Use of Design Criteria

for Intermediate Languages

by
Ole Lehrmann Madsen,
Bent Bruun Kristensen
and

Jorgen Staunstrup

DAIMI PB-59
August 1976.



Use of Design Criteria for Intermediate Languages

by

Ole Lehrmann Madsen,
Bent Bruun Kristensen, and
Jorgen Staunstrup

Abstract:

A number of design criteria for intermediate languages are proposed. The
intermediate language is viewed as an interface between the (syntax) analysis
and the synthesis (code generation). To illustrate the ideas we propose an
intermediate language for an existing high level language. The translation from
the source language to the intermediate language is defined formally by an affix
translation grammar.
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Introduction.

Over the past few years a number of intermediate languages or abstract
machines have been proposed in order to serve various purposes in the
implementation of high level languages. In this paper we shall try to evaluate
some of these proposals and set up a number of design criteria for such
intermediate languages.

In'a recent paper [10] it is argued that it is unlikely that the same intermediate
form will be suited both for immediate interpretation and for code generation. We
shall emphasize the code generation aspect in order to make our intermediate
language a powerful tool for the implementation of efficient high level language
processors.

To illustrate our ideas we present a proposal for an intermediate lfanguage for the
systems programming language Platon. Platon has been designed, implemented,
and used by The Regional EDP Center, University of Aarhus. The language bears
some resemblance to Pascal [14], and it is specially suited for describing a
dynamic system of concurrent processes and the communication between them.
Platon is described in detail in [8,9].

Section 1 summarizes our views on traditional compiler architecture. In section 2
our design criteria and their justification are presented. In section 3 a few well
known proposals for intermediate languages are considered, using our design
criteria. In section 4 our proposal for an intermediate language is presented.
Finally the appendix contains a formal definition of the transiation from Platon
source programs to the intermediate form. This is given in the form of an affix
translation grammar. The full understanding of section 4 requires some
knowledge of Platon and the appendix requires in addition some knowledge of
affix translation grammars. Throughout the whole paper it is assumed that the
reader is familiar with compiler techniques, especially code generation.



1 Compiler Organization.

The aim of this work is to investigate one way of simplifying the compilation of
programs written in high level languages. It is the authors’ belief that many
transformations can be simplified by dividing them up into a number of
sub-transformations. (Well known examples are the construction of an
executable program from an abstract one, sorting a table by sorting pieces first,
and proving a mathematical theorem by proving a number of lemmas first.) We
advocate a similar approach for the compilation process i.e. rather than doing the
single logical phases (lexical analysis, syntax analysis, code generation, etc)
intermixed in a single pass, these should be distributed on a number of passes.
This idea is not new, compilers organized in this way are usually called
multi-pass compilers, a succesful example is [11]. Our distinction between pass
and phase is the following:

A pass is a scan of the whole program and a transformation of it.

A phase is a collection of manipulations which are logically connected.

The distribution of the various phases of a compiler on the passes has strong
influence on its performance. Below we will describe how and why we suggest
the distribution to be done. We emphasize that the division should fulfil the
following requirements:

- The total amount of work used in constructing a compiler must not be
greater than for a one-pass compiler.

~ It shouid be possible to automate the singie phases of the compiler. Thus we
obtain more correct language processors, because the compiler, the source
language, and the target language are more precisely described.

- The size (core store requirement) of the compiler should smaller than that of
a traditional compiler and thus making it useable on smaller machines.

- The phases which are not dependent on the target machine should be
portable.

The following diagram shows what we consider to be the distinguishable phases
of a traditional compiler:
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The lexical analysis phase transforms the source program ( a sequence of
characters) into a sequence of tokens (symbols).

The context free analysis phase arranges the tokens into a syntax-tree. This
phase is often referred to as parsing.



The context analysis phase performs the rest of the analysis which can be
statically ascertained. This phase is often referred to as static semantics.

The flattening phase transforms the tree structure into some intermediate linear
form.

The storage allocation phase is the process of assigning storage space to the
data items of the program.

Optimization is a general term for a number of manipulations which are done to
reduce the execution time and the size of the object program.

The coding phase is the translation of the intermediate form into the machine
code of the target machine.

The bookkeeping phase administers information retrieved from the program.

The error analysis phase handles possible errors reported by the various phases.

We will illustrate how a real programming language can be implemented by
designing an intermediate language as a platform for the first partition. We will
describe how this intermediate language is designed to meet the goals listed
above.

This intermediate language is the interface between the first and the second parts
of the compiler.

In this paper we have concentrated on the first part and its interface to the rest of
the compiler, but we think it will be possible to treat the other part in a similar
fashion. The first part includes lexical analysis, context free analysis, context
analysis, and flattening. In the sequel it will be referred to as the analysis—phase.
These phases belong together because they are all concerned with analysis of
the source program structure, furthermore they constitute a machine
independent and automatable unit. We imagine that the intermediate tanguage is
primarily used for code generation. But after a (simple) transformation (an
assembly including storage allocation) it should be possible to interpret the
intermediate language. Our approach can be illustrated by the following diagram.
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2 Design Criteria.

In this section we will try to give a more explicit formulation of the design criteria
for our intermediate form.

2.1 Source Program Structure.

No information which can be useful in later phases should be thrown away:
- The control structure must be maintained.
For example, repetition statements must not be converted into an equivalent form
using explicit jumps, making confusion with other jumps possible.
- The operand structure must be maintained.
For example, the denotation of an array element must not be converted into a
sequence of arithmetic instructions, making it indistinguishable from other
arithmetic expressions. Furthermore, compile-time evaluation of expressions
with constant operands must not be performed in this phase. We do not argue

that such optimizations should not be done, but that these should not be done in
the analysis phase.

in order to enable later phases to refer to declared quantities by their names:
= The symbolic names and the declarative information must be preserved.

The declarative information can be kept in two ways: either by keeping the
symbol table (or a transformation of it); or by generating explicit declare
instructions.

2.2 Machine Independence.

In order that the the first phase of the compiler be portable it is important that it is
machine independent. This implies that it must be independent of both the
machine which executes the first phase and the target machine. Therefore the
following requirements must be made:

- No storage allocation should be done.



- No machine dependent expressions should be evaluated.

-~ The intermediate language must be in symbolic form.

2.3 Compiler Structure.

It is very important to find the optimal point for the split between the analysis and
the subsequent phases. Both doing too little and doing too much in the analysis
phase will impair the desired reduction in the total costs.

As shown in the diagram above our suggestion is that the analysis~phase does all
the syntax analysis (including scope- and type-checking). But for many
languages the context dependent syntax must be divided into two: in the
following referred to as ""machine dependent syntax’' and "'machine independent
syntax'’. This distinction is often necessary when the interpretation of a symbol is
dependent on the target machine. As an example the following construct from
Pascal can be mentioned:

A subrange specification consists of a lower and an upper bound separated by ..
e.g. a..b. Furthermore the lower bound must be less than the upper bound,
consequently the subrange specification '0".."b’" is only legal on some machines
(namely those where the digits precede the letters in the character set). Since this
is a static property it should be included in the syntax check. On the other hand
the checking is machine dependent. Consequently we will classify this construct
among those with a machine dependent syntax.

We conclude that the following requirement must be made:

= All machine independent syntactic checks have been done.

In order to ligthen the analysis and the subsequent phases it must be required
that:

- The intermediate language must have a simple and uniform syntax,
and that:

- The retrieved information must be directed to the context where it is
needed.
As already mentioned the individual compiler phases must be kept small and
simple. This is of course also the case with the analysis phase.

- The analysis phase must be kept small and simple.



Furthermore it is possible to specify the transformations made by the analysis
phase formally. Thereby it is possible to automate the construction of this part of
the compiler. This point is elaborated in the appendix.

- The construction of the analysis part should be automated.

At this point it must be emphasized that we imagine the intermediate language to
be very dependent on the source language. We do not suggest a common
intermediate language for all (or a number of) source languages. Furthermore we
do not consider our intermediate form to be an abstract machine (with registers,
storage structure etc.) although of course any language can be considered as
defining an abstract machine.
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3 Comparison with other Intermediate Forms.

Much work has been done recently on developing intermediate languages or
abstract machines to be used for the implementation of high level languages.
Such intermediate languages have mostly been defined as an aid in the
bootstrapping of self-compiling compilers (e.g. O-code [3], and P-code [5]).
Therefore most of these intermediate languages are designed for straightforward
interpretation. Since bootstrapping is not the subject of this paper, we will not try
to judge these languages from this standpoint (which is a bit unfair, since they
have been rather successful for this purpose). Instead we will estimate how they
meet the goals discussed in the previous section. Most intermediate language
designers claim that the first interpreter can be replaced by an efficient code
generator, when the initial bootstrap—phase is finished. It must therefore be
reasonable to analyze how these intermediate languages are suited for code
generation. We have examined the proposals made in the following reports
[1,2,3,4,5,6,7].

The list of languages discussed is by no means exhaustive.

Among these IMP [6] is the language which is closest to our design criteria, e.g.
symbolic names are kept and no storage allocation is performed. On the other
hand IMP has a very scrolled syntax. Furthermore IMP is a stack-machine which
makes efficient code-generation difficult.

In O-code and P-code the control structure of the source language program has
been lost. This is because all repetition and conditional statements have been
converted into explicit jumps. Hereby it becomes difficult to generate efficient
code, not to mention optimizations (see for example [13 sec 17.4] ). Similarly
these languages throw away the operand structure i.e. it becomes difficult for the
code-generator to distinguish between the various kinds of operands: arrays,
parameters, simple variables etc.

In order to make the intermediate form suited for interpretation, storage
allocation is performed, this is, for example, the case both in O-code and P-code.
This makes efficient storage utilization on the target machine very difficuit.

In the intermediate languages considered all syntactic and declarative checks
have been done. But many of the compilers for these languages have done "'too
much”’, for example storage allocation and some optimization. Furthermore most
of these languages have a rather complicated structure e.g. many different
formats and tricky features. This leads to compilers of the same size as a
one-pass compiler (doing the entire compilation). For example the Zurich
P-code compiler is a Pascal program of 3500 lines, and the original Pascal
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compiler for the CDC6400 is 4100 lines.

Most of the compilers we have analyzed generate symbolic output and therefore
movement to other machines should be possible. But various machine dependent
quantities have been calculated. Usually literals have been evaluated i.e. the
symbols 2, 5.14, and "ab" are converted into integer, real, and string values
respectively. Normally the conversion of integers is harmless, but the evaluation
of booleans, reals, and strings is usually irrepairable. This is of course only a
problem if the program is going to be executed on a machine which is different
from the one which performs the compilation. To be completely transportable the
literals must be kept in symbolic form.

The most serious problem with all the intermediate languages we have seen is
that they do not lead to the desired reduction in the total compilation costs. As
already mentioned a badly designed intermediate language (interface) may very
well result in a compiler where each phase is of the same size as a full one-pass
compiler.
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4 An Intermediate Form for Platon.

4.1 Choice of an Intermediate Form.

To illustrate the effect of our design criteria we present a proposal for an
intermediate form for the language Platon.

First we discuss our choice of the type of an intermediate form:; secondly, given
the type, we work out the details of the intermediate form for the particular
language Platon. Designing an intermediate form meeting the stated design
criteria may lead to several distinct proposals, as it inciudes many arbitrary
decisions.

The following general types of intermediate forms have served as the basis for the
selection

- an abstract machine
{(stack machine, general register machine),

~ an expression or polish string (prefix,postfix),
- tuples (triples, quadruples),
- a tree.

For all these types it is possible to meet the stated criterion concerning the
source program structure.

Since an abstract machine implies that some kind of storage allocation has been
done it is difficult to obtain a machine-independent and efficient implementation
using this type of intermediate form.

All the listed types of intermediate forms can meet the goal concerning machine
independent syntactic checking. Through a discussion of the suitability of the
types in both the analysis phase and the subsequent phases, we determine the
type to be preferred :

- The tree structure is a suitable form for the analysis phase and is often also
desirable for the subsequent phases. One big coherent tree structure is
impractical; a sequence of independent minor trees is to be preferred.
However, a tree structure has to be linearised (and later restored) at least once
in the translation process, which makes the tree a rather troublesome type.

~ The postfix expression implies a simple analysis phase ( a postfix simple
syntax-directed translation), whereas the prefix expression may be more
complicated (requiring a generalized translation scheme). In the subsequent
phases the prefix expression may be preferable to the postfix expression (a
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simplified pseudo—-evaluation). However, both types are linearised trees
without explicit references. This means that an establishment of the underlying
tree requires at least a pseudo-evaluation using a stack.

— Asequence of tuples can be considered as a representation of a sequence of
trees. We will distinguish between postfix tuples and prefix tuples. In prefix
tuples the tuple representing the root precede the tuples representing the
sub~trees (top—down). In postfix tuples the order of the root and the sub-trees
is reversed (bottom-up). As with the postfix expressions the use of postfix
tuples leads to a simple analysis phase. In the subsequent phases the prefix
tuples seems preferable because of the immediate access to the root. However,
in order to utilize an underlying tree we need access to the entire tree.
Consequently the postfix tuples are equally powerfu! if the root is somehow
easy to retrieve.

We conclude that the following mixture of prefix and postfix tuples is a
reasonable compromise: each construct is translated into a sequence of postfix
tuples initiated by a tuple giving the reference to the root.

Working out the particular intermediate form, the requirements for a simple and
uniform syntax is complied with as follows :
All tuples have the form:

(operator,argument?,... argumentn)
with a symbolic operator and with an argument being either a tuple number, a
symbolic name, or a symbolic constant. An operator is restricted to have an
arbitrary but fixed number of arguments.

It follows that our intermediate form can be interpreted as a sequence of trees
represented as postfix tuples, where each tree is headed by the root represented
as a prefix tuple. Each tree corresponds roughly to an expression.

The distribution of the tuple number of the root of the underlying tree as an
argument to the tuples where it is needed, is one way of directing the retrieved
information to the appropriate context. Furthermore in the nested sequencing
structures the nesting depth is given as an argument to the tuples associated with
the structure.

The analysis schema in section 4.3 shows how each language construct is
transformed. The precise set of tuples constituting the intermediate form and the
use of the various tuples may be found in this schema.

The “meaning"” of the intermediate language instructions is not given explicitly,
since there is a one to one correspondence with the equivalent Platon constructs.
Whenever this correspondence is not obvious a comment is included giving an
informal prose definition of the meaning.
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The notion of constant expressions in Platon gives rise to constructs of which the
syntax is machine-dependent (The result of a Platon operator is
machine-dependent). For instance the lower and upper bounds of an array
declaration may be a constant expression. This implies that it may not be
possible to check whether or not the lower bound is less than the upper bound. In
such cases the intermediate form will contain explicit operations for checking
this.

A more serious problem is assignment and parameter substitution of structured
variables containing array components. Two variables are of the same type if
their structure is the same. This is not possible to check if the structure contains
array types using constant expressions. To be consistent with our design criteria
we then should generate instructions to do such type checking at code
generation time. The syntax of a programming language should in our opinion be
as little machine-dependent as possible. To postpone a major part of the type
checking of Platon to code generation time seems to be a mistake and we have
decided on not to do so. The result is that two array types may only be identical if
they use constants as bounds or are declared in the same declaration.

4.2 The Symbol Table.

4.2.1 The Symbol Table in the Analysis Schema.

The analysis schema in section 4.3 includes the construction of a symbol table.
For this purpose a recursive data structure is used. When a symbol table
construct appears in the analysis schema we imagine that this data structure
(regarded as a set of partial symbol tables) is updated appropriately. A precise
description of the recursive data structure may be found in the appendix
(A.2.2.2).

4.2.2 The Appearance of the Symbol Tabie.

As mentioned above the declarative information may be maintained either by
keeping the symbol table or by generating explicit declare instructions. In the
first case a reconstruction of the table is reduced to a copying of the table. In the
case of declare instructions the single instructions have to be interpreted.

Our proposal is a symbolic table, except for the parenthetic instructions :
symboltable, endsymboltable, fieldlist, endfieldlist, paramlist, endparamiist.

The declarative information is accessed through ihe following tuples :
(process, NAME,SYMBOLTABLE) ,



(procedure,NAME,SYMBOLTABLE), or
(function, NAME,SYMBOLTABLE) .

SYMBOLTABLE refers to a sequence of tuples of the form :

(symboltable,ND)

sequence of declarations of the form («,NAME,DENOTATION)

(endsymboltable,ND)
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The sequence of declarations may be intermixed with other kinds of declarations
(listed below) and may refer to other declarations in other declaration sequences.

DENOTATION refers to a tuple of the form :
(const, TUPLE OPERAND,KIND,STRUCTURE) ,
(type,KIND,STRUCTURE) ,
(var,KIND,STRUCTURE) ,
(field,KIND,STRUCTURE) ,
(formalconst,KIND,STRUCTURE) ,
(formalvar, KIND,STRUCTURE) ,
(procedure, PARAMETER PART) ,
(function,PARAMETER PART) ,
(localfunction, PARAMETER PART) ,
(externalprocedure, PARAMETER PART) ,
(externalfunction,PARAMETER PART) ,
(formalprocedure, PARAMETER PART) ,
(formalfunction,PARAMETER PART) ,
(process,PARAMETER PART), or
(paramlist, PARAMETER PART) .

KIND may be either active, passive, or reference.

STRUCTURE may refer to a tuple of the form .
(word),
(byte),
(semaphore),
(shadow),
(reference),
(pool,INFO, TUPLE OPERAND) ,
(
(

array, TUPLE OPERAND,TUPLE OPERAND,KIND,STRUCTURE), or

record,FIELDLIST) .

INFO may refer to a tuple of the form :
(noinfo), or
(info,KIND,STRUCTURE) .
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FIELDLIST refers to a sequence of tuples of the form :

(fieldlist,ND)

sequence of declarations of the form : (<,NAME,I)

I: (field, KIND,STRUCTURE)

(endfieldlist,ND)
The sequence of declarations may be intermixed with other kinds of declarations
and may refer to other declarations in other declaration sequences.

PARAMETER PART refers to a tuple of the form :
(list, PARAMLIST), or
(recursive,NAME) .

PARAMLIST refers to a sequence of tuples of the form :
(paramlist,ND)
sequence of declarations of the form : (¢,NAME,PARAMETER)
(endparamlist,ND)

PARAMETER refers to a tuple of the form :

(formalconst, STRUCTURE) ,

(formalvar,KIND,STRUCTURE) ,

(formalprocedure, PARAMETER PART), or

(formalfunction,PARAMETER PART) .
The sequence of declarations may be intermixed with other kinds of declarations
and may refer to other declarations in other declaration sequences.

TUPLE OPERAND may be one of the following constructors:
t(CONST) denoting a tuple reference,
¢(CONST) denoting a Platon constant or an integer, or
V(NAME) denoting a declared Platon identifier.

4.3 The analysis Schema.

In the schema the result of the analysis is given for each language construct.

4.3.1 Notation.

The following extensive but straightforward notational conventions are used :

Given a construct X, we let A(X) denote the analysis of X. A(X) may consist of
both a sequence of tuples and a partial symbol table. The constructs having a
trivial analysis of the form A(X) = A(X7)..A(Xn), where X = X71..Xn, are not
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included in the schema.

The elements of the constructs may appear in abbreviated form and indices are
used to distinguish between distinct occurrences of an element in a construct.

To simplify the denotation of A(X) for a construct X = X7...Xk...Xn the following
conventions are used :

a tuple is enclosed in brackets ( and ) and implies a generation of the
tuple.

a symbol table construct is enclosed in brackets { and } and implies an
insertion in the symbol table. However, no tuples are generated.

NAME, CONST, and CHAR denote a simple, straightforward linkage to
the lexical analyser.

«<: denotes that the item following the colon is part of the result of the
analysis of the construct. This result may be a tuple number, a partial
symbol table, a symbolic name, or a symbolic constant. In this way the
evaluation of a construct may return a value in the same way as a function
may yield a result. Several <: may occur in the same construct. The result
is the union of the values (partial symbol tables) appearing after the <.

S(NAME) denotes a symbol table look—-up. The partial symbol table
associated with NAME is returned as the resulting vaiue.

T(tuple no) denotes a linearized copy of the partial symbol table created
in the construct associated with tuple no. For a description of the abstract
symbol table see appendix A. The linearization is described in section 4.2.
The reference to the symbol table returned as the value of T is called the
entry of the symbol table.

I ,J: etc (possibly indexed) in front of a tuple or A(Xk) denotes the
number of the tuple or the tuple number returned from A(Xk),
respectively.

A:,B: etc (possibly indexed) in front of a symbol table construct or A(Xk)
denote that construct or the partial symbol table returned from A(Xk).

ND denotes the actual nesting depth of statements, or declarations.

K denotes the kind of a variable (active, passive, or reference). The kind
has significance in the formal section only.

e denotes an empty symbol table, field list, or parameterlist.

identifiers written in small letters denote intermediate language operators
and source language symbols.
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identifiers written in capital letters denote source language constructs

comments are enclosed in (* and *) .
To illustrate our notation we explain two examples in detail.

Example 1

STATEMENTS (S)
while E do S

(while,ND, 1)

I A(E)
(whiledo,ND, 1)
A(S)
(endwhile,ND, 1)

This example shows the analysis of a construct, the while statement (written :
while E do S ). The while statement belongs to the class of STATEMENTS
(abbreviated to S). The analysis (i.e. the result of the translation) is given in the
right hand column: First a tuple is generated which consists of the operator
while, the operand ND (the nesting depth of the while statement}, and the
operand | (the tuple number returned as the result of the analysis of E).
Subsequently the analysis of E (A(E)), a tuple with operator whiledo, the
analysis of S (A(S)), and a tuple with operator endwhile follow.

Example 2

TYPE DECLARATION
NAME := TS

A: A(TS)
«: {NAME-type(A)}

This example shows the analysis of a construct, the type declaration (written :
NAME = TS, where TS is an abbreviation of TYPE SPECIFICATION). The
analysis consists of the analysis of TS (A(TS)) which returns a partial symbol
table as result denoted A. This result is used in a symbol table construct which
associates NAME with type(A). This symbol table construct is returned as the
result of the analysis.



4.3.2 The Schema for Platon.

PROGRAM
PROCESS DECLARATION

(program)
A(PROCESS DECLARATION)
(endprogram)
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CONSTANT DECLARATION
NAME = E

I A(E)
< {NAME~const(l,(K,T)})}

(* T denotes the type of E *)

(NAMET,...,NAMEn)
< {NAMET7-const(init?,(K,word))}

<: {NAMEn=const(initn,(K,word))}

(* init?7, init2,..initn denote a consecutive but
dependent sequence of values *)

implementation

TYPE DECLARATION
NAME = TS

A: A(TS)
<! {NAME-type(A)}
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TYPE SPECIFICATION (TS)
NAME
«: S(NAME)

word

<! (passive,word)

< (active,shadow)

reference

«: (reference,reference)

semaphore

«: (active,semaphore)




record
NAMET7,.. ., NAMETn1 : TS1

NAMEmT,...NAMEmnm : TSm
end

Al A(TST)

B77. {NAME77-field(A1)}

B1n7: {NAME7n1~field(A7)}

Am: A(TSm)
Bm1: {NAMEm71-field(Am)}

Bmnm: {NAMEmnm-field(Am)}
< {{Krecord(B77 U ... U Bmnm))}

21

array
( ELT .. EUT

, ELn .. EUn
) of TS

17: A(ELT)
J7: A(EUT)
(arraybounds,17,J7)

In: A(ELn)
Jn: A(EUn)
(arraybounds,in,dn)

An: A(TS)
An-1: {(K,array(In,Jn,An))}

< {(Karray(l1,J1,A7))}
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(* arraybounds denotes a machine dependent syntax check: the
index range must be positive *)

sharedset E of empty

I: A(E)
«: {{K,pool{noinfo,l})}

sharedset E of TS
I: A(E)
A: A(TS)
<: {(K,pool(info(A),1})}

VARIABLE DECLARATION
NAMET,...,NAMEn : TS

A: A(TS)
< {NAMET7-var(A)}

< .{NAMEn—>var(A)}

PROCESS DECLARATION
process NAME FORMAL PARAMETERS ; PROCESS BODY ;

(process,NAME, |}
I: T(B)
A: A(FORMAL PARAMETERS)
<: {NAME=process(A)}
B: A(PROCESS BODY)
(endprocess,NAME)

process NAME ; PROCESS BODY ;

{process,NAME,})
I T(B)
«: INAME~-process(e)}
B: A(PROCESS BODY)



(endprocess,NAME)
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PROCEDURE DECLARATION
procedure NAMET : NAME?2 : BODY ;

(procedure,NAMET,I)

T(B)

. S(NAME2)

. {NAMET7-procedure(A)}

: A(BODY)
{endprocedure, NAME7?)

eI S

procedure NAME FORMAL PARAMETERS ; BODY ;

(procedure, NAME,!)
I T(B)
A: A(FORMAL PARAMETERS)
<: {NAME-procedure(A}}
B: A(BODY)
(endprocedure, NAME)

procedure NAME ; BODY ;

(procedure, NAME, 1)
I: T(B)
<: {NAME—-procedure(e)}
B: A(BODY)
(endprocedure, NAME)

FUNCTION DECLARATION
function NAME? ; NAME2 ; BODY ;

(function, NAME,1)

T(B)

: S(NAME?2)

- {NAMET7-function(A)}

: A(BODY)
(endfunction,NAME)

w1
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function NAME FORMAL PARAMETERS ; BODY ;

(function,NAME, )
I T(B)

A: A(FORMAL PARAMETERS)
< {NAME-function(A)}

B: A(BODY)
(endfunction, NAME)

function NAME ; BODY ;

(function,NAME, 1)
I T(B)
<: {NAME-function(e)}
B: A(BODY)
{endfunction,NAME)

LOCK DECLARATION
NAME = TS

A: A(TS)
<: {[NAME-var(A}}

PARAMLIST DECLARATION
NAME := FORMAL PARAMETERS

A: A(FORMAL PARAMETERS)
<. {NAME-paramlist(A)}

FORMAL PARAMETERS
(PARAMETER DESCRIPTIONT;..,PARAMETER DESCRIPTIONn)
<. A(PARAMETER DESCRIPTIONY)

< A(PARAMETER DESCRIPTIONn)




PARAMETER DESCRIPTION
NAMET,..,NAMEn : TS

A: A(TS)
«: {NAME7->formalconst(A)}

<: {NAMEn—-formalconst(A)}
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const NAMET7,... NAMEn : TS

A A(TS) :
<. {NAMET7->formalconst(A)}

< {INAMEn—formalconst(A)}

var NAMET,... NAMEn : TS

A: A(TS)
<: {NAMET7-formalvar(A)}

<: {NAMEn-formalvar(A)}

procedure NAMET,..,NAMEn : NAME

A: S(NAME)
<. {INAMET7-=formalprocedure(A)}

<. {NAMEn-formalprocedure(A)}

procedure NAMET,...,NAMEn
<: {NAME7-formalprocedure(e)}

<: {NAMEn—-formalprocedure(e)}
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function NAME7,...NAMEn : NAME

A: S(NAME)
< {NAMET7-formaifunction(A)}

< {NAMEn-formalfunction(A)}

function NAME7,.... NAMEn

<. {NAMET7-formalfunction(e)}

< {NAMEn~formalfunction(e)}

PROCESS BODY
GLOBAL DECLARATIONS ; COMPOUND STATEMENT

<! A(GLOBAL DECLARATIONS)
A(COMPOUND STATEMENT)

(* GLOBAL DECLARATIONS is not specified in further detail. Its
result is the union of the partial symbol tables, which are returned as
the result of the analysis of the various declaration parts *)

internal

(internal)

BODY
LOCAL DECLARATIONS ; COMPOUND STATEMENT

< A(LOCAL DECLARATIONS)
A(COMPOUND STATEMENT)

(* LOCAL DECLARATIONS is not specified in further detail. It
consists of a sequence of partial symbol tables, which are returned as
the result of the analysis of the various declaration parts *)

external
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(external)

(* There is a slight inaccurancy in the description of external
procedures, because they should appear in the symbol table as
externalprocedure and not as procedure. This is corrected in the
formal definition in the appendix *)

VARIABLE DECLARATION WITH INITLIST

VARIABLE DECLARATION :=
INITLIST ELEMENTY,...INITLIST ELEMENTh

A: A(VARIABLE DECLARATION)
(initlist, 1)

I T(A)
A(INITLIST ELEMENTY)

A(INITLIST ELEMENTnN)
(endinitlist)

INITLIST ELEMENT

Er * Ev
I: A(Er)
J: A(Ev)
repetition,1,J)
E
J: A(E)

(repetition,1,J)

(* repetition includes a machine dependent syntax check : the type of
the initial value must be the same as the type of the variable being
initialized *)
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STATEMENTS (S)
repeat S7,...,Sn until E

(repeat,ND,I)
A(S7)

A(Sn)
I A(E)
(endrepeat,ND,I)

while E do S

(while,ND, 1)

I A(E)
(whiledo,ND, 1)
A(S)
(endwhile,ND, 1)

if E then S

(if, ND, 1}

I: A(E)
(ifthen,ND, 1)
A(S)
(endif,ND,1)

if E then S7 else S2

(if, ND,1)

I A(E)
(ifthen,ND, 1}
A(S7)
(ifeise,ND, 1)
A(S2)
(endif,ND,1)

with VD do S

(with,ND, 1)
l: A(VD)
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(withdo,ND, 1)
A(S)
(endwith,ND, 1)

lock VD to LOCK DECLARATION in S

(lock,ND, 1)
I: A(VD)
(lockto,ND, 1)
<:A: A(LOCK DECLARATION)
L T(A)
(lockin,ND,1,J)
A(S)
(endlock,ND, 1)

VD7 :=VD2 = ... VDn = E

17: A(VD7)
12: A(VD2)

In: A(VDn)
Jn: A(E)
Jn=1: (:=,1n,dn)

J7: (:=12,42)
(:=,11,J7)
(" In the case that VD is the name of a function the operator
functionresuit is generated instead of := *)

exit

(exit)

halt
(halt)

NAME ( ACTUAL PARAMETERYT,...,ACTUAL PARAMETERn )
«:J0: (procedurecall, NAME,Jn+7)
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17: A(ACTUAL PARAMETERTY)
J7: (parameter,17,J0)

In: A(ACTUAL PARAMETERN)
Jn: (parameter,In,Jn-1)
Jn+1: (endprocedurecall,Jn)

(* The analysis of an actual parameter is not specified in further detail

")

case E of
E77,...,EIn1 : S71 ;

Em1,..Emnm . Sm ;
end

(case,ND, 1)
l: A(E)
(caseof,ND,I)
177 A(ET7)
(caselabel,ND,1717)

1707 A(ETnT)
(caselabel,ND,17n7)
A(S7)
(caseelement,ND)

im1: A(EmT)
(caselabel,ND,Im7)

Imnm: A(Emnm)
(caselabel,ND,Imnm)
A(Sn)
(caseelement,ND)
(endcase,ND, 1)

(* at most one Eif must be the default symbol in which case a special
tuple is introduced: (default,ND) *)
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(* caselabel includes a machine dependent syntax check since no
two caselabels on the same level of nesting may have the same value

")

VARIABLE DENOTATION (VD)
NAME
< NAME

VD . NAME

Il A(VD)
«: (field,, NAME)

VD ( E7, E2,., En)

J1: A(VD)
17: A(ET)
J2: (index,J7,11,17,ut)
12: A(E2)
J3: (index,J2,12,12,u2)

In: A(En)
< (index,Jn,In,ln,un)

(*li, ui denote lower and upper bound, respectively of the i‘th index of
the array *)

EXPRESSION (E)
FACTORO dyadic? FACTORY ... dyadicn FACTORn

J7: A(FACTORO)
i7. A(FACTORY7)
J2: (dyadic1,J7,17)

in: A(FACTORn)
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«: {(dyadicn,dn,In)

(* dyadici denote any of the dyadic operators : +, -, and, or, xor, Is, rs,
mask, <, <=, =, >=, > <> oddpar, extract, extend *)

FACTOR

monadic FACTOR

I: A(FACTOR)
«<: (monadic,1)

(* monadic denotes any of the monadic operators : neg, not *)

NAME ( ACTUAL PARAMETERT,..,ACTUAL PARAMETERN)

<:J0: (functioncall NAME,Jn+7)
i7: A(ACTUAL PARAMETERT)
J1: (parameter,11,J0)

in: A(ACTUAL PARAMETERnN)
Jn: (parameter,in,dn-17)
Jn+71: (endfunctioncali,Jn)

(* The analysis of an actual parameter is not specified in further detail

true

false

CONST
«<: CONST
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CONST7 * CONST2
<! (radix, CONST?,CONST2)

‘CHAR’
<: CHAR

NAME

<t

(* NAME must be the name of a formal constant; t denotes the
constant expression associated with that formal constant *)

PREDEFINED PROCEDURES
alloc VD7 from VD2

JO: (alloc,J2)

11: A(VD7)

J71: (parameter,17,J0)
12: A(VD2)

J2: (endalloc,12,J7)

alloc VDT form VD2 with VD3

JO: (alloc,J3)

17: A(VDTY)

J71: (parameter,17,J0)
12: A(VD2)

J2: (parameter,12,J7)
13: A(VD3)

J3: (endalloc,13,42)

return VD

JO: (return,J7)
I: A(VD)
J7: (endreturn,l,J0)
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signal VD7 to VD2

JO: (signal,J2)

i7: A(VD7)

J1: (parameter,17,J0)
12: A(VD2)

J2: (endsignal,12,J7)

wait VD7 from VD2

JO: (wait,J2)

17: A(VDT)

J1: (parameter,11,J0)
12: A(VD2)

J2: (endwait,12,J7)

setcode E in VD

JO: (setcode,J2)

11: A(E)

J71: (parameter,11,J0)
12: A(VD)

J2: (endsetcode,12,J7)

readcode VD7 in VD2

JO: (readcode,J2)

17: A(VDT)

J7: (parameter,11,J0)
12: A(VD2)

J2: (endreadcode,12,J7)

load VD from E report PROCEDURE NAME

JO: (load,J3)

I17: A(VD)

J71: (parameter,17,J0)

12: A(E)

J2: (parameter,12,J7)

I13: A(PROCEDURE NAME)
J3: (endioad,13,J2)

create VD like PROCESS CALL with E report PROCEDURE NAME



JO: (create,J4)

17: A(VD)

J7: (parameter,17,J0)

12: A(PROCESS CALL)

J2: (parameter,12,J7)

13: A(E)

J3: (parameter,13,J2)

4. A(PROCEDURE NAME)
J4: (endcreate, 4,J3)

start VD report PROCEDURE NAME

JO: (start,J2)

7. A(VD)

J7: (parameter,i7,J0)

12: A(PROCEDURE NAME)
J2: (endstart,12,J7)

stop VD report PROCEDURE NAME

JO: (stop,J2)

i7: A(VD)

J7: (parameter,i?,J0)

2. A(PROCEDURE NAME)
J2: (endstop,12,J7)

remove VD report PROCEDURE NAME

JO: (remove,J2)

[7: A(VD)

J71: (parameter,17,J0)

12: A(PROCEDURE NAME)
J2: (endremove,[2,J7)

unload VD report PROCEDURE NAME

JO: (unload,J2)

i17: A(VD)

J7: (parameter,11,J0)

[2: A(PROCEDURE NAME)
J2: {endunload,12,J7)
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PROCESS CALL
NAME (E7, ... ,En)

J0: (processcall, NAME, Jn+17)
17: A(ET)
J1. (parameter,11,J0)

In: A(En)
Jn: (parameter,in,Jn-1)
Jn+1: (endprocesscall,Jn)

PROCEDURE NAME

NAME
< NAME
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5 Conclusion.

We have stated and given a justification for a number of design criteria for an
intermediate language used as a vehicle for the efficient implementation of a high
level language. As an example of the use of these design criteria we have
proposed an intermediate language for Platon. Furthermore, we have supported
the claim made in [12], namely that the analysis phase can be automized, by
giving an affix translation grammar defining the translation. We think it should be
possible to generalize the remaining phases of a compiler in a similar fashion.

While working out the formal definition of the translation we came across a
number of syntactic irregularities in Platon. Experience with the use of the
language has shown that these "irregular constructs’ are sources of error when
programming in Platon. An example of such a construct is the type—specification
of parameters and variables. These specifications have different syntax although
they are the same concept from the programmers point of view. We can therefore
support the often stated advice, that a formal definition is a very important (if not
indispensable) tool in the design, definition, and implementation of a
programming language.
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APPENDIX A. Formal Definition of the Translation.

A1 Affix Translation Grammars.

In this appendix we give a formal definition of the syntax of Platon (including
context dependencies) and of the translation from Platon to the intermediate
form defined in section 4. We use the notion of an affix translation grammar as
defined in [12]. Affix translation grammars are a combination of attributed
translation grammars [16] and extended affix grammars [17]. Itis not in the scope
of this paper to give a complete introduction to affix translation grammars and we
just give a concentrated presentation.

We first define a transfation grammar which is a context free grammar in which
the set of terminal symbols is partitioned into a set of input symbols and a set of
action symbols. The strings generated by the grammar are called activity
sequences. An activity sequence may be split into an input part and an action
part. The input part is obtained by deleting all action symbols. Likewise the action
part is obtained by deleting all input symbols. The set of all such pairs of action
and input parts is called the syntax directed translation defined by that
transfation grammar.

An affix transiation grammar (ATG) is a translation grammar in which each
symbol (input, nonterminal, or action symbol}) has a fixed {possible zero) number
of affix-positions (or positions). Each position is associated with a set of values
called the domain of the position. The positions are used to carry attribute values
of the corresponding language construct. Each position is classified as either
inherited or synthesized. Inherited positions carry information about the context
of the symbol. Synthesized positions carry information about the phrase derived
from the symbol in the given context.

A production rule has the form

Zo = 2, Zg e 2N
where each Zi (i=0,1,...,n) has the form

Xi[E;,Es,...,Eik]
where X/ (i=1,2,....n) is an input, nonterminal, or action symbol with ik positions.
X, is always a nonterminal. Ej (j=1,2...,,jk) is an expression possibly containing
variables. Each variable has an associated domain. By replacing each variable by

avalue in its domain, and evaluating the expression, the result must be a value in
the domain of the position.

A production rule acts as a generator for a set of context free like production
rules in the following way: identical variables in the rule are replaced by identical
values and all the expressions are evaluated. The resulting rule is called an
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attributed production rule. In this way an ATG may be used to generate a
translation grammar in a straightforward manner. The result of a derivation in this
translation grammar is called an attributed activity sequence which consists of an
input-part and an action-part. The set of all input-parts and action-parts is
called the attributed translation defined by the ATG.

A symbol with affix positions may be interpreted as a procedure with parameters.
The inherited positions correspond to input parameters and the synthesized
positions correspond to output parameters. In a production rule the symbols on
the right-hand side correspond to calls and the symbol on the left-hand side is
the one to be defined. The applied positions: the output parameters of the
left-hand side and the input parameters of the right-hand side are defined in
terms of the defining positions: the input parameters of the left-hand side and the
output parameters of the right-hand side. The values of the variables are
determined by the expressions in the defining positions and they are used in the
expressions in the applied positions. A value received in a defining position has
to match the expression at that position. In general this implies that a number of
equations have to be solved in order to determine the values of the variables in
the defining positions. In practice it suffices to use simple expressions in the
defining positions such as constants, variables, or constructors [18] built from
constants and variables. If a variable does not appear in a defining position its
value is arbitrary.

The use of an expression which is not just a variable makes it possible to
differentiate the rules into several cases.

A2 The Definition of Platon.

A2.1 Notational Conventions.

Nonterminals and variables will be represented by sequences of upper case Latin
letters and hyphens. Input symbols will be represented by sequences of lower
case Latin letters or special characters in bold face. Action symbols will be
represented by sequences of lower case letters in italics.

Inherited positions will be marked with a {. Synthesized positions will be marked
with a 1.

On the right-hand sides we use the operators * (zero or more repetions), + (one
or more repetitions), ? (optional) and {,} (grouping). In a *-clause an inherited
position containing an expression of the form E{'Fl is related to a synthesized
position containing the expression FT1E1 :

Z=a{b X[..,EL'FL,.. ,FIET® ] c}* d
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with E and F being variables. E is supposed to appear in a defining position of Z,
a,ord. If n>0instances of the clause appear, then the expressions are interpreted
as follows:

Z = abX[..,Ed,. . Fi1,. JcbX[...,Fil, .. Fa1..]c
LBl Fn-T1, 0 Frled

with Fi,F»,...,Fn-1 being new variables. If no instance of the clause appear, then F
is defined to be the value of E. In a +-clause similar expressions may appear,
however no rule for zero instances is necessary.

A2.2 Domains.

Domain definitions.

Let B be a domain and A a name, then A=B defines the domain A to be B. We
aliow domain definitions to be recursive.

A2.2.1 Domain Types.

Besides certain base domains we use the following kinds of domains;

Cartesian product.
Let T:,To,...,Tn be domains, then (T, T,,..,Tn) denotes the Cartesian product.
If tiis a T/ (i=1,2,...,n), then (t,t,....tn) is a (T.,T2,...,Tn).

(ti) will be abbreviated to ti.

Discriminated Unions.

Let T\,T.,...,Tn be domains, and ¢:,9,,....gn be distinct names, then

(@(T) | go(T2) 1.1 gn(Tn)) is a discriminated union with selectors g.,gs,...,gn.
If Thk=Tk+1=...=TI=T, then we may write (g:(T) |..| gk,gk+7,...,g/(T) I..I gn(Tn)).
i tiis a Ti (i in [1,n]), then gi(ti) is a (g(T\) | g(T2) L.} gn(Tm)).

It Ti=@, then gi(T/) is abbreviated gi.

Functions.

Let A and B be domains, then {A-B} is a function from A to B.

Let A,B,C be domains, f,g be a {A~B}, a,a’ be an A, b a B, and ¢ be a C, then
dom(f) is a subset of A
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if a in dom(f) then f(a) is a B (function application),

e is a {A-B} (the empty function),

{fa—b} is {A—B} (a function defined in one point),

if the intersection of dom(f) and dom(g) is empty then fUg is a {A-B},
(denotes the disjoint union of f and g),

f\g is a {A-B} (denotes the function f overriden by g),

and fXc is a {A—~BXC} (denotes the function f extended with the value ¢ in all
defined points).

f =1Ue = eUf = e = e\f.

dom(e)=0, dom({a~b})={a}, dom(fUg)=dom(f)Udom(g),
dom{f\g)=dom(f)Udom(g), dom(fXc)=dom(f).
e(a)=undefined

fU{a—~b}(a")=if a=a’ then b else f(a')

f\{a—b}(a")=if a=a’ then b else f(a')

fXc(a)=(f(a),c)

Cartesian product and discriminated union are from Hoare [18,19]. Functions
from Knuth [15].

A2.2.2 Domain Definitions.
SYMBOLTABLE={NAME-DENOTATION}

A collection of declared names and their denotations which are visible at a
given place in a Platon program.

DENOTATION=(const{(TUPLE-OPERAND,TYPE)

| type,var,field,formalconst,formalvar(TYPE)

I procedure,function,localfunction,externalprocedure

, externalfunction,formalprocedure,formalfunction

. process,paramlist(PARAMETER-PART) )
Denotation has a case for each possible meaning of a Platon identifier.
Localfunction is a function which must be assigned a value at the given
place. The rest of the cases correspond to Platon declarations.
TUPLE-OPERAND of const is the value of the constant.

TYPE=(KIND,STRUCTURE)

KIND=(active | passive | reference)

Besides the structure of a type its use depends on the basic types of which it
is built. This is determined by the KIND part of TYPE:

passive: The STRUCTURE part of TYPE is word, byte, or any structure built
from these two basic types by using the array or record structure.
reference: As for passive, but at least one component is reference.
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active: A structure which is neither passive nor reference.

STRUCTURE=(word | byte | reference | semaphore | shadow
| pool(POOL-INF, TUPLE-OPERAND)
| array(TUPLE-OPERAND, TUPLE-OPERAND, TYPE)
| record(FIELD-LIST))
Structure has a case for each possible Platon type. Pool is a sharedset
variable. TUPLE-OPERAND of pool is the size of the variable. The two
TUPLE-OPERANDs of array are the lower and upper bounds of the array.

POOL-INF=(noinfo | info(TYPE))
Distinguish between a sharedset of empty and a sharedset of TYPE.

FIELD-LIST={NAME-field(TYPE)}
Similar to SYMBOL-TABLE but only applicable to names declared in
records.

PARAMETER-PART=((PARAMETER-LIST) | recursive(NAME))
A parameter part may be either a list of specified parameters () or the name
of a declared parameter list (recursive). Recursive is used when the name of
a parameter list appears recursively in its own declaration. This means that
the parameter part of a formal procedure/function may have the form:
recursive(NAME).

PARAMETER-LIST={NAME~PARAMETER}

PARAMETER={formalconst,formalvar(TYPE)
| formalprocedure,formalfunction(PARAMETER-PART))

TUPLE-OPERAND=(t(CONST) | ¢c(CONST) | v(NAME))
A TUPLE-OPERAND may be a tuple number(t), a Platon constant(c), or a
Platon variable(v).

TUPLE-OPERATOR-= the set of operators as defined in section 4.

OPERATOR=(+| -l and | or | xor | Is | rs | mask
| <i <=1=1=>|>1 <> 1| oddpar)

NAME and CONST are the set of strings denoting Platon
identifiers and constants respectively.

CHAR is the set of Platon characters.
The above domains are those which will appear in the intermediate form.

In the affix definition we further use:

CONTEXT={NAME—~(EXTENDED-DENOTATION, TUPLE-OPERAND)}

EXTENDED-DENOTATION=DENOTATION extended with:
(forwardprocedure,forwardfunction(PARAMETER-PART))
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CONTEXT and EXTENDED-DENOTATION are similar to SYMBOL-TABLE
and DENOTATION but are extended to handle with statements and forward
declarations.

EXP-KIND=(const | var)
Denotes whether an expression is constant or not.

If adomain T is a subset of a domain T, then variables and expressions of type T
are also of type T'. If a variable or expression is of type T', then it may be used as a
T if its actual value is a T. FIELD-LIST and PARAMETER-LIST are subsets of
SYMBOL~TABLE. PARAMETER is a subset of DENOTATION which again is a
subset of EXTENDED-DENOTATION. SYMBOL-TABLE is a subset of
CONTEXT. OPERATOR is a subset of TUPLE-OPERATOR.

A2.3 Variables.
The following is a list of the used variables and their domains:

C,L: CONTEXT; P: PARAMETER-PART; N: NAME; K: KIND;
S: STRUCTURE; D: DENOTATION; PL: PARAMETER-LIST;

TO: TUPLE-OPERAND; V: CONST; T: TYPE; F: FIELD-LIST;
ND: INTEGER; EK: EXP-KIND; OP: OPERATOR,;

CH: CHAR; Pi: POOL-INF;

The variables are also used with subscripts.

A2.4 Symbols.
The following is a list of symbols together with the domains of their
affix-positions:
Input symbols:
id[NAME?]
const[CONST1]
char[CHART]
operator[OPERATORT]

The positions of id, const, char, and operator may be interpreted as an
interface to a lexical analyser.

Action symbols:
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tuple[TUPLE-OPERATOR!, TUPLE-OPERAND {,..., TUPLE-OPERANDn!,
TUPLE-OPERANDT]

Note: we allow tuple to have a variable number of positions. The last position
(also optional) may be interpreted as an interface to some action routines
and it is supposed to return the number of the tuple being generated.

table[SYMBOLTABLE!, TUPLE-OPERANDT]

Table is supposed to generate the linear sequence of tuples corresponding
to the symboltable of the first position (see section 4.2). The second position
is supposed to return the number of the tuple being the entry of the
symboltable.

Nonterminal symbols:

Before each symbol is given the number of the production which defines the
symbol.

44 ACTUAL-PARAMETERS[CONTEXT!,PARAMETER-LIST!, TUPLE-OPERAND!,

PARAMETER-LISTT, TUPLE-OPERANDT1]

52 ARRAY-VAR[CONTEXT!, TUPLE-OPERAND?®,STRUCTURET"]

38 ASSIGNMENT-STATEMENT[CONTEXT{,STRUCTURE®", TUPLE-OPERAND?]
13 BODY[CONTEXT!,CONTEXTL,CONTEXT?*]

41 CASE-ELM[CONTEXT!,CONTEXT!,INTEGER!,STRUCTURE!]

40 CASE-EXP[CONTEXT!,TUPLE-OPERANDT,EXP-KINDT,STRUCTURE"]

42 CASE-LABEL[CONTEXT{,INTEGER!,STRUCTURE!]

36 COMPOUND-STATEMENT[CONTEXT!,CONTEXT{,INTEGER!]

19 CONST-DCL[CONTEXT{,CONTEXT!,CONTEXT?]

18 CONST-DCL-PART[CONTEXT!{,CONTEXT!,CONTEXT?"]

20 CONST-ID[CONTEXT!,INTEGER!,CONTEXT™,INTEGERT]

12 DECL-ID[CONTEXT!{,NAMET, DENOTATIONT]

48 DYADIC[STRUCTURE!,STRUCTURE!,STRUCTURE?, TUPLE-OPERATOR?]
47 EXP[CONTEXT!, TUPLE-OPERAND™ EXP-KINDT,STRUCTURET]

27 FIELD-LIST[CONTEXT{,FIELD-LIST!,KIND!

FIELD-LISTT,KINDT]

28 FIELD-TYPE[{CONTEXT{,KIND{,KINDT, TYPET]

53 FUNCTION-CALL[CONTEXT!, TUPLE-OPERANDT]

15 FUNCTION-DCL[CONTEXT{,CONTEXT!,CONTEXT?]

54 FUNCTION-ID[CONTEXT{,NAMET,PARAMETER-PART1]

4 GLOBAL-DCL[CONTEXT{,CONTEXTT]

30 GLOBAL-VAR-DCL[CONTEXT{,CONTEXT1]

29 GLOBAL-VAR-DCL-PART[CONTEXT!{,CONTEXT?]

11 ID-LIST[CONTEXT!,DENOTATIONI,CONTEXT1]

26 INDEX[CONTEXTL, TYPEL, TYPET]

35 INITELEMENT[CONTEXT!]

33 INITLIST[CONTEXT!,CONTEXT!, TYPE!]

25 INX-LIST[CONTEXT!, TYPEL, TYPET]

39 LEFTSIDE[CONTEXT{, TUPLE-OPERAND,DENOTATIONT]

14 LOCAL-DCL[CONTEXT!,CONTEXT!,CONTEXT?]
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32 LOCAL-VAR-DCL[CONTEXT!{,CONTEXT{,CONTEXT1]

31 LOCAL-VAR-DCL-PART[CONTEXT!,CONTEXTL,CONTEXT1]

50 MONADIC[TUPLE-OPERATOR?]

24 NAMED-TYPE[CONTEXT!, TYPE1]

45 PARAM[CONTEXT!,PARAMETER-LIST!, TUPLE-OPERAND*, PARAMETER-LIST?]
10 PARAM-DCL[CONTEXT!,PARAMETER-LISTL,PARAMETER-LIST?]
9 PARAM-LIST[CONTEXT!,PARAMETER-LIST1]

17 PARAMLIST-DCL[CONTEXT{,CONTEXT{,CONTEXT1]

16 PARAMLIST-DCL-PART[CONTEXT!,CONTEXTS,CONTEXT?]

8 PARAM-PART[CONTEXT!,PARAMETER-LIST1]

55 PREDEFINED-PROCEDURE-CALL[{CONTEXT!]

7 PROCEDURE-DCL[CONTEXT!,CONTEXT!,CONTEXT1]

43 PROCEDURE-ID[CONTEXT{,NAME?,PARAMETER-PART1]

3 PROCESS-BODY[CONTEXT!,CONTEXT?]

56 PROCESS-CALL[CONTEXT!, TUPLE-OPERANDT]

2 PROCESS-DCL[CONTEXTL,CONTEXT1]

6 PROCESS-PARAM-DCL[PARAMETER-LIST!,PARAMETER-LIST?]
5 PROCESS-PARAM-PART[PARAMETER-LIST1]

46 RECURSIVE-PARAM[CONTEXT{,NAME!, DENOTATION1]

37 STATEMENT[CONTEXTL,CONTEXTL,INTEGER!]

49 TERM[CONTEXT!, TUPLE-OPERAND1,EXP-KIND T, STRUCTURE"]
23 TYPE[CONTEXT!, TYPE?]

22 TYPE-DCL[CONTEXTJ,CONTEXTL,CONTEXT1]

21 TYPE-DCL-PART[CONTEXT!,CONTEXTL,CONTEXT1]

51 VAR[CONTEXT{, TUPLE-OPERAND®, TYPET]

A2.5 Production Rules.

We start by explaining the meaning of the commonly used positions. The
remaining positions of the nonterminals are explained at their definitions.

The first position (inherited) of PROCESS-DCL is the set of names and their
denotations declared locally, up to but excluding the construct. The second
position {synthesized) is the names of the first position extended with the name
of the declared process, i.e. the set of names declared locally, up to and including
the construct. This relationship between an inherited and synthesized position
appears in a similar way in the following symbols:

between the first and second position of PROCESS-BODY,
PROCESS-PARAM-DCL, GLOBAL-VAR-DCL-PART, and GLOBAL-DCL,
between the second and third position of PROC-DCL, FUNC-DCL,
PARAMLIST-DCL, PARAM-LIST, PARAM-DCL, LOCAL-DCL,
LOCAL-VAR-DCL, CONST-DCL-PART, CONST-DCL, TYPE-DCL-PART,
LOCAL-VAR-DCL-PART, TYPE-DCL, and BODY, between the first and third
position of ID-LIST, and CONST-ID, between the second and fourth position of
of FIELD-LIST.

The first position of each of PROC-DCL, PARAM-DCL, BODY, LOCAL-DCL,
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FUNC-DCL, CONST-DCL-PART, CONST-DCL, TYPE-DCL-PART,
TYPE-DCL, LOCAL-VAR-DCL-PART, COMPOUND-STATEMENT,
STATEMENT is the set of global names which are visible in that construct and
their denotation.

The second position of each of BODY, COMPOUND-STATEMENT,
STATEMENT is the set of local names which are visible in that construct and their
denotation.

The first position of each of PARAM-PART, PARAM-LIST, DECL-IDENT, TYPE,
NAMED-TYPE, INX-LIST, [INDEX, FIELD-LIST, [INITLIST, [INITELM,
ASSIGNMENT-STATEMENT, LEFTSIDE, CASE-EXP, CASE-LABEL, PROC-ID,
ACTUAL-PARAMETERS, PARAM, RECURSIVE-PARAM, EXP, TERM, VAR,
INDEX~TAIL is the set of names (global and local) which are visible in that
construct and their denotation.

1) PROGRAM =
1

(

(1.1) tuple[program!] PROCESS-DCL[e!,L1] tuple[endprogramd]
(2) PROCESS-DCLIL!,LU{N=process(i(PL))}1] =

2.1 process id[N1] tuple[processd,v(N)J, TO!]

table[Li1,TOT]
PROCESS-PARAM-PART[PL1] ;
PROCESS-BODY][PL{, L] ;
tuple[endprocess{,v(N)!]

(3)  PROCESS-BODY|[L!,L1] =

{GLOBAL-DCL[LJ'L 4L, 1L}
COMPOUND-STATEMENT[e!,L4,04]

—_
w
-

—

(3) PROCESS-BODY[LI,LT] =

(3.2) internal tuplelinternall]

(4)  GLOBAL-DCL[LY,LT] =

(4.1) PROCESS-DCLJL{,L 1]

(4.2) | PROCEDURE-DCLJ[L!,LL,L;1]

(4.3) | FUNCTION-DCL[LY,LJ,Li1]

(4.4) | PARAMLIST-DCL-PARTIL{,L4,L1]
(4.5) | CONST-DCL-PART[L{,LY,L: 1]
(4.6) | TYPE-DCL-PART[L!,LY,Li1)

(4.7) | GLOBAL-VAR-DCL-PART]L{,L]
(5) PROCESS-PARAM-PART[PL?] =
(5.1 ( PROCESS-PARAM-DCL[e!,PL;1]

{; PROCESS-PARAM-DCL[PL, L'PLL,PLTPL,1°]}* )

(6) PROCESS-PARAM-DCL[PLI,PLT] =
{const}? ID-LIST[PL! formalconst(passive,word)!,PL, 1]

—
»
—

—
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(6.2)

(6.3)

(8.1)

: word

I {const}? ID-LIST[PL! formalconst(passive,byte)d,PL1]
: byte

| { var | const| EMPTY }
ID-LIST[PL!,formalvar(active,semaphore)!{,PL;1]
: semaphore

PROCEDURE-DCL[CJ,L{, LU{N-procedure(l{(PL))}1]=
procedure id[N1] tuple[procedurel v(N)!,TO!]
table[L.1,TOT]
PARAM-PART[C\LJ,PLT]
BODYI[C{,PLU{N=procedure(I{PL))}{,L:i1] ;
tuple[endprocedurel,v(N){]

PROCEDURE-DCL[CI,LL, L\ {N=procedure(I{PL))}1]=
procedure DECL-ID[L{ N7, forwardprocedure(l(PL))7]
tuple[procedurel,v(N)!,TO!]
table[L:1,TOT]
BODY[C!{,PLU{N-procedure(I(PL))}{,Li1] ;
tuplelendprocedure!,v(N){]

PROCEDURE-DCL[C/,LL, LU{N-forwardprocedure(l(PL))}1] =
procedure id[NT]
PARAM-PART[C\L{,PL?] ; forward ;
(*Productions 7.2 and 7.3 handles forward declarations of procedures.
Production 7.3 is the forward declaration consisting of the name and
the parameter list. In production 7.2 the body of a forward procedure
is declared. The denotation of the name of the procedure is changed
from forwardprodcedure to procedure by overriding L in production 7.2.
In production 2.1 (resp. 7.1,7.2,15.1, and 15.2) the second position of
PROCESS-BODY (resp. BODY) is a CONTEXT. The first position
of table is a SYMBOL-TABLE. This means that the value of L,
being defined in PROCESS-BODY must be a SYMBOL-TABLE. This
exhibits procedures and functions being declared forward without
a succeeding declaration.*)

PROCEDURE-DCL[C/!, LI, LU{N—externalprocedure(/{PL))}1] =
procedure id[N1]
tuple[procedured,v(N)1,TO!] table[PLL, TOT]
PARAM-PART[C\L{,PL1] ; external ;
tuple[externall] tuple[endprocedureld,v(N)!]

PARAM-PART|[C!,e1] =
EMPTY
(*The last position of PROCESS-PARAM-PART, PARAM-PART and
PARAM-LIST is the formal parameters declared in that construct*)
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PARAM-PART[C{,PLT] =
: DECL-ID[C{,Nt,paramlist(I{PL))?]
| PARAM-LIST[C{,PLT]

PARAM-LIST[C!,PL1] =
( PARAM-DCL[Cl,e!,PL;"]
{ 5 PARAM-DCL[C{,PL-V'PLL,PLTPL ] }* )

PARAM-DCL[C!,PLY,PLiT] =
{const}? ID-LIST[PL!,formalconst(K,S){,PL, 7]
: NAMED-TYPE[C/,(K,S) 1]
| var ID-LIST[PL{ formalvar(K,S){,PL1]
: NAMED-TYPE[C!,(K,S) 1)
| procedure 1D-LIST[PL! formalprocedure(P)!,PL 1]
: DECL-ID[CI,N1,paramlist(P)1]
| procedure 1D-LIST[PL! formalprocedure(e)l,PL:1]
| function ID~LIST[PL!{ formalfunction(P)¢,PL: 1]
: DECL-ID[C{,N1t,paramlist(P) 1]
| function ID~LIST[PL{ formalfunction(e)!,PL,1]

ID-LIST[L!,DY,LU{N-D}1] =
id[N1]

ID-LIST[L!, DY, LUIN-D}1] =
ID-LIST[LY, DL, Li7] , id[NT]
(*The second position of ID-LIST is the denotation
of the names declared in the list *)

DECL-ID[C{,NT,C(N)1] =
id[NT]

(*The second position of DECL-ID is a name, which must
exist in the given context(C). The denoctation of the
name is passed in the third position *)

BODY[C4,LI,L,1] =
{ LOCAL-DCL[CU,LI'L, 4L, TLT9] }*
COMPOUND-STATEMENT[C4,L,4,04]

LOCAL-DCL[C!,LL,L 1] =
PROCEDURE-DCL[C{,LL,L, 1]

| FUNCTION-DCL[C!,LL,Li1]

| PARAMLIST-DCL-PART[CL,LL,L 1]

| CONST-DCL-PART[C!, LY, L]

| TYPE-DCL-PART[C!,L{, L]

| LOCAL-VAR-DCL-PART[C{,L{,Li1]

FUNCTION-DCL[C{,L{, LU{N-function(I(PL))} 1] =
function id[N1] tuple[functiond,v(N)!,TO!]
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(21)

table[L+4, TO?]

PARAM-PART[C\L{,PLT ;
BODY[C{,PLU{N~localfunction(l{PL))}J,Li1] ;
tuple[endfunctioni,v(N){]

FUNCTION-DCL[C{,L{, L\N{N=function(I(PL))}1] =
function DECL-ID[LI,NT forwardfunction({l(PL))1]
tuple[functioni,v(N)!,TO!]
table[L,1,TOT]
BODY[C!{,PLU{N-localfunction(I(PL))}{,L:T]
tuple[endfunction,v(N){]

FUNCTION-DCL[C{, LI, LU{N=forwardfunction(I(PL))1] =
function id[N1]
PARAM-PART[C\L{,PL1™] ; forward ;

FUNCTION-DCL[C{,L{, LU{N-externalfunction(l(PL))}1] =
function id[N7)
tuple[functiond,v(N){, TOL] table[PLL, TO1]
PARAM-PART[C\L{,PL1"] ; external ;
tuple[externall] tuple[endfunctiond ,v(N){]

PARAMLIST-DCL-PART[C{,L4,L;1] =
paramlist { PARAMLIST-DCL[CJ,L4'Lid,Li 1] 51+

PARAMLIST-DCL[CI, L, LU{N-paramlist(I(PL))}1] =
id[N1] :=
PARAM-LIST[C\ (LU{N-paramiist(recursive(N))}){,PL1]
(*If a formal procedure/function uses N inside PARAM-LIST, then
its parameter part will get the form: recursive(N).*)

CONST-DCL-PART[C!,L¢,Li1] =
const { CONST-DCL[C!,LI'L 4, Li1] 5 3+

CONST-DCL[C4,L{,LU{N-const(TO,(passive,S))}1] =
id[N1] := EXP[C\L!,TO?,constt,St]

CONST-DCL[CI,LL, L1 =
{, CONST-ID[L4'Lod, V4 'Vol LAL A% Vo] 1)

CONST-ID[LL, VI, LU{N=const(c{chr(V),(passive,word))}1,V+11] =
id[N7T]

(*The second position of CONST-ID is the value to be assigned
to the const declared in the construct. The third position returns
the next value. init is an arbitrary value. chr converts an integer
to a string denoting the integer *)

TYPE-DCL-PART[C{,LL, L] =
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26.1)

type { TYPE-DCL[CL,LL'L.,Li1] 5 1+

TYPE-DCL[C!,LL,LU{N-type(T)}1] =
id[N?] := TYPE[C\LL,T1]

TYPE[CIL,TT] =
NAMED-TYPE[C!,T1]
(*the second pos. of TYPE and NAMED-TYPE is the represented type*)

TYPE[C!,T1] =
array ( INX-LIST[C!, T4, Ti1] ) of TYPE[C!,T1]

TYPE[C!,(Ki,record(F:))1] =
record FIELD-LIST[C!,e!,passivel,FT,K"]
{; FIELD-LIST[C,FUF KUK L F TR K K] 37
{;1? end

TYPE[C/!, (active,pool(info(passive,S),TO))1] =
sharedset EXP[C!, TO®,constt,word?]
of TYPE[C!,(passive,S5)1]

TYPE[C!,(active,pool(noinfo,TO)) 1] =
sharedset EXP[C!,TO®,constt,word"]
of empty

NAMED-TYPE[C!,T1] =
DECL-ID[CI,NT,type(T)1]

NAMED-TYPE[C!,(passive,word)?] =
word

NAMED-TYPE[C/{,(passive,byte)t] =
byte

NAMED-TYPE[C!,(reference,reference)t] =
reference

NAMED-TYPE[C!,(active,shadow) 1] =
shadow

NAMED-TYPE[C!,(active,semaphore)?] =
semaphore

INX-LIST[CI, T4, T 1] =

INDEX[C{, T4, T 1]
INX-LIST[CL, T, T,1] =

INX-LIST[CL,T:4,To1] , INDEX[CL, T4, T, 1]
INDEX[CL,(K,S)!,(K,array (TO,, TOx (K,S)))1] =

EXP[C!,TO:1,constt,wordt] ..
EXP[C{, TO,,constt,word?] tuple[arraybounds!, TOL,TO,!]

53
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(35.1)

(*The second position of INX-LIST (and INDEX) is the type of the
element indexed by that INDEX-list (or INDEX). The third position
is the type of the whole array construct including the INX-LIST
(or INDEX)*)

FIELD-LIST[C{,FL,KL,FT,K, 1] =
ID-LIST[F4,field(T)4,F 1] : FIELD-TYPE[CL,KL,K,T,T1]

FIELD-TYPE[C!,K!,K?,(passive,8)1] =
TYPE[C{,(passive,S)1]

(
FIELD-TYPE[CI!,passivel,reference?,(reference,S)1] =
TYPE[C{,(reference,S) 1)
[

FIELD-TYPE[C{ referencel,reference?,(reference,S)1] =
TYPE[C!,(reference,S) 1]

FIELD-TYPE[C{,activel, active?,(reference,S)1] =
TYPE[C/{,(reference,S) 1)

FIELD-TYPE[C!,K/{, active™,(active,S)1] =
TYPE[CI,(active,S) 1]
(*The third (resp. fourth) position of FIELD-LIST is the kind
of the record-fields, up to but excluding (resp. including)
the construct. The second and third position of FIELD-TYPE are
similar. The fourth position of FIELD-TYPE is the represented type*)

GLOBAL-VAR-DCL-PART[LI,Li?] =
var { GLOBAL-VAR-DCL[LI'L¢,Li1] 5 3+

GLOBAL-VAR-DCL[LJ,LUL,1] =
ID-LIST[el,var(T)4,L 1] : TYPE[LS,T1]
INITLIST[LY,L, 4, TL]

LOCAL-VAR-DCL-PART[C!,LL,L 1] =
var { LOCAL-VAR-DCL[CL,LL'L,4,L 1] ;5 }+

LOCAL-VAR-DCL[C!{, LI, LUL ] =
ID-LIST[el,var(passive,S)i,Li1] : TYPE[C\L!,(passive,S)1]
INITLIST[C\L{,L4,(passive,S) 4]
| ID-LIST[et,var(reference,S)i,Lit] : TYPE[C\L{, (reference,S)1]

INITLIST[C!,LL, T4 =
EMPTY

INITLIST[C{,L{,(passive,S)] =
= tuplefinitlist, TO!] table{L!, TO1]
INITELEMENT[C!] {, INITELEMENT[C!] }* tuple[endinitlist!]

INITELEMENT[C!] =
{ EXP[CL, TOT,constt,word?] | EXP[C!, TOT®,constt bytet] }
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(36)
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(37.5)
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(37.7)
(37.8)

(37.9)
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tuple[repetitioni,c(1)4,TO!]
| EXP[C!L,TO?™,constt,word?®] *
{ EXP[CIL, TO:1,constt,word?] | EXP[C{, TO:1,const?,bytet] }
tuple[repetition!, TOL, TO,{]
(*The second position of INITLIST is the list of identifiers
to be initialized *)

COMPOUND-STATEMENT[CJ,LI,ND!L] =
begin STATEMENT[C!{,L{,ND!]
{; STATEMENT[C!,LI,ND!] }*
{;}? end
(*The third position of COMPOUND~-STATEMENT and STATEMENT is
the current nesting depth of if and while statements etc. *)

STATEMENT[C!,L{,NDL] =
COMPOUND-STATEMENT[C/{,LI,ND!]
| ASSIGNMENT-STATEMENT[C\L!,S1,TO1]
| repeat tuple[repeat! t(ND)!, TO!]
STATEMENT[C!,LI,ND+11] {; STATEMENT[CI,LJ,ND+1L] }* {517
until EXP[C\L{, TOT,EK?,word1]
tuple[endrepeat!, t{(ND){,TO!]
| while tuple[whilel,t(ND)4, TOL] EXP[C\L{, TOT,EK?,word1]
do tuple[whiledo! t(ND){,TO!]
STATEMENT[C{,LI,ND+14]
tuple[endwhilel t(ND)!,TO!]
Lif tuple[ifl,t(ND)J,TOI] EXP[C\L{, TOT,EKT word1]
then tuple[ifthen! t(ND)!, TO!] STATEMENT[C!,LL,ND+1!]
{ else tuple[ifelsel,t(ND)J,TOL] STATEMENT[C{,LI,ND+14] 1?
tuplelendifl t(ND){,TO!]
| exit tupie[exiti]
| halt tuple[halt!]
| Tock tuple[lockd, t(ND)L, TOL] VAR[C\L{, TO1,(reference,reference) ]
to tuple[locktod,t{(ND)J, TOL] id[N1]
: NAMED-TYPE[C\L!,(passive,S) 1]
in tupleflockinl,t(ND)!,TOL,TO!]
table[{N—var(passive,S)}{,TO1]
STATEMENT[C{,LU{N-var(passive,S)}J,ND+1!]
tuple[endlock!{,t{ND)!, TO!]
[ with tuple[with!,t(ND)L, TO!] VAR[C\LL, TO?,(K,record(F))1]
do tuple[withdo!,t(ND)!,TO!]
STATEMENT[CL, I\ (FXTO){,ND+114]
tuple[endwith{,t(ND){, TO!]
(*The fieldlist of the record variable in production 37.9 is extended
with the value of TO for all defined fields. This is done in order
to obtain access to the record variable when the fields are referred
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in the statement. See production 51.2. This is in fact the only
situation where EXTENDED-DENOTATION is used.*)

(37.10) | case tuple[cased t{ND){, TOL] CASE-EXP[C\LL, TOT,EK?,S1]

of tuple[caseof! t(ND){, TO!]
CASE-ELM[C!,LI,ND+11,81] {; CASE-ELM[C{,LI,ND+11,S4] 1*
{;}? end tuple[endcase!,t(ND)!{,TOJ]

(37.11) [ PROCEDURE-ID[C\L{,N1,I(PL)1]
tuple[procedurecalll,v(N){,TO,, TOT]
ACTUAL-PARAMETERS[C\L!{,PLL, TOL,e1,TO: 1]
tuple{endprocedurecall!, TO{,TO, 1]

(37.12) | PREDEFINED-PROCEDURE-CALL[C\L!]

(38) ASSIGNMENT-STATEMENT[C!,S1,TO31] =
(38.1) LEFTSIDE[C!,TO, T var(K,S)1] :=
{ EXP[CI, TO,1,EKT,S7]
| ASSIGNMENT-STATEMENT[C!,57,TO,1] }
tuple[:=1,TO1,TOL,TOsT]

(38) ASSIGNMENT-STATEMENT[C!,word?®,TO;1] =
(38.2) LEFTSIDE[CI,TO1,localfunction(P)1} :=
{ EXP[CL, TO:1,EKT,wordT]
| ASSIGNMENT-STATEMENT[C!,word?, TO,1] }
tuple[functionresulty, TO1,TO,4,TOs1]
(*The second position of ASSIGNMENT-STATEMENT is the structure
of the variables (and/or functions) being assigned. Notice the
use of localfunction (ref. prod. 21-22).
The third position is the number of the last assign tuple.*)

(39) LEFTSIDE[C!, TO® var(passive,S)1] =
(39.1) VAR[C!,TOT®,(passive,S)1)

(39.2) | VAR[C!,TO1,(reference,S)1]

(

(

39) LEFTSIDE[C!,v(N)1,localfunction(P)1] =
39.3) DECL-ID[C{,N1,localfunction(P)1]
(*The second position of LEFTSIDE is the operand to be assigned.
The third position is the denotation of the operand (variable
or function). *)

40) CASE-EXP[C!,TO™EKT word?t] =
40.1)  EXP[C!,TOMEK!,word1]

(
(
(40) CASE-EXP[CL,TO1,EK? byte?] =
(40.2)  EXP[C!,TOTEK? bytet]

(

(

41) CASE-ELM[C{,L{,NDI,SI] =
41.1) CASE-LABEL[C\L{,ND!{,S!] {, CASE-LABEL[C\L.{,NDJ,S4] *
: STATEMENTI[C!,L{,ND!] tuple[caseelement!,t(ND)!]
(*The last position of CASE-ELM and CASE-LLABEL is the
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structure of the case-expression (word or byte) *)

CASE-LABEL[CI{,ND{,S8{] =
EXP[C!, TO1®,constt,S1] tuple[caselabel{,t{ND){, TO!]
| default tuple[caselabell,t{ND){ c('default’)!]
(*notice that check for identical case-labels has not been performed*)

PROCEDURE-ID[C!,NT,I(PL)1] =
DECL-ID[CI,N*,procedure(I(PL)) 1]
| DECL-ID[C!,N*,formalprocedure(I(PL))1]
| DECL-ID[C!,N1,externalprocedure(l(PL))1]
| DECL-ID[C!,N1 forwardprocedure(l(PL))1]
| DECL-ID[C{,N1,formalprocedure(recursive(N:))1]
RECURSIVE-PARAM[CI,N:{,paramlist(I(PL))1]

ACTUAL-PARAMETERS[C{,PL{, TOL,PLT,TOT] =
EMPTY

ACTUAL-PARAMETERS[C!,PLL, TOL,PL,T, TO.1] =
( PARAM[C!,PLL,TO1,PL1] tuple[parameterl, TO:!,TOL, TO:1]
{, PARAM[C!{,PL4'PLoY, TOLT,PLLTPL 17
tuple[parameter!, TO,4, TO4 ' TO.L, TOMTOS1°] 1)
(*The second (fourth) position of ACTUAL-PARAMETERS and PARAM
is the rest of the parameter list which has to be substituted
by actual parameters, excluding (including) the construct.
The third position of ACTUAL-PARAMETERS is the number
of the tuple with the operation procedurecall. The fifth
position is the number of the last parameter tuple. *)

PARAMI[C!,{N-formalconst(K,S)}UPLY, TOT,PL1] =
EXP[C!,TO®,EKT,S1]

PARAMI[CI{,{N-formalvar(T)}JUPL!,TO®,PL?] =
VAR[C!,TO™T,T1]

PARAM[C!,{N-formalprocedure(I(PL))}UPL,v(N:)1,PL.1] =
PROCEDURE-ID[C!,N1,PL1]

PARAM[C,{N-formalfunction(I(PL))JUPL{,v(N)T,PL,1] =
FUNCTION-ID[C!,N,1,PL1]

PARAMICI,{N-=formalprocedure(recursive(N:))}UPL{ v(N:) T,PLT] =
PROCEDURE-ID[C!,N,1,PL; 1]
RECURSIVE-PARAMI[C!,N;{,paramlist(I(PL))1]

PARAMI[C{, {N=formalfunction{recursive(N:))JUPL{ v(N,)T,PL] =
FUNCTION-ID[C{,N1,PL; 1]
RECURSIVE-PARAM|[C{, N i paramlist(l(PL:)) 1]

RECURSIVE-PARAM[C!,NJ,c(N)?] =



EMPTY

EXP[CL,TO®EK?,S1] =
EXP[C!, TO,T,EKT,S;1] DYADIC[S:{,5,¢,51,0P1]
TERM[C!, TO:1,EKT, S, 1] tuple[OPL, TO,1,TO,L,TOT)

EXP[C!{,TO®T vart,S1] =
EXP[C!, TO 1, var?,S;1] DYADIC[S:!,58,1,81,0P1]
TERM[C!, TO,?,constt,S,1] tuple[OPL,TO,TO,,TOT]
| EXP[CL,TO:d,constt,Si1] DYADIC[S:!,S,1,81,0P1]
TERM[C{, TO, ™ var?,8,1] tuple[OPL,TO L, TO,, TOT]

EXP[C!,TOT EKT,S1] =
TERM[C!,TO1,EK?T,ST)
(*The second position of EXP and TERM is the number
of the tuple being the root of the expression tree. The
third position indicates whether it is a constant expression
(const) or not (var). The fourth position is the STRUCTURE
of the expression. *)

DYADIC[word!,word{,wordt,OP?] =
operator[OP1]

DYADIC[word{,word !, bytet,extractt] =
extract

DYADIC[byte! , word!{,wordt,extend?] =
extend

TERM[C!, TOT vart, 8] =
VAR[C{, TO,(K,S)1]

TERM[C!,TO?™ vart,word™] =
FUNCTION-CALL[CL,TOT™]

TERM[C!,TO®,constt,81] =
DECL-ID[C!,NT,const(TO,(K,S))1]

TERMI[C!,c(V)T,constt,word?] =
const[V1]

TERM[C{,c(CH)t,const?,bytet] =
char[CH1"]

TERMI[C{,c('true’)T,const T, word?®] =
true

TERMICl!,c('false’)?,constt,word?] =
false

TERM[C!, TO®,constt,word?t] =



(49.7)

(49)
(49.8)

(49)
(49.9)
(50)
(50.1)
(50)
(50.2)

(81)
(51.1)

(81)
(51.2)
(51.3)
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CONST[V:1] T CONSTI[V»1]
tuplefradixi,c(Vi)l,c(V,)L,TO1T]

TERM[C!,TOT,EK?,S1] =
( EXP[CL,TO1,EK?,S1] )

TERM[C!, TOT,EK?,word?] =
MONADIC[OP?] TERM[C!,TO1,EKT,word?] tuple[OPL, TO L, TO?]

MONADIC[neg1™] =
heg

MONADIC[not?] =
not

VAR[C!,v(N)1,T1] =
DECL-ID[CY, N1 var(T)1]
| DECL-ID[C!,N1 formalvar(T)1]

VAR[CL,TO?T,T1] =
DECL-ID[C{,NT (field(T), TO:) 1] tuple[field!, TO L, v(N)I, TOM]
I VAR[C!,TO: 1, (K, record(F))?] . DECL-ID[FI,N1* field(T)1]
tuple[field!, TO,v(N){, TO?]
[ ARRAY-VAR[C!{,TO?T,T?])

ARRAY-VAR[C!, TOT,T1] =
{ VAR[CL,TO1,(K,array(TOs,TO,;,T))1] (
I ARRAY-VAR[C!,TO 1, (K,array(TO; TO;, T))1] , }
EXP[CL, TO:1,EKT,word?] tuple[index!, TO:!, TO.!, TOs, TO:L, TOM

FUNCTION-CALL[C!,TOT] =
FUNCTION-ID[C{,NT,I(PL)1]
tuple[functioncalll,v(N){,TO,4, TO?]
ACTUAL-PARAMETERS[C!,PL!,TO!,6,TO1]
tuple[endfunctioncalll, TO{,TO,1)

FUNCTION-ID[C,NT I(PL)T] =
DECL-ID[C!, N1 function(i(PL))1]
| DECL-{D[C,N1 formalfunction (I(PL})1]
| DECL~ID[C!,N1,externalfunction(/(PL))1]
| DECL-ID[C!,N1 forwardfunction(I(PL))1]
| DECL-ID[C!,N1 formalfunction(recursive(N,)) 1]
RECURSIVE-PARAMI[CI,N:{,paramiist(I(PL))1]

PREDEFINED-PROCEDURE-CALL[C!] =
alloc tuple[alloc!, TO.l, TO?]
VAR[C!,TO:1,(reference,reference) ]
from tuple[parameter!, TO;, TOJ,TO,1]
VAR[C!, TOs1 (active,pool(P1))1]
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(55.2)

(55.3)

(55.4)

(55.5)

(55.6)

(55.7)

(55.8)

(55.9)

tuplelendalloc!, TO3!,TO,L, TOs 1)
alloc tuplelalloc!, TOe!, TOT]

VAR[C!, TO1,{reference,reference) 1]
from tuple[parameterl, TO{,TO!,TO,T]
VARI[CI, TOst,(active,pool(PI)) 1]
with tuple[parameteri, TO3,TO,4, TO, 1]
VAR[C!,TOs1,(active,semaphore) 1]

tuplelendalioc!,TOs!, TO:, TOT]

return tuple[return!, TO,{, TO?]
VAR[C!,TO: 1, (reference,reference) ]

tuple[endreturn!, TO!,TO!, TO,1]

signal tuple[signall,TO.!,TO1™]
VARI[CI, TO, 1, (reference,reference)?]

to tuple[parameter!, TO L, TOL, TO,1}
VARI[CL, TO:s1,(active,semaphore) 1]

tuple[endsignall, TO;!,TO:4,TO: 1]

wait tuple[wait!, TO:{,TOT)
VAR[C!,TO; 1 (reference,reference) ]

from tuple[parameter!, TO;!,TOL,TO,1]
VAR[C!,TO;?,(active,semaphore) ]

tuplelendwaitl, TO34,TO4, TO, 1]

setcode tuple[setcode!, TO;,TOT]
EXP[C!,TO:1,EKT,word 1]

in tuple[parameter!, TO{,TOL,TO,1]
VARI[C!,TOs1,(reference,reference) ]

tuple[endsetcode !, TO:!,TO,4, TO.1]

readcode tuple[readcode!,TO,!,TOT]
VAR[C!, TO:1,(passive,word) 1]

in tuple[parameterl, TO{,TOL,TO,1]
VARI[C!,TOs1,(reference,reference) ]

tuple[endreadcodel, TO3:l,TO.!, TO 1]

load tuple[ioadi, TO.:{,TOT]
DCL~ID[C{,N{ process(P)1]

from tuple[parameter!,v(N){,TOL, TO; 1]
EXP[C!,TO,1EKT,word 1]

report tuple[parameter!, TO,!,TO!,TO21]
PROCEDURE-ID[C{,N;T,P; 1]

tuple[endloadl, v(Ny){, TO3L, TO,T]

create tuple[create!, TO;{, TOT]
VAR[C!,TO:1,(active,shadow) 1]

like tuple[parameterl, TO:{, TO!, TO,1]
PROCESS-CALL[C!,TO;1]

with tuple[parameteri, TO.4,TO,4, TO, 1]
EXP[C!,TOsT EKT,word?]



report tuple[parameteri, TO:!,TO.,TOsT]
PROCEDURE-ID[C!,NT,P?1]
tuple[endcreatel,v(N){,TOs!,TO; 1]
(55.10) | start tuple[startl, TO;!, TOT]
VAR[C!,TO, 1, (active,shadow) 1]
report tuple[parameter!, TO:!,TOL,TO,T]
PROCEDURE-ID[C{,NT,P1]
tuple[endstarti,v(N)1,TO,L,TO,1]
(55.11) | stop tuple[stop!,TOsl, TOT]
VAR[C!,TO;,1,(active,shadow) 1]
report tuple[parameter!,TO:{,TOL, TO,1]
PROCEDURE-ID[C{,NT,P1]
tuplefendstop!,v(N){,TO,4,TOx1)
(55.12) | remove tuple[removel, TO,L,TO?]
VAR[CI,TO: 1, (active,shadow) 1]
report fuple[parameter!, TO{,TOL,TO,1]
PROCEDURE-ID[C!,N71,PT]
tuple[endremove!,v(N){,TO:{,TO,1]
(55.13) | unload tuple{unload!,TO,!, TOT]
DECL-ID[C{,N1T,process(P) 1]
report fuple[parameter!,v(N){,TOL,TO:1]
PROCEDURE-ID[C!,N;1,P;1]
tuple[endunload{,v(N;)!, TO{,TO,1]

(56) PROCESS-CALL[CI,TOT] =
(56.1) DECL-ID[C{,N?,process(I(PL))1]
tuple[processcalll,v(N)!, TO4, TOT]

ACTUAL-PARAMETERS[CI,PLL, TO!,e1,TO 1)

tuplelendprocesscalll, TO4,TO,1]
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