details analogous with those in the proof for TEST

are omitted).

wp5 =~ DO-command

The proof will be omitted. It is rather difficult. But the pro-

blems are of a technical kind such as indexing etco

There are ne intrinsic problems different from those repre~
sented by IF and WHILE,

127

wpb =~ WHILE—command

wp (WHILE & Do 4 OD, &) T

AL hI[WHLE Dod/ODZII/gQ:V

A [8EcV) 5.+ RIE TE 2y hlfovﬂj Ji1)fe € ENDIO Q3

(FIx &' ALALET; IFg.;h A58, @) < >

AL JF o) W11 g °§c/?1thFW#1LE£DOGV oplleo R §
S(ELEISR Y)@ Kp) ELETG Ry 3>

= £fgﬂg*%zu —= %[[hlﬂ’]/g { A vkl E pad/wj/ga?s‘// Kz

where many details analogous with those in the proof for

il

H

i

i

TEST are omitted,

can be finished in a way analogous to the

Now the proof
89 (proof‘for wp6 when the predicate~transfor-

proof on page

mer theory is interpreted directly in terms of the mathemati-

cal semantics for SNAIL),

128
wp7_~ Declaration (not empty)
wp (BEGIN DEF g-g ;)" £VD, Q) &
A I h [BESIV DEF F=&,4 EVD e Rlo) &
oA [BLock BUET; DEF ¢, STORE 3 L[l £ND1Q Q) e, >
Mew (o) 4 Ax. oA [STORE § hzz’(ﬂ/]gﬂf/g] X)) ¥ <Ey Q/«F/ >
ALSTORE g1 { AU Hlpllg ™ R(p)f <£y @ rep, 3 >
where X is a new unused location and Q'= © LX*/FT.

%[h[{]’] §TRGE@) <pp,Hosign (QUFIIL, q) 2, fer ey >

using an argument analogous as that on page 91 we can

In

i

W

H

]

now finish the proof:

3Lev [o= A Wp(g:=£,'d/,&)(/&/{)5>3"j
= QE&éV[—g:/% Aowp Cg:=8)‘d/,62<’/@/f)f 1)%

wp8& - Declaration (empty)

wp CBEGIV <, y EVD, ®)
ALh[ezsiv < v DI ¢ @
A LhlylleQ

wp (7)

it

1

i

129

wpQ = READ-command

wp (RERD (g),é?) 3
= [h[REARD (B11g &0 s
= A [READ; STOQE&15Q</(;>,<;A//(I/ S>>
= A [STORE 5156 <</4ﬂ/i>@/<,>, <%/cz7“2//<o>>
= X </<P/ < H=sign (¢ls1lL, (/«IWI))Z//(I//(D =
= &K ((xevd1), (ert2) /3, fx) 3

by the definition of the auxilliary function Assign and the
remarks about wp9 on page 75

wplO = WRITE-command

Wp (WRTE(E), &) T
= ALHLWRITE (e)] 1 ¢ 08
= AL RIET, WRITE D g & <pe, <2tz foy >
= ALWRTE@E)1g& < 2 @ Kp, <2, fo, b =>
= @ < Kp, <27//<1://(D@ Ep >
= X (e sy) &

wpll = Empty-command
w/p(e/éﬂ

Al hlells@
Aleles

&

i

il

ll

end of proof

for Theorem 13

130

It is dinteresting to compare the proof for Theorem 13 to the
proof for Theorem 10 . There seems to be very little difference

in proof-methods and proof-complexitye.

In most cases the proofs using ASSLA are a little longer than the
corresponding proofs using an interpretation directly in terms
of SNAIL. At the other hand it sometimes becomes easier to ex=-
plain the different phases of a proof when the ASSLA-~interpreta~
tion is used., This is due to the fact, that the compilation from
SNATL to ASSLA in a very natural way splits the execution of a

SNAIL~command into a number of small welldefined steps.

131

12 CONCLUSION

s pimgruenipanamipcrpoic P ing

In this paper I have investigated different semantic approaches,
The example-language, SNAIL, is representative for most problems
met in practical programming languages, Yet SNAIL is a rather
small language. This is due to the fact that each problem as

far as possible only is represented by one single command, while
a normal programming language usually has many analogous commands.
Most features met in SNAIL are very well known and standard ine
gredients in all common programming languages. An exception from
this is the two nondeterministic commands proposed by Dijkstra,
They can be seen as generalizations of the usual TEST-command
and WHILE~command, It should be stressed that I give a determi-
nistic treatment of these commands. However a pure nondeterminie
stic approach could be dome in the used notation without much

additional effort.

The notation used to describe mathematical semantics are developed
in Oxford by Strachey, Scott and others. The particular division
into syntactic domains, value domains, syntax, semantic functions,

semantic equations and auxilliary functions is taken from Ligler.

Hoare and Lauer define 4 different semantic description-methods.,
The first two of these can be classified as constructive approa-
ches while the last two are implicit approaches., In terms of
logic the first two are models while the last two are (satisfied)
theories., In /H1/ Hoare and Lauer describes the use of these U4
types of semantics on a very simple language consisting of
assignment, WHILE~command and normal sequential command-sequen-
cinge In /L/ Lauer uses the same 4 semantics on a much more com-
plicated language (same complexity as SNAIL). This language in-
volves nondeterministic commands. This is handled by using sets
instead of single elements. However this demands the use of a
number of mnon-standard set-operators which in some degree obscures
the readability and clarity. In chapter 4 I used the Lk different
approaches on SNAIL. The formulation was pretty close to that
used by Hoare and Lauer though some change of mnotation had been
done to ease a later transformation to a formulation similar to

that used in the mathematical semantics developed in Oxford,

132

Chapter 5 was separated into two distinct parts. The Ffirst L
sections was a reiteration of the definitions and theorems

of chapter 4, but now the formulation and the used notation is
following the lines given by mathematical semantics. It was
shown that the two constructive models were nothing else than
"standard" mathematical semantics, The second part of chapter 5
was dedicated to a further development of some ideas connecting
to Hoares and Lauers work, First of all a third theory was introdu-
ced, This was Dijkstra's weakest predicate-transformer theory,
In many ways this theory is analogous to one of the original
ones = the deductive theory given by Hoare, The main difference
is that Dijkstra demands total correctness and both sufficien-
cy and nescessarity while Hoare only demands partial correctness
and sufficiency. Moreover it was investigated which gains could
be received by introducing the notion of command=—=continuations,
It turned out that this gives a very nice and smooth interpreta-
tion of Dijkstrats theory. A direct connection was established
between command-~continuations representing program-execution

and predicate~transformers representing program~verification.

In the next chapter this connection was further elaborated. It
was shown that the original mathematical continuation-semantics
given for SNATIL in chapter 3 is equivalent to the first of Hoares
and Lauers constructive models when this is equipped with commande
continuations. Next Dijkstra's theory was interpreted directly

in terms of the given mathematical continuation-semantics, and

it was proved that the theory is satisfied by this model.

The last five chapters of this paper dealt with compiler correcte
ness. It was first discussed what should be meant by the word
"compiler correctness", It turned out, that this is nothing else
than comutation of certain semantic functions and that most
theorems into this field can be given an algebraic formulation
using the notions taken from the theory dealing with homomore
phisms, First a very simple correctness proof was given to

explain the used notation. Then an assembly language, ASSLA, was

133

defined., This language is especially fit to act as target~langu~-
age for a SNAIL-compiler., Such a compilation was defined and a
nontrivial proof was given for the correctness., At last it was
shown that this compilation can be used to give an interpretation
of Dijkstra's theory via ASSLA, It was investigated whether this
gave any gain in the clarity of the used proofs, but this could

not be seen.

As & summary it could be said that this paper has pointed out a
strong congruence between three apparently very different seman-
tic approaches: the mathematical semantics developed in Oxford,
the ideas described in /H1/ by Hoare and Lauer and the weakest
predicate~transformer theory introduced by Dijkstra. Besides this

a non-trivial compiler has been defined and proved correct.

One of the main purposes with this paper has been to compare
different semantic approaches., However the reader should not
only see such different semantics as competitors. It is wvery
fruitfull to see them as (quoting from /Hl/)"consistent and

complementary" description-methods,

SNATIL is a rather strong language., It omits procedures, trans-—
fer of control and data-structures. It is my believe that these
features can be incorporated without too much additional effort,
An exception is transfer of control which would be difficult to
include in those description-metheds not involving command-

continuations,

12.1

134

Diagram showing the connection between the different theorems

Hoare and Lauer
original foipe
mulation

Interpretive
Model

result

Computational
Model

last o comp

.
+

Hoare and Lauer

(reformulation to

the notation of

math,

semantics)

‘l
b

\

Interp,
Model

€

/

/

Compute.
Model

¢

relational

theory

deductive
theory

Theories

Interpe.
Model

Ere

Matbematical
o nti

(continuations)

Mathematical
cont-~sem

£ (%)
\

loe

Mathematical
sem., ASSLA

A ()

predicate—
transform,
theory

135

Explanation of used symbols:

Model

Theorv

Tranformation of model to ancther notation

ey
~~~~~ >
s
—» Indicates that the theory pointed to is
satisfied by the pointing moedel,
o N\
< ,} Indicates equivalence or compiler correcte

ness

<:i> Number of used Theorem



136
appendix A:

EVALUATION OF GUARDS FOR DIJKSTRA'S GUARDED COMMANDS

Gt e e e o Ot gmh om eme My de e By A i S S Sarm S G s Sy Gow S eran e Ton S s Sa Tvee S Sy AT e Gree S Sy e et iy ooy T i Doy Ty ek v W Wt Yo m
foSoc-Roogoa g e gt R efra o i i i innf—ipmedt i ive el i i i el e il el e R i e oan it oo ooty oS

In /Di/ and /D2/ Dijkstra describes two nondeterministic
commands, We have the following syntax for these new

commands (quoting from the semantic definition of SNAIL)3:

A/::= ......... | IF e« FI | Po w oPb | ooeeens
W= & > 3’4 2 .......#g”__j,d/” (h>1)
E tim ereesreran

The idea proposed by Dijkstra is that each (boolean) expression
21)6}),.“.,)£n shall act as a guard for the corresponding
commands JE)JQ.“U64, e By this I mean that dg can only be
executed if &; is true., If more than one guard is true at

the same time we make a nondeterministic choice between

those.,
There are two questions to be raised:

1. Can guards have sideeffects?
2. Can evaluation of guards lead to

program abortion or infinite loop?

In /D1/ and /D2/ Dijkstra has no comments about this.
Nevertheless these two questions are essential for an

unambigious definition of the semantics for IF- and DO-commands,

There are (at least) 6 different ways to evaluate a set of

guards:

1., All guards are evaluated. Evaluation is done in

a prespecified order. The first true is chosen,
2. As 1, but among the true guards_one is chosen at random.
3, All guards are evaluated, Evaluation is done in

random order. The first guard evaluated to true

is chosen.




137
k., As 3, but among the true guards one is chosen at random.

5¢ As 1, but evaluation of guards is stopped as soon

as the first true is found, This is selected,

6. As 3, but evaluation of guards is stopped as soon

as the first true is found. This is selected.

It is easy to verify that in the general case all these 6
possibilities are semantical different. That means that
there exist programs for which different results are yvielded

for the very same inputs.
If the questions raised on the last page can be answered:

l. Guards evaluates without sideeffects,
2., Guards cannot evaluate to L .

. . : Py . \
(that means no abortion and no infinite loops),

then the above mentioned 6 possibilities group into 2
classes, 1,3,5 and 6 becomes semantical equivalent. So
does 2 and 4,

Note: The difference between the two claases 1,3,5,6
and 2,4 is conceptually exactly the same as the
difference between the evaluation of V (or) in
SNAIL and LISP respectively, In the first case all
operands fexpressions are evliuated. In the second

case evaluation is stopped as soon as "we know enough®,

| 7 UL | T F L
T T T 1 T|{T T T
F|T F 4 FlT P L
L4 1L L4 L L
SNAIL LISP

For an explanation of used notation please see page 11-12,



Example:

A very common reason for sideeffects is the use of input-

and output routines,
It will be supposed that the procedure READ does the following:

1. Reads an element from a sequential inpustream.
This stops when such an element is read or the given

syntax for inputs is violated,

2, If a legal input was encountered this is assigned
to the variable INCHAR and READ returns the wvalue

true,

3¢ If a monlegal input was encountered the wvalue of
INCHAR becomes undefined and READ returns the value

false,

We want to write a program which alternately reads a legal
input into INCHAR (after possibly having skipped a number
of bad inputs) and calls ACTION to perform some work on

this input . The program should run for ever,

Please note that READ has sideeffects. It alters the variable
INCHAR (and the inputstream).

A first proposal for such a program might be:

P1: DO
READ —% ACTION( INCHAR ) 4
-1 READ —% DUMMY

oD

It is rather easy to verify that this program does not do

what we wanted it to do in either of the 6 possibilities.

138




139

There seems to be two problems:

1. Exution can stop. This happens if neither of the

two guards are evaluated to true,

2. We may skip a legal input. This can happen
because evaluation of READ and =1 READ both
alters the value of INCHAR.

We make a new proposal:

READ -# ACTION( INCHAR ) 4
T READ —» DUMMY *
TRUE -» ACTION( INCHAR )
oD

It can be verified that P 2 will work as intended if method
5 is used for evaluation of guards. In all other possibilities

it will be incorrect.

This might tempt us to argue that 5 is the only usable
evaluation methods This would be wronge. The program P 2

is not a representative for good and readable programming,.

It requires quite a lot of thought to persuade oneself

that the inclusion of the last guarded line works correct,
Since one of Dijkstra's ideas in proposing the use of these
nondeterministic commands was to ease understandable program~

ming a more reasonable conclusion is:

1. Evaluation of guards must not have sideeffects,

program abortion or infinite loops,

2. The mnice user should not write programs whose
correctness depends on which of the evaluation
methods is used. Or in other words - the user
should not make any assumptions about the

order of guardevaluation.,




140

A program satisfying these claims:

P 3 BOO := READ
bo
BOO =—» ACTION( INCHAR ); BOO := READ 4
1 BOO - BOO := READ
oD

P 3 will work correct for all 6 different evaluationmethods,

(BOO is supposed to be a simple boolean variable).

In /D4/ Dijkstra states that the IF- and DO-command yields
undefined if one or more guards is undefined (program abortion

or infinite loop). Nothing is said about sideeffects,




appendix B: 141

prisapemipist o giavegeiinp i ot it b i esviiindpeied st

This appendix is merely a collection of the given definitions,.

It is intended to be used for reference purposes,

The dincluded definitions are:

2

3.
L,

Se
6,

7o
8.

10.

Mathematical semantics for SNAIL

(definition of the functions £, £, and & )
Interpretive model used on SNAIL
Computational model used on SNAIL
Relational theory used on SNAIL

Deductive theory used on SNAIL

£ used on MINI-SNAIL

£, used on MINI-SNAIL

Predicate~transformer theory used on SNAIL
Mathematical semantics for ASSLA

(definition of the function 4 )

Compilation from SNAIL to ASSLA




1

Mathematical semantics for SNAIL , 142

Elpij196- ELjals t Eljals & 5

Elg=c196~ Elelg il Updete (glLgllL, p)e s

£ [TEST £ DO 43 OR 5 TSET 15O~ Elrzls | Cond (€ljal, ELjid)s €5
FIF w Flloe = G Ll | Dacle (&,1)§ |

EIvo wople® = ax 6. §Lwlg i Omcle (&) &)5)

gILBESIV 5, 4 ENDDg &= DUSIg{dg. El}le&

£ Lwhite = po popl g€ = FIX & ElElp jconed (£UploS)5)]
£ LReRp (U9 = Reaet Cplfl (L) &

5[%!#5@)]{.59; El=l ¢ { . Wite ()& F

Flelo® = O |

ELwveleok = K{T)

E [Frse Is < = < (FF)

Elgleox = 1% w ( Contents (SlEl (L) (FVd))
kT = w (K LRD)

£l zlox = f[é]ffﬂ/e. w(rp8) f

Elccos, ok = L&D {Ap,. 1218 ///52. W (2 ® 5.0 5

& peF F==1gh - £[£Z/5>M/6_ A/ewg){%ﬂ( LtaZe (%ﬁ){f(yﬁi/ﬁ)ﬁ;
dlrelon = 1)

f[é9%#m~~%@ewﬂg7
-y <KELe g, ELETS>) . < ST, ELf IS



143

2 Interpretive model used on SNAIL

hext CV/J/O) =

CRSE S Jo N

pimes g o (assign () ¥ Y

TEST & DO ()/Lofad/?_Tsmj(y’fP [&y = (¥, d/i)-d/'),
Yy = @, pi) 1

i= 51e6/144:-~-ﬂ: 5,4»7&/,1F1,'(}/'~4> [(61)4, —7» (¥, d@'d/')/

&)y & gmy) 1,
DO E=fat kg, =g oDy > [y = Y, fajye),

(&) > (77[// J/h) G ),

TT = (77&/0{/’) ] )
WHILE & DOk Op)'é/ - [ &y <%d////o)/

1Ey (7,0,)/') 1 3

BEGIN DEF 2:£J’d/z{“//vp)‘é/’ > LET g's New Cy) v

(augment, (v, 8') 2, V)i ')
BESIV <, | END) OV' = (¥ d/’d/) ’
READ (8); 4 = RV p1)
WRITE (2)j ' —= W@y, '),
e;y —» <¢,J/’) ,
ENDCHSE

where (y(}vg)denotes substitution of gJ for all free F .

In this formulation(y'is assumed to be a command or the empty

1list NIL. Please note that next is undefined if the control

state is emptye



| | 44
. 3 Computational model used on SNAITL 1

Cmf C?/d@)

CASES o v

NiL. —s= ()

Yaijo = comp(pfa) 2l o comp (a8t e conp (Yyfdige)

= F @),

Fiee & C¥ Q55/3&I(g,57,w)}”/\/

TEST £ Do e O/?d/y_ TSET —+ f(f? Bag CUWF@V//?),
1Zy & Comp @”///z)l

IF g gi# ke, > |0 Fl B [-(E_L)zf% compp C%[ﬁ,

DO x> it H 8Ty D [ &y = compQ, Fjge)

(@;)z,b “B' conip G”/J/h)(ff’),

TT = () 1
WHILE £ DO fr OD = | ey T complyfige)
: gy T () 1

BEsIV DEF g=£)-d/ LND — LET g’r A/eur/Icyj /N
comp (augmenty, (4 5') ) &4 &4 G/))
e A £END —F ‘CMF (;ﬂ/{)/ |
RERD(E) —= (g, R ¥ ),
WRITE (2) = Gy, Wil=y)y)
ENDCRSE




4 Relational theory ﬁsed on SNAIL 145

14y gy = 3y Dyqpy’ e yigoyd
72z Y (Fo= g)z/'z Z/= @s5(a3n,.( Ep )Y
73 o (TEsT £ Do gy OR TsET )Y !

= (gpr POy v (1epa v§IY)
Ay oy (F e g Fa=js Fl v

= Byt W(OVMMBV);V/
A5y (PO amfu ¥ kg, = g L)Y Y =&

#e Ypp [T 4 ¥ e, )y = LTpd 1=
Vop' [ TGp)a p(00 21> fa - # 5, OP)Y' = Tl
R (W/#/LEgDOA/OD)Z//’ =
ps  Vyp' [T s pyy' = I 1 ==
vy [ L()  y(wwe cvopop)y’ == Iy ]
2 y (BEGIN DEF g=&; END)Y!
= FF'[ - Ve @) aggment(h ) (3hee; (GG UE) 9]
FiO y (BEGIV e; y END)y =y Y’
H11 ¥ (RERD Qs))z/ = Y- RLGIY
ate ¥ (WRITECE) Y = Y- W&y
Pz @@y = ¢y

where Bz{, = -{,(; ’ (E,(,%/S
and /BIP = & = J/WHV:”&{, = &,

I(z{/) is any first order logical formula possibly depending on ¥ .



5 Deductive theory used on SNAIL 146

194%%%6240}/2}?
/‘Pgd/i)d/zE”Q
Dz ’PCE/;){5-‘=£3’P

D1

(P 5)4)/13&7 A (Pma)uﬁé?
494?5576 Do(floled/"rsg*rg@

D3

Vien LPrg) i Q1
DA ¢
PAIF Ec> a4 #E,~fu FITE

Visn [(Pagy) 56;43 P ]

D5
/P4DO£1—?J/L#--—'#51”?A¢ ob§ (A1 (dig; ))
o (Pr g) iyl P
P {wHILE £ DO G/ODE (PACrE)
D7 5 ; £ /Y(; /;)} K where Zl.is aj‘ne‘ew
% { Bl«f—_g,/p\/ DE?— g £ (J/E/VDSGZ unused identifier.,
p§ Pl g
P4 BEGIN e)-(yEA/D}Q
D P b d), et S F K ) {RERD ()3 P
D40 P (k@ £),/ Ko { WRITE ()3 P

DAA P let P



147
6 ©Yr used on MINI-SNATL.

£ [{i,-d/l]l - Byl 5Ilg/1]
& Lp=ely = assign, (5, &Le1y)y
Er [F es fabb 5,45 FIT 9
- [eara1y = e-0ply,
£ ledv — & [ply 1

Er LwHILE £ po oD 1

= FlY F. By, £ 1Y = Fe &l dy, ¢)

¢, [BE6cIV DEF f=€; 4 EMDI 9
- LET = Newp () W (& Lphe; v Glply)




148

7 &. used on MINI-SNAIL

@Q@(zll = zf&]ogclfdvi]{
g [p=-21% = ¥, assign. (3, E [e1¥) %
£ ICIF Ex ik ¥ S 4 FI1%

= [5(,[511?—? gc,lfd/

£ 021 > E.[717 ]

E CwWilLE € Dod/opll =

- FXF. (12, 17 ~F-E 1L P )

&. [BEGIN DEF f=<& ; pEMD ] 14
= LET EI: New, () IV (Kclfg'==é)' d/((%’/(z)]/?)




149

8 Predicate~transformer Theory used on SNATIL

1L}

wp 4 wp (i) e &) wp Cpay wp ey &
wie 2 wp (3i=€, &) = KR(£/F)
wp 3. wp (TEST € DOd/_,_OF?d/?_’I'SET} Q)

= (g4 WP(A/L)&)))\/ (€~ M’//ﬂ(d/z,@))

W/daéz WP (H: 514}»% %#-----#—é,,,—>d/n FI,Q)E B+ A WF(d/mmB/Q>

where B = '{4—4—”\5‘}

fe2d

wp & wp (po 61—?&6/1#: ----- ¥e,=, OD, Q ) = (JizoH ()
where Ho (RQ) = (8=,9/) AR

and H, (@) = ‘WF({FEi—)d/‘% """ #Eh%d/,, Fl, H . (&))
v H, (&) (L= 4)
wpe  wp (WHILE £ DO (YOD/Q) = (Jizo0k(R))

where Ko (58) (ng) 2 &

1

and K. (R) = W‘O(TE‘ST‘E. DOd/OR e TSET; P(Aa_j_(@»
(c=d)
wp 7 Wp (BESIN DEF g=g ;i EVD, &)

= SheV gt wp(p-gjp, @k/s) ]

wp s wp ( BEGIV ey BVD, &) = wip (&)

wp wp (RERP (3, &) = & ((Kevt), (prt2)/ 5y
wpto  wp (WRITEE), &) = & (@) /)

wp 14 wp (e, &)= &




9 Mathematical semantics for ASSLA 120

A BESIN Toj FoiTaj . s E T vl @ & = =

Y

(e - AlwTs' e,
91_: %[771]/?/@2

ﬁ QM——/: %[757—/]5/@,7
& = Alm1'E

{

LS - g[@i},.,.eh/g”'_h/;hj

where the bracket indicate a set of fixpoint equations whose
minimal solution should be used.

ATy T, 1o& = Al 1y 171156 f

A [Brocic T, VEF g5 1, £nP1e€ = AL g {New ) 1/x AT/ F] e fé

A STORE F15E+ A <Sip, <&, fi 57 é</(p+z, < Hszign (5&]/9/%1\&1);//@/@»

AL LoD FI9E = 4 </<p/<%/«r//%>> 5<6mfem‘5(5[gi/i)é @4, <2, fo >

ALCONST JBISE = A< tip) #7 - &< (8) @ pp, >

ALRERPIS & = 4 <pep 2 pi fi2. O clom (i) =0 =7 /e, <RERDERROR, /[
< V)@ pip) <2t S >>)

AIRITEIGE = A <<t fi . 612 <2, /6@ Gk 1)
ALT Flg€ o7 | M

ALIT 316 = A 7> ((ppvd =(oll M), &) Stz 3>
ALIF FI5¢ = A <p<ey #7. ((/«/p\(/i = (& ,@ZZ}’Z//M)) etz P>
AlNEST9E = 7 <pp, y>. 0<G (ppltl)@e +2), ¥~

Al vo @lse = 4 </«P,¢>. e< ke Vz2) @ (/zpw» @Q«pm)/z/>
A RBoRTIGE = 4

Alelee =@

"

h



10 Compilation from SNATL to ASSLA 151

h[f{g J/ZI/ = MZ%Z/,' //;[Z’dle/
hifg=¢el = A£IEL; STORE
h [TEST £ DO Ji O [ TSET
= BEGIVN A&IEL; TFEe M[‘d/i]/,- JEzj 1 lq[/quj/)‘(??_:e END

n

h ICIF Ei—>ovl#~--~~ #gh-aﬂnjl (n=4)
- BESIN BLEA; TT g5 . 5 ALET ; TTHa HBORT
Fa M‘{J/, T Frea j oo S G h[d/,q]) Forii € END
}2 e 51%0(/144:...,...‘. /’if:gh'b?d/hz/ (nzi)

= BESIN S So: BIETITFej ... jARIED ITFn j T Euns
Foo WL Ty 2 Ly T, JEnj Enva’ € EMD

h LwhiLe = Do oD 1
= BEGINV e; foi RLed; IF Fj Wyl TEa; Faie EMD

h [BEGIV DEF F=g ;40 £VP ]
- Block Rl[=1) DEF g, STORE = ; Wl p1 END
hiCeEs e fo ENDT = h/g/]/
hi RERD (5)1 = READ j STORE £
WiCVRITE ) T = &IEL; WKRITE
hile] =<

where all the labels Z@; -------- ,;m4are supposed to be new and

unused (generated by the compiler).




152

BITRVE L = CoNsST T

K[ Fase] = coksT FF

ACF1 = LOAD 3

LILT = cowsT XA
Sl[~=1 = kI[=7, VEG

Blews=1=- P£l=1, blz, PO @




153

appendix C:

e e e T T T e T I I R I N D I I N O R N N N N N R RS Emm e e e e e e

In a letter to Dijkstra (January 1976) Dana Scott proposes the
use of the "ungaurded IF-~command", This is exactly the same as
Dijkstrat's "guarded IF-~command" except that all guards are idenw

tical to the boolean constant true.

Let an extended syntax for SNAIL be:

yoe= | FawFl | IF@ FI | powop | -
W o= £i~>é/1+k ----- 4#5”9{», n=A4
W' =

Ovi[]....‘..ué/h —

(we cannot make an ungaurded DO~command since this would never

stop).

Furthermore I will assume that guards are evaluated without
sideeffects, The discussion in appendix A shows that this dis a
reasonable assumption. Contrary it will not be mnescessary to
assume that guards are evaluated without program-abortion and

infinite loops.

ILet us first see what the wp~transformer should be for the

unguarded IF-command. Intuitively we must have:
n
wip CIF 5/1[1""[]6/” FI, ®) = ﬂi Wp((g,&?)

where [ is the normal boolean conjunction (generalized to n
arguments) and extended for use on functions with boolean

values by the following definition

(4G = (1 (£

This together with Theorem 10 on page 86 inspires us to define

zfﬂj(p(%aﬂ.“‘ﬂja FT:HS(9 = éi éKK}QJSDC)




154

It is now possible to make a (iterative) definition of the

tguarded~IF?® in terms of the "unguarded-IFY and TEST,
The definition is: '(n number of guards)

n = 1: IF 5}9&3FI = TESTE;IX)&iOR,ABORT TSET

where ABORT (which is not part of the original SNATL-
1anguage) could be replaced by a nonterminating WHILE-

command as VWHILE TRUE DC DUMMY OD.

n = 2: IF sp-(i# E,_—>a/1FI = TEST (g.v £.)
DO

ir ,

TEST £, DO 4 OR )z TSET

TEST &, DO g OR y; TSET

PL
OR :
ABORT
TSET
n > 2 ir éfvi#w#ﬁﬁquI = IF
g,v---- Vg, = IF ’ff’(ﬂ‘* e £w_,~>0i/n_, PI4F

S

The "guarded-DO" can be defined by

DO gf?(}/i*"‘%gnﬁj/»;OD = TSET (&§,v--- v E,)
DO
IFﬁaﬁ#mﬁaahFI;
Do é‘l—>&/1_#.--#— :-:,,—)J/,,OD

OR
DUMMY
TSET
Compared with
WHILE £ DO K’OD = TEST = DO (6/; WHILE £ DO 6/OD ) OR DUMMY TSET

this shows that the interest lies in I, whereas DO is formed from

IF by the standard method of recursive repetition.

This way of progress differs from that used in the actual SNATIL
definition page 15-22 din that it gives a true nondeterministic
approach whereas the Oracle-~function had to be implemented in a

deterministic waye.




REFERENCES 155

g gasgecd

Di

D2

D3

DL

L1

L2

M1

M2

g i pont=-d

AIELLO,L, AIELLO,M and WEYHRAUCH,R.W: The semantics of Pas-
cal in LCF, Stanford - Computer Science department, Stan-
ford University, (1974), Memo AIM=-221,

de BAKKER,J.W: The fixed point approach in semantics: Theory
and applications, Foundations of computer science, Mathema-
tical Centre Tracts 63, (1975), 3=53.

DIJKSTRA,E.W: A simple axiomatic basis for programming
language constructs, Indagationes Mathematicae, 36

(1974) 1-15 (EWD 372).

DIJKSTRA,E.VW: Guarded commands, non determinacy and
calculus for the derivation of programs, Comm., ACM,

18, 453-457 (aug. 1975).

DIJKSTRA,EﬁW: Sequencing primitives revisited,
Technical University Eindhoven, The Netherlands (1973)
(EWD 398 + EWD 399),

DONAHUE,J.E: The mathematical semantics of axiomatically
defined programming language constructs, Colloques IRIA,
Arc et Senans 1-3 juillet 1975, 353=307.

DIJEKSTRA;E.W: A discipline of programming, Prentice Hall
Inc, Englewood Cliffs, New Jersey, (19765.

HOARE,C.A,R: An axiomatic basis for computer programming,
Comm, ACM, 12 576=-580 (1967)

HOARE,C,A.R.and LAUER,P: Consistent and complementary
formal theories of the semantics of programming languages,
Acta Inform, 3, 135-153 (1974) by Springer-Verlag

LAUER,P: Consistent formal theories of the semantics of
brogramming languages, IBM Laboratory Vienna, TR 25,121
(Nov, 1971)

LEVIN,M: Mathematical logic for computer scientists,
Massachusetts Institute of Techmnology, MAC TR-131,
(June 1974)

LIGLER,G: Surface properties of programming language
constructs, Colloques IRTIA, Arc et Senans 1=3 juillet 1975,
299~323.

MANNA,Z and VUILLEMIN,J: Fixpoint approach to the theory
of computation, Comm. ACM, 15 528-536 (1972).

MILNERyR: Implementation and applications of Scott's logic
for computable functions, Proceedings of an ACM conference
on proving assertions about programs, l=6 (Jan. 1972)

MILNER,R and WEYHRAUCH,R: Proving compiler correctness in
a_mechanized logic, Machine Intelligence 7y 51=70,
Edinburgh University Press, (1972).




156

M3 MOSSES,P: The mathematical semantics_ of Algol 60,
Technical Monograph PRG-12, Oxford University Computing
Laboratory, (Jan. 1974),

M4  MOSSES,P: Compound domain descriptions -~ a proposal,
(17. march 1976 - unpublished)

R REYNOLDE,J,C: Definitional interpreters for high-order
programming languages, Proc, ACM 1972, Annual Conf.,

ACM, New York, 717-740.

8 SCOTT,D: Qutline of a mathematical theory of computation,
Proc, of the fourth anual Princeton conference on informa-
tion science and systems, 169=176,and Technical Monograph
PRG=2, Oxford University Computing Laboratory, (Nov. 1970).

81 SCOTT,D and STRACHEY,C: Toward a mathematical semantics for
computer languages, Proc. of the symposium on computers
and automata, Polytechnic Institute of Brooklyn, and
Technical Monograph PRG=6, Oxford University Computing
Laboratory, (Aug. 1971).

52 STRACHEY,C: The varieties of programming language, Proc. of
the international computing symposium 222-233, Cini Founda-
tions Venice, and Technical Monograph PRG-=10, Oxford Univer-
sity Computing Laboratory, (March 1973).

S3 STRACHEY,C: The semantic bridge or the purpose of a formal
theory of semantics for programming languages and their
implementations, (unpublished, lo. feb. 1975),

S4 STRACHEY,C and WADSWORTH,C.P: Continuations., A mathematical
semantics for handling full jumps, Technical Monograph
PRG~11, Oxford University Computing Laboratory, (Jan 1974),




	20050926144807.pdf
	20050926145053.pdf
	20050926145211.pdf
	20050926145304.pdf



