DELTA
Project Report No. 6

Implementation of the Delta Language Interrupt Concept

within the Quasiparallel Environment of Simula

by
Morten Kyng

DAIMI PB-58
August 1976

Institute of Mathematics University of Aarhus |7 :ﬂj

DEPARTMENT OF COMPUTER SCIENCE

Ny Munkegade - 8000 Aarhus C - Denmark
Phone 06 -1283 55

L[]
S

CONTENTS

1.

SYSTEM DESCRIPTION AND PROGRAMMING

THE DELTA CONCEPTS

Nest Structured Systems 3

The Action Sequence of an Object 3

The Actions of an Object and their Description 7
The Operation of a DELTA System 10

The Time Concept 10

System States and Events 10

The Operation of the DEL TA System Generator 13

PROJECTION INTO SIMULA's QUASIPARALLEL
ENVIRONMENT
Concurrent State Transition Mode 17

Unisequential Mode 20

ADAPTION OF THE QSG FOR EFFICIENT
IMPLEMENTATION
The Registration of Tests 26

The Duration of Time Consuming Actions 29

IMPLEMENTATION IN SIMULA
Projection or Expansion 34
Implementation using SIMULATION 35
INTERRUPT ENVIRONMENT 37

REFERENCES

17

22

34

39

1. SYSTEM DESCRIPTION AND PROGRAMMING

The DEL.TA lLLanguage is a language for the description of sys~

tems and for communication about systems (1).

When a person wants to communicate information about some

referent system he may produce a DEL.TA system description of the sys-—

tem. The description contains the aspects of the referent system, which
he regards as essential for the understanding of the system (with respect

to the purpose of making the description).

A person receiving the DEL. TA sysiem description may then use

it to generate and operate a model system, possibly in his mind, i.e.

on the substrate of his brain, or on a blackboard, a piece of paper etc.

The person generating the model acts as a !"generalized compu-

ter!, a DEL TA System Generator, executing a DELTA system descrip-

tion in much the same way as a computer executes a SIMULA program.

The DEL.TA Language is however not a programming language.
Indeed it was anticipated from the beginning of the DEL.TA Project, that
several of the major aims could be reached only by abolishing the re-
sirictions necessarily placed on any programming language for a digital

computer.

The systems described in the language contain components, ob-
Jjects, executing actions in parallel. The actions are instantaneous or
time consuming and the time consuming actions may constitute continuous
state transformations, I.e. they may result in the continuous change of

the value of one or more variables.

Though the DEL.TA Language is not a programming language,
SIMULA 67 was an important part of the starting platform of the project,

(1) The DEL.TA Language is described in Holbaek~Hanssen, Handlykken
and Nygaard (1975). The subset of the language presented here is some-
what simplified. However, all aspects relevant to our discussion of

projection into SIMUL_A'!s quasiparallel environment are treated without
simplifications.,

and the system description aspect forms a major part of several of the

SIMUL.A applications (Nygaard, 1973).

Because of this it seems worthwhile to investigate the projection
of the DEL.TA l_Language concepts into the quasiparallel environment of
SIMULA; and thereby benefit from the experience gained in a truly pa-
rallel environment, much more like the environment of the systems we

want to describe in SIMULA, than the environment of SIMULA itself.

2. THE DEL.TA CONCEPTS

Nest Structured Systems

The systems described in the DELTA LLanguage are nest struc-—
tured systems. The system as a whole is represented by an object, the
SYSTEM object. The system object then contains the other objects of
the system. But it need not be the direct encloser of all the other objects.
Consider a SYSTEM object containing a collection of PERSON objects.
We want the objects representing the heart, lungs, kidneys etc. of a
person to be contained in the corresponding PERSON object and not
directly in the SYSTEM object.

We regard the PERSON objects as representing subsystems with-

in the original system.

At a later stage of decomposition we may want to supply some
organs with an inner structure represented by objects contained direct-
ly within the corresponding ORGAN object, and not directly within the
PERSON (fig. 2.1). This processof decomposing an object may be repea-
ted any number of times. In general any object in a DEL. TA system may
contain other objects. We say that an object is the encloser of the objects

which it directly contains.

The Action Sequence of an Object

When an object is generated in a DEL.TA system it immediately
begins executing the actions of the prime task described in its object
descriptor. Speaking in terms of SIMULA an object becomes detached
and active as soon as it is generated. We say that the object is operating.
When ali the actions of the prime task are executed the object is termi-

nated.

When an object terminates this should effectively terminate the
subsystem represented by the object. Consequently, if the object con-

tains any operating objects these are also terminated.

An object in a DEL.TA system execuies one sequence of actions.

When one action is completed the object continues with the next action

SYSTEM

+

{

PERSON

!

%

'

PERSON

+

LUNGS

HEART

%

+

\

LEFT
VENTRICLE

RIGHT
VENTRICLE

Fig. 2.1

The structure of a DEL TA system

The (direct) encloser of an object is indicated by a directed line

in its sequence., If the action sequence contains related actions these

may be grouped together to form a partial task.

The execution of a sequence of closely related actions (as e. g.
the prime task or one of its partial tasks) is represented by an action
entity. Action entities are drawn as rectangles containing text and

connected by directed lines. (cf. fig., 2.2 p. 6).

We may illustrate this situation by a PERSON object with the
prime task of eating breakfast. As partial tasks of eating breakfast he
may eat a boiled egg and drink a glass of milk, The partial task of eating
the egg may in turn include the action of cutting the top off the egg and

the action of sprinkling salt on it.

The task of eating the egg and the other partial tasks of the meal

are logically related to each other and form together what we name an

activity.

Each action executed by an object as a part of an activity is

either time consuming or instantaneous. When an object is executing a

time consuming action it may be interrupted. The object then temporari-
ly postpones the activity in which it was engaged and starts executing the

actions enforced upon it by the interrupt.

This situation is illustrated by the PERSON executing the time
consuming action of sprinkling salt on his egg, when interrupted by the
door bell. He then postpones the meal and starts executing the actions
necessary to answer the bell, He thereby creates a new activity which

has no logical connection to the activity of eating breakfast,

When the new activity, that is the actions of the interrupt, is
completed, the PERSON returns to the interrupted time consuming ac-
tion of sprinkling salt on his egg, which resumes the activity of eating

breakfast.

We therefore describe the activities of an object as a stack of
activities, each activity being a stack itself (possibly with only one

element). The object as a whole in relation to its activities is repre-

sented by an object head (fig. 2. 2):

PERSON |

having
boiled
€gg T
answering .
—3* the door 7 having
breakfast
bell
. J — —~— J ¥ ~— J
object head activity activity
(ongoing) (postponed)
Fig. 2.2

The activities of an object.

L.et us now assume that the PERSON, whilesprinkling salt on his
egg, has been interruptedby a phone call. The activity of eating break-
fast is postponed and the ongoing activity is that of answering the phone.
If he now, while talking on the phone, receives an interrupt from the

door bell, he may consider theongoing action so important that he will
not answer the bell,

In DEL.TA this situation is handled by assigning resistance
priorities to time consuming actions and power priorities to interrupts.

Whether an interrupt penetrates or not,depends upon a comparison of the

power of the interrupt and the resistance of the ongoing time consuming
action.

An interrupt thatdoesnhotpenetrate immediately is placed on the
agenda of the object r‘eceiving»the interrupt. Later, when the object
starts executing another time consuming action with a possibly different
resistance, the interrupt may penetrate. It is then removed from the

agenda, and the object starts executing the actions of the interrupt,
thereby creating a new activity.

A DEL.TA object thus consists of

- an object head representing the permanent characte-

ristics of the object

- a stack of activities representing the actions in which

the object is engaged, each activity being a stack

itself, and

- an agenda of received but not yet executed interrupts,

organized as a one way list.

PERSON
having
boiled
€gg
Y. T
door ; answer having
bell telephone breakfast
o J (- S J o S J - e <l g
agenda object head activity activity
(ongoing) (postponed)
Fig. 2.3

The DEL.TA object structure

The Actions of an Object and their Description

The actions executed by an object are either time consuming or

instantaneous. The time consuming actions are described by time concur-

rency imperatives as e. g.

nuation

WHILE TIME < TLET (%2 < F(¥)}
or

WHILE hungry and more food

LET {the meal go on}

A time concurrency imperative consists of up to five clauses:

The duration clause which describes the condition for the conti-

of the action. The clause may consist of the keyword WHILE

followed by a condition (as in the two examples above). In this case the
action continues as long as the condition is fulfilled, unless interrupted.

An empty duration clause is equivalent to '"WHILE TRUE!".

The time property clause describing the property which the ac-

tion imposes on the system. It consists of the keyword LET followed by
a text describing the imposed property and enclosed in braces. The text

and the enclosing braces are called a property descriptor. The time

consuming action which imposes no property on the system may be de~

scribedby the time property clause consisting only of the keyword WAIT.

The last three clauses are related to the possible interruption

of the action. They are optional.

The resistance clause defines the objects resistance against

being interrupted while executing the time concurrency imperative, It

consists of the keyword RESISTANCE followed by a priority value. The

priority value must be one of a set of values specified in the priority
value declaration of the object. This declaration consists of a list of
identifiers indicating the priority values, together with a specification of

the ""penetration relation' between each pair of priority values.

The postponement clause which describes the actions to be exe~

cuted if the time consuming action is postponed because an interrupt pe-
netrates. The actions of the clause are executed prior to the initiation
of the interrupting task. The clause consists of the keyword EXIT fol-

lowed by a description of the postponement actions.

The resumption clause which describes the actions to be execu-

ted when the time consuming action is resumed after an interrupt. The
actions are executed after the completion of the actions of the interrupt
and prior to the resumption of the ‘time consuming action. The clause
consists of the keyword REENTRY followed by a description of the re-

sumption actions.

A special keyword, ADVANCE, may be used within the resump~

tion clause to describe the situations where the interrupted action should

not be resumed, but execution should continue with the action following

the interrupted action.

The following example contains all five clauses:

WHILE not epoqgh,l___gl {sprinkling of salt go on}
RESISTANCE LOW

EXIT (* put the salt shaker on the table *)
REENTRY (* take the salt shaker *)

Instantaneous actions may be described by algorithmic imperati-
ves (statements) as those of SIMUL.A ,possibly mixed with informal lan--

guage, as indicated in the example above, e.g.

C1E TIME < T THEN X. INTC (QUEUE)

or

IF tired THEN leave the queue.

Then sending of an interrupt is considered an instantaneous ac-

tion., It is described by imperatives as e. g.

INTERRUPT JOHN BY TELEPHONE CALL

where it is assumed that JOHN is a reference to an object, and that
TELEFONE CALL is a procedure describing the task, which JOHN
should execute when the interrupt penetrates. Since no power priority
is explicitly assigned, the interrupt will get the default priority value
NO and may only penetirate time consuming actions with resistance pri-
ority NO. Other priority values may be assigned by a penetration clause.
It consists of the keyword POWER followed by the priority value, which
must be one of a set of values specified in the priority value declaration

of the object receiving the interrupt.

Property descriptors may also be used in the description of in-

stantaneous actions., A discussion of these is outside the scope of this

paper.

10

The Operation of a DELTA System

In the preceding two subsections we have discussed the actions

within a DELTAsystem from the point of view of an object.

As stated in section 1, a DELTA model system is, however, gene-
rated and operated by a DELTA System Generator (DSG) according to a
DEL TA system description. In the following subsections we will intro-

duce the concepts hecessary to describe how the DSG operates.

The Time Concept

If we consider the time spent by a DSG to execute a system
description, we refer to the time in the invironment of the DSG, which

we hame generator time,

A sequence of actions, which in the referent system take days or

weeks of referent time, may be portrayed by actions in the model system

which are executed in seconds of generator time., To handle this situa-
tion we associate a special non-decreasing variable,model time (or just
TIME), with the model system. TIME is operated by the DSG to portray

referent time.

The concepts of time consuming and instantaneous actions refer
to the time in the referent and the model system. It is possible that the
DSG uses generator time to execute what we consider as an instantane-

ous action, It is sufficient that the value of TIME is kept constant.

System States and Events

We now consider the correspondence between actions and be-

tween states in the referent and the model system.

By the state of a system we will understand the set of values of
all the quantities and references associated with the objects contained
in the system plus the stage of execution of the objects, considered at

a given moment.

The stage of execution of an object is the position it has reached
within its action sequence., If the object at the moment considered is

executingatime consuming action, its stage of execution is that ongoing

11

action, If it is not executing a time consuming action we,consider its
stage of execution as the position succeeding its last executed action (i. e.
we do not consider the execution of an instantaneous action as a well de~

fined stage of execution).

When all the operating objects in a system are executing time

consuming actions, we say that the system is in a concurrent state.

At moments when one or more of the objects are not executing a time

consuming action, we say that the system is in an event internal state

(the reason for choosing this name will be discussed below).

A state in the model system which represents or corresponds to

a state in the referent system is called a representative state.

In the examples discussed so far the correspondence between
actions in the referent system and in the model system has been obvious.
With respect to. time consuming actions we demand that this shall al-

ways be the case. Consequently we require that all concurrent states

are also representative,

However, a single instantaneous action in a referent system may

have to be represented by a sequence of instantaneous actions in a model

system. The states existing between the execution of two actions in a
sequence representing a single instantaneous action may not be repre-~

sentative:

Consider a referent system where a person waits in a queue,
then leaves the queue and finally walks away. We may want to regard
his leaving the queue as an instantaneous action. In a model system, the
leaving of the queue may be achieved by a sequence of instantaneous
actions which adjusts various !"predecessor!' and !'successor!! referen-
ce variables. The states existing between two instantaneous actions in
this sequence do not correspond to states in the referent system, i.e.
they are not representative, and have no significance but to the object
leaving the queue, (The total, resulting effect of the sequence of actions

may of course be significant to other objects).

To ensure that the sequence of instantaneous actions results in

12

a meaningful representative state, it is necessary that the object is not
interrupted during the execution of the sequence. (Consider for instance
an interrupt specifying that the object enters some queue). But it is not
sufficient that the object is not interrupted. It is necessary that two such
sequences of actions are executed one after the other: If the object execu~
tes the actions in parallel with another object, which modifies one or
more of the same !'"predecessor!! or !"'successor!! variables, the result

may be meaningless.

In general we regard an object!s execution of a sequence of
instantaneous actions as a change of one concurrent state to another.
In most cases the object is executing a time consuming action in the first
of the concurrent states. The change begins by ending this time con-
suming action (i. e. the property descriptor of the action is no longer
effective), then the '"frozen!' concurrent state is modified by the sequence
of instantaneous actions and the change ends by initiating the time
consuming action following the sequence of instantaneous actions. The
object is now executing a new time consuming action (i. e. the property
descripter of the action is effective) and the system is once more in a

concurrent state.

Such a change is called an event, and based on our discussion

we state that

~- the actions of an event are executed as an uninterruptable

sequence,
- events are not executed in parallel,

- the states existing during the execution of an event,

the event internal states, need not be representative,

(The first (last) event executed by an object differs slightly from the
case discussed above since it does not begin (end) with the ending

(initiation) of a time consuming action.)

The above discussion illustrates an importent difference between

the time consuming and the instantaneous actions introduced so far:

13

Time consuming actions are executed concurrently with other
actions in the system. We say that a time consuming action is a concur-—

rency action.

Instantaneous actions are executed as a part of an event and not
in parallel with other actions. We say that such an action is an event

action.

In some cases an object executes a sequence of instantaneous
actions which results in a representative state after which the object

continues with another sequence of instantaneous actions. Between

such sequences the object may execute a concurrency action, which

- takes no TIME, but

~ like a time consuming action
- is executed concurrently with other actions
in the system,
- causes a concurrent state to obtain,

~ Is initiated and ended by two different events.

We will not discuss these actions further. Their semantics may
almost entirely be deduced by considering a time consuming action whose
associated condition becomes false at the same moment of TIME as the

action was initiated.

The Operation of the DEL.TA System Generator

When a DSG operates a model system it executes the action
sequences of a changing collection of objects. We say that the DSG!s

mode of operation is multisequential,

Within the multisequential mode we distinguish between two mo-

des of operation:

In the open intervals of TIME where all the operating objects
are executing time consuming actiohs, we say that the DSG operates in

the concurrent state transition mode.

14

In this mode the changes in the system are the result of the concur-
rent execution of all the ongoing time consuming actions. The task of the
DSG is to fulfil simultaneously the set of property descriptors of the
ongoing actions, which we name the EFFECTIVE DESCRIPTORS, and
to supervise their associated conditions, called the SUPERVISED
CONDITIONS,

The concurrent state transition mode is ended when one or.
more of the objects is to execute an event, i.e., when some of the SUPER-
VISED CONDITIONS become : false and their associated time consuming

actions are to be ended,

At these moments of TIME, where one or more of the objects in
a DELTA system are executing events, we say that the DSG operates

in the unisequential mode,

When operating in this mode the DSG executes one sequence of

events, since events must not be executed in parallel.

When the DSG enters the unisequential mode, the system is in a
"frozen!' concurrent state. The DSG starts by examining each operating
object in turn to determine whether the system state causes the object
to execute an event or not. If an event is to be executed,the DSG regis-
ters this by placing an EVENT NOTICE on the EVENT LIST. The EVENT
LIST is a list of EVENT NOTICESs representing events scheduled for

execution at the moment of TIME considered. Each object will have at
mosti one scheduled event, i.e.if an object already has a notice on the

EVENT LIST, the state will not cause the DSG to register another

event Tor that object.

We distinguish between four different concurrent states causing

the DSG to register an event for an object:

~ if the encloser of the object is terminated, a termination

event is registered,

- if the object has not executed any actions yet, an initiation

event is registered,

15

- if the condition of the ongoing time consuming action of

the object is false, a completion event is registered,

~ if an interrupt on the agenda of the object penetrates

its ongoing action, an interruption event is registered.

Since at most one event may be scheduled for each operating
object, it is only necessary to examine the operating objects with~

out an EVENT NOTICE on the EVENT LIST when registering evenis.

For each of these objects the tests to determine whether an
event should be registered or not are executed in the above mentioned
sequence. One of the implications of this is,that the DSG only registers
an interruption event when the condition of the action to be interrupted

is true. (Otherwise a completion event would have been registered).

When the DSG has registered all the events caused by the existing
concurrent state, an EVENT NOTICE on the EVENT LIST is chosen and
the corresponding event executed. We will have no information about

how the DSG chooses. All we know is that one event is chosen,

When the DSG executes an event on behalf of an object, this
object passes through a sequence of event internal states. These may
not be representative and should have no significance but to the consi-
dered object. Only when the event is finished a new concurrent state is

established and supervised by the DSG to register events,

Once an event has been scheduled we demand that it is also exe-
cuted and thus the DSG does not '"de-register!! events. This rule redu-
ces the impact of the sequence chosen by the DSG on the behaviour of

the DEL.TA system it operates.

When there are no more events to be executed at the moment of
TIME considered,the DSG will in an open interval of TIME operate in the

concurrent state transition mode,

16

We informally describe the task carried out by the DSG by

TASK BEGIN
generate the initial DEL TA system;

WHILE the system object is operating
REPEAT (* register events;
WHILE EVENT LIST is not empty
REPEAT (* choose and execute an
event,
impose a concurrent state
which satisfy the EFFECTIVE
DESCRIPTORS;
register events *);
WHILE all SUPERVISED CONDITIONS
are fulfilled
LET {EFFECTIVE DESCRIPTORS have effect}
and increase TIME continuously
*)

END TASK

Description 2.1
The task of the DEL.TA System Generator

Note the difference between the two first and the last "WHILE-clause'l.
The two first are used in repetitive constructs, and tested prior to each
execution of the repeated imperatives, which are grouped together by

the parentheses (¥ and "*)1 , The last "WHILE!" is part of the dura-
tion clause of a time concurrency imperative and the succeeding condition

is supervised continuously during the execution of the action.

Finaily it should be mentioned that functions are not allowed to
have sideeffects. Consequently no variables are changed as an effect

of evaluating a condition.

17

3. PROJECTION INTO SIMUL A'!'s QUASIPARALLEL
ENVIRONMENT

In this section we will investigate how to portray the execution

of a DEL_TA system description by the execution of a SIMUL.A program.

We will do this in such a way that we are able to interpret the

resulting execution as done by a Quasiparallel System Generator (QSG)

which models the actions of the DSG.

Concurrent State Transition Mode .

The main restriction when projecting into SIMULA occurs in the
concurrent state transition mode. When operating in this mode the DSG
portrays continuous change and supervises the set of conditions associa-

ted with the ongoing time consuming actions.

All the states which obtain in an open interval of TIME where the
DSG operates in the concurrent state transition mode are concurrent

and thus also representative.

- When using a digital computer the mode of operation is discrete
and it is not possible to portray continuous change. Consequently it is
not possible to operate a model system in such a way that representati-

ve states obtain over an interval of TIME if continuous change is implied:

Consider a DELLTA model system containing a variable whose
value is changed continuously by the DSG to portray the position of a

car.

On a computer we are not able to execute a time consuming action,
which results in the correct change of the value of the considered variab-
le over a period of TIME. We may at most approximate the change in such
a way that the value of the variable corresponds to the position of the

car at discrete points on the TIME axis and not in intervals,

If we prohibit explicit and implicit reference to TIME in the

property descriptors we have in fact excluded continuous change.

18

This in turn implies that the last concurrent state imposed in the
unisequential mode will obtain during the following interval of concurrent
state transition mode, except for the increase in the value of TIME. That
is, TIME is the only variable whose value changes in the concurrent sta-
te transition mode., Consequently, when this mode of operation is ended
because one or more of the supervised conditions are no longer fulfilled,

this has to be an effect of the increase of TIME.

We will therefore classify the conditions according to their de-
pendence upon TIME (cf. "HOLD!" and "PASSIVATE!" of SIMULATION):

1. TIME dependent conditions, which we name the TCs.
These are the conditions depending upon TIME in
such a way that the increase of TIME alone may

make them false, as e. g.

TIME K T
and TIME < T AND X < F(Y).

2. Event dependent conditions, which we name the ECs.
An EC requires the execution of at least one event
action (i. e. an instantaneous action executed as a
part of an event) or the imposition-of a concurrent
state (which follows each event) to become false (1'),

as e.g.

X < F(Y)
and TIME < TOR X < F(Y).

In the above examples we have assumed that all the inequalities
are valid. Indeed the event action "X:=F(¥)" will change the second EC

intoa TC, and "X:=F(Y)-1" will change it back into an EC.

(1) In the following subsection we exclude the possibility of changing
the value of any variable when imposing a concurrent state in the uni-
sequential mode. Thus an EC will require the execution of at least
one event action to become false.

19

’ When an interval of concurrent state transition mode ends one
or more of the SUPERVISED CONDITIONS are no longer fulfilled.,
Since TIME is the only variable whose value changes in this mode,
the conditions which have become false will all be TCs. This implies

that only the TCs need to be supervised in the concurrent state tran—
sition mode.

The question still remains of how to supervise the TCs, that is

how to increase the value of TIME.

As already stated we cannot increase the value of TIME conti-

nuously.

One possibility would be to approximate the continuous increase
by adding a small increment to the current value of TIME and then, for
each new value of TIME, check all the TCs to see if any one of them had
become false. We rule out this possibility, primarily because it does not
allow for an exact association of a state in a DEL.TA system with its

projection into an execution of a SIMULA program:

The value of TIME when the Quasiparallel SG ended a period of
concurrent state transition would only approximate the value of TIME

when the DSG ended its corresponding period.

Instead we place the resiriction on the TCs that it shall be
possible to compute the value of TIME when the condition becomes false,
if no events happen in the system, i.e. if the only change in the system

is the increase of TIME.

The main task of the QSG inthe concurrent state transition mode
is then reduced to the scanning of the TCs computing for each condition
when in the future it will become false. The QSG then sets TIME to the

minimum of these values and begins executing in the unisequential mode.

20

Unisequential mode

In the unisequential mode the DSG executes a sequence of events.
After the execution of each of the events it establishes a concurrent state,
which satisfies the EFFECTIVE DESCRIPTORS.

Consider an object, OBJ1, executing an event that ends by the

initiation of the action

WHILE TIME < T LET {Xz = 1}

When a concurrent state has been imposed the value of X may
be =1 . If there are no more events to be exectued at the moment of

TIME considered, then the value of X will be -1 in the following

interval of concurrent state transition mode.

Now assume that an object, OBJ2, in the following unisequential

mode executes an event that ends by the initiation of the action

WHILE TIME < TLET {X > 0}

If OBJ1 is still executing the above mentioned action, then the

value of X will be 1 when a concurrent state is imposed.

It is possible to conceive a QSG capable of solving and satisfying

simple sets of equations and inequalities as those discussed above.

In general, however, it is not feasible for a QSG to impose a
concurrent state which satisfies the EFFECTIVE DESCRIPTORS, if
the only restriction on the property descriptors is that they must not

involve TIME.

In this paper we will not treat the subject of defining such restric~

ted categories of property descriptors and QSGs able to manipulate them.

Instead we 'state that only the empty property descriptor is allowed.

Thus the only time consuming action which the QSG may portray is '"no
action', This Maction!' is in the DEL TA Language described by the key~
word WAIT.

21

This implies that the action

"impose a concurrent state which satisfies the
EFFECTIVE DESCRIPTORS!

executed in the unisequential mode (cf. Description 2.1 p. 16) is empty,

ie e.v the last action of each event establishes a concurrent state,.

Thus every change in the state of the system is an effect of an -

event action, exceptthe increase of the value of TIME.

We may now modify description 2. 1, p. 16 of the DSG to a
description of the QSG:

TASK BEGIN
generate the initial DELTA system;

WHILE the system object is operating
REPEAT (™ register events;
WHILE EVENT LIST is not empty
REPEAT (* choose and execute
an event,
register events *);
compute the new value of TIME by
scanning the TCs;
assign this value to TIME
*)

END TASK

Description 3.1
The task of the Quasiparallel SG

22

4, ADAPTION OF THE QSG FOR EFFICIENT IMPLEMENTATION

So far we have been concerned with the logical problems of

portraying the execution of a DELTA system description by the exe-

cution of a SIMULA program.

The description of the QSG given so far is informal, and a
straightforward formalization will yield an unacceptabie inefficient
result, since each event is followed by a scan of all the operating ob-
jects without an EVENT NOTICE on the EVENT LIST.

In the following we discuss how to improve the efficiency of

the QS G, that is how to reduce the number of objects scanned after

each event to register new events.

To enable the QSG to manipulate these objects, we provide it

with a TEST LIST. In each concurrent state the list consists of

TEST NOTICESs representing objects for which the considered state

may cause the registration of an event. During the execution of an
event the QS G should place TEST NOTICESs on the TEST LIST for all
objects possibly affected by the event. (We will say that the QSG re-

gisters tests for these objects.)

Efficiency may be improved further, if the QSG can register
events directly during the execution of an event, but this is not feasible
since single event actions do not cause events to be registered, only

concurrent states do.

Let us, for the time being, assume that the QSG is able to re-
gister the necessary tests during the execution of an event, and consi-

der the concurrent state transition mode.

When operating in this mode the QSG uses a list of the time
dependent conditions, the TCs, of the actions under execution. We hame
this list the FUTURE EVENT LIST (the reason for choosing this name
will be discussed below). As already described the FUTURE EVENT

LLIST is used to determine the new value of TIME.

23

When the value of TIME has been increased a new concurrent
state obtains and the QSG should register the events caused by this
state before entering the unisequential mode. The objects in question
are those with a false condition, i.e. a false TC.

The FUTURE EVENT LIST is built during the unisequential
mode. When an object initiates a time consuming action with a TC this

includes

- a computation of when in the future the TC will become
false. We name this value EVENT TIME. (If EVENT
TIME is less than TIME, the TC is initially false and
the time consuming action is skipped rather than initiated,
and this is why EVENT TIME has to be computed at this
moment),

- insertion in the FUTURE EVENT LIST of a notice
which refers to the TC.

Since EVENT TIME has to be computed before insertion, we
decide to keep the FUTURE EVENT LIST sorted according to EVENT
TIME. This implies that EVENT TIME should be an attribute of the items
on the list. For this purpose we supply the EVENT NOTICEs with a
real valued attribute EVENT TIME. This allows us to build both
EVENT LIST and FUTURE EVENT LIST from EVENT NOTICEs which in

turn reduces the registration of events in the concurrent state tran-
sition mode to a simple transfer of EVENT NOTICEs between the two

lists.

We may regard a notice on the FUTURE EVENT LIST as an
event scheduled in the future. It may be necessary to change the value
of EVENT TIME for some of the notices on FUTURE EVENT LIST and
even {o remove some, e.g. if a condition is changed from a TC to an
EC:

24

Consider an object executing the action

WHILE TIME < T1 OR I < J WAIT.

If the first inequality is valid and the last is not, then the object will
have a notice on the FUTURE EVENT LIST with EVENT TIME equal

to T1. If another object execuies the event action

l:=Jd =1

then the above condition changes from a TC to an EC and the notice on
the FUTURE EVENT LIST is removed. The condition may now only
become false after the execution of another event action which changes

the value of | or J.

We may now summarize the preceding discussion in a revised

description of the QSG.

The registration of events in the unisequential mode is done by
the procedure TEST FOR EVENT. It removes the first notice on the
TEST LIST, tests whether the associated object is to execute an event

and if so registers the event.

25

TASK BEGIN
EVENT LIST: a list of EVENT NOTICEs representing objects

for which an event has been scheduled for exe-
cution at the moment of TIME considered;

TEST LIST: a list of TEST NOTICESs representing objects
which may have an event to execute at the mo-
ment of TIME considered,

FUTURE EVENT LIST: a list of EVENT NOTICEs representing
objects for which an event has been scheduled

in the future;

PROCEDURE TEST FOR EVENT:;
PROCEDURE EXECUTE EVENT AND REGISTER TESTS:;

generate the initial DELTA system and register the necessary

initiation events,

WHILE the system object is operating
REPEAT
(* WHILE EVENT LIST is not empty
REPEAT (¥ EXECUTE EVENT AND REGISTER TESTS;
WHILE TEST LIST is not empty
REPEAT (* TEST FOR EVENT ¥)
*).’
IF FUTURE EVENT LIST is not empty
HEN (* TIME:= ' . ;
FUTURE EVENT LIST. FIRST. EVENT TIME;
transfer EVENT NOTICEs with EVENT TIME =

TIME from FUTURE EVENT LIST to EVENT LIST ¥*)

ELSE (* terminate the system *)
*)

END TASK

Description 3.2
The task of Quasiparallel SG

26

The Registration of Tests

In the preceding discussion leading up to Description 3.2 we
have assumed that the QSG were capable of registering tests in such
a way that no events was missed. That is, whenever the QSG of
Description 3. 1 registers an event, then the QSG of Description 3. 2

(or just QSG) will do the same.

In the unisequential mode the QS G of Description 3.2 may only
register an event for an object if it has a notice on the TEST LIST.
Consequently if the QSG of Description 3. 1 registers an event for an
object in this mode then the QSG should already have registered a test

for that object, thereby enabling itself to register the event.

To decide how to register testis during the execution of an
event, it is necessary to examine the states causing events to be re-

gistered more carefully.

Since an object has at most one event scheduled for execution,
it may be possible to arrange the registration of tests and events in
such a way that an object has at most one notice on the lists EVENT
LIST, TEST LIST and FUTURE EVENT LIST. As we shall see, this

is the case.
As stated on page 14 we distinguish between four different
states causing the system generator to register an event for an object.

We will now consider these initurn.

Encloser fermination. When an object terminates a termination

event should be registered for each of the enclosed objects in the con-
current state succeeding the event that terminated the enclosing ob-
ject. This is not possible, unless we associate a list of enclosed ob-
jects with each encloser. This may be a rather expensive solution

since such lists are used for no other purpose.

Let us consider the consequences of not explicitly registering

A
a termination event when the encloser of an object terminates.

27

The only way an object may change the state of the system is
by an event action and indirectly by allowing enclosed objects to exe-
cute events. It is thus sufficient that we prevent the registration of
events other than termination events for objects which have an encloser
which would have been terminated by the QSG of Description 3. 1 (but
possibly is not terminated by the considered QSG of Description 3. 2).

If we assume that the encloser is in fact terminated, then the
registration of any events other than termination events is effectively
prevented by the initial test for encloser termination in each test for

registration of an event (cf. p. 15).

Although this assumption does not hold in general, it is valid
for the systems which we may portray by ;the execution of a SIMULA
program. The reason for this is, that these systems may only consist
of a system object and objects directly enclosed by the system objec't
(cf. p. 34).

We will not go into details with the problems caused by nested
systems in general, but only state that they are sufficiently complex,
to justify a reevaluation of the solution involving explicit lists of en-

closed objects.

Initiation. When an object is generated, this action should be
succeeded by the insertion of a TEST NOTICE onh the TEST LIST re-
presenting the just generated object. In the concurrent state succeeding
the event in which the object was generated, an initiation event will

then be registered, unless the encloser of the object is terminated.

Completion., A completion event should be registered whenever
an object executes a time consuming action with a condition which is
false in a concurrent state, unless the encloser is terminated. This is

achieved if

- the change in the value of a variable is succeeded by
the insertion of TEST NOTICESs representing the objects

which execute ' time consuming actions with conditions

28

involving the considered variable (we defer the discussion
of how to do this), and

- the resumption of an interrupted action causes the QSG
to register an event if necessary. This can be achieved by
a TEST NOTICE or we may take advantage of the fact
that the resumption is the last part of an event, i.e. that
a concurrent state is in fact established, by executing the
test for registration of an event as the first action in this

concurrent state.

Interruption. The QS G should test for interruption whenever

the agenda of an object may contain an interrupt which penetrates the

ongoing time consuming action. This is achieved if

- the sending of an interrupt is succeeded by the registration
of a test for the object receiving the interrupt, and

- the resumption of an interrupted action and the initiation
of a new time consuming action causes the QSG to register
an event if necessary (cf. the discussion under "Com-

pletion!).

When the QSG register tests and events as described above,
at most one notice is needed for each object on the lists EVENT LIST,

TEST LIST and FUTURE EVENT LIST. This implies that

- when a test is registered for an object whose ongoing
action has a time dependent condition, a possible notice
on the FUTURE EVENT LIST is removed,

- when a test fails to register an event, an EVENT NOTICE
is {re)inserted in the FUTURE EVENT LIST if the con-
dition of the ongoing action of the object is a TC and

- prior to the insertion of a TEST NOTICE for an object
on the TEST LIST it is checked whether the object
has a notice on the TEST LIST or the EVENT LIST

or not. If it has, no new notice is inserted,

29

The Duration of Time Consuming Actions

We will now consider how to register a test for a possible com-
pletion event. We base our discussion on the event dependent conditions,
the ECs. The extension to the TCs is trivial, provided that they satisfy

the restriction stated on page 19,

A test for a possible completion event should be registered when
the condition of the ongoing action of an object may have become false

because of an event action.

If we want to implement ECs in general, then each assignment
to a variable should register tests for the objects with ongoing actions
depending upon that variable. Since most variables may be used in ECs
a straightforward implementation which associates a list referring to the
objects in question with each such variable is not satisfactory. An im-
provement can be made, if the variables which are used in ECs can be
declared as belonging to a !"'subtype!! of their original type. The addition
of the list and the sideeffect of registering tests when assigning to the

variable will be properties of the subtype.

One of the effects of initiating a time consuming action, i.e.
a WAIT, will be to insert notices, referring to the object executing the
WAIT, on the lists of the relevant variables. The relevant variables
may be either all the variables on which the condition depends or a sub-

set of these decided by the QSG:

Consider the initiation of the action
WHILE X < YOR I < JWAIT

when the relation X < Y is true. It will only be necessary to insert
notices on the lists of X and Y . On the other hand, the QSG may have
to insert notices on the lists of 1 and J later, after a test executed as

an effect of an assignment to X or Y (if "X < ¥Y" has become false).

If several objects are WAITing on the same condition one test
is executed for each object whenever the value of the condition may have
become false. (Two conditions are the same if they represent identical

boolean functions of the same variables. Thus objects from a class con-

taining the sequence:

BEGIN INTEGER I;

L]
.
.

WHILE | < J WAIT

END

are not WAITing on the same condition since different ""l!'s are involved).
It is, however, only necessary to evaluate the condition once, since no
events are executed between the evaluations. To achieve this we may
associate lists referring to the conditions instead of to the objects with
the variables. A list of WAITing objects should then be associated with

each condition. We may illustrate this in the following way

EC 1 OBJ 1 /lOBJz/OBds
-_/ -t -~ NONE

EC2 / OBJ 4 /,{ OBJ 5 OBJ 6 /,l OBJ 7
N - 7 N NONE

L

VAR 1 C NOTICE /'! C NOTICE C NOTICE
../ - c—/ NONE

-l Cy P

to EC 1 to EC 2 to EC 3

VAR 2

o CNOTICE /,l C NOTICE
NONE

r“) «
:to EC 1 to EC 4

Fig. 4.1
Grouping of objects WAITing on the same condition

o«

The objects are listed themselves, since each object is
WAITing on at most one condition at a time, whereas a condition may

depend on several variables and thus lists of notices have to be applied.

Different simplifications are possible for certain categories of
conditions: e, g. if a condition depends upon only one variable, we may

insert the condition itself on the list of the variable.

The crucial gain in efficiency is achieved by the use of condi-
tions which do not involve waiting lists, i.e. ECs which only become
false after explicit interaction with other objects (TCs may of course

still schedule an event in the future).

Obviously constant conditions do not involve waiting lists. An
object executing an action with a constant condition simply WAITs until

it is interrupted. 1t then executes the sequence described by

- the postponement clause,
~ the interrupt and

~ the resumption clause

after which it resumes WAITing or ADVANCESs to the action following the .
interrupted WAIT (cf. the description of the keyword "ADVANCE!

p. 8).

To describe another category of conditions, which do not involve
waiting lists, we would like to be able to specify, that a variable is mo-
difiable only by the object in which it is declared. We say that such a

variable is strictly observable.

IT an object executes a WAIT with a condition depending only on
such variables declared in the object itself, then the value of the condi-
tion may change only if the WAITing object itself executes some actions,
i.e. if it is interrupted. It is thus only necessary to check the condition
(i. e. to test for completion) each time the WAITing is resumed after an

interruption.

As an alternative approach to the avoidance of waiting lists we

32

may make the registration of tests an explicit part of the program exe-

cution:

When an object changes the value of a variable which is part of
a condition of an ongoing action of another object, it is the responsibili-
ty of the first object to register a test for the second object. We may il-

fustrate this by the following example:

OBJECT 2 executes
WHILE | < J WAIT

If OBJECT 1 changes the value of 1, while OBJECT 2 is executing the
action described above, then OBJECT 1 should register a test for
OBJECT 2, i.e.

OBJECT 1 executes
l:=1+Dl;
OBJECT 2. REGISTER TEST

This scheme presupposes, that whenever an object changes a
variable on which the condition of the ongoing action of another object
depends, then the first object has access to the second object. In nested
systems in general this is not the case. However, for the systems which
we may portray by the execution of a SIMULA program, it is !"'structural-
ly!" possible, i.e. the properties of the SIMULA l_anguage do not exclude
it. (This is true because these systems may only consist of a system ob-

ject and objects directly enclosed by the system object, cf. p. 34)

Furthermore - the scheme presupposes that all the necessary
calls of REGISTER TEST are made. This may be quite hard to check,
and alternatively we may state that the action which we in a SIMULA

program describe as

WHILE EC WAIT

(i.e. by a procedure call like WAIT WHILE (EC)) in fact portrays an ac-
tion described by the pseudo-DEL TA imperative

WHILE EC! WAIT

33

where EC! is a variable not accessible to the user, which is assigned
the value EC prior to each actual evaluation of the condition by the QSG,

i.e. prior to
- the initiation and resumption of the action and

~ the execution of a te;st because of a notice on the
TEST LIST (this notice was placed on the list by
the sending of an interrupt or explicitly by the
procedure REGISTER TEST).

34

5. IMPLEMENTATION IN SIMULA

Projection or expansion

In sections 3 and 4 we have derived a set of concepts by projec-
tion from a truly parallel, continuous state transformation environment

into a quasiparallel, model time dependent environment,

When we implement these concepts in SIMULA we expand the
SIMULA Language with its time-invariant sequencing defined in terms of
coroutines (detached objects and prefixed blocks) by introducing the

Quasiparallel System Generator sequencing according to model time.

A consequence of this approach of implementation by expansion

is that we are not able to describe the sequencing of a nested system:

As it is known from the class SIMULATION, all objects manipu-
lated by the use of the Sequencing Set, SQS, i.e. all process objects,
have to be declaredinthe head of theblock prefixed by SIMULATION, and

this restriction holds in general (1).

In order to exploit the full power of nested systems as a struc-

turing tool we must describe the sequencing at a more fundamental level

than SIMULA itself.

A second, minor problem concerns the organization of the agen-
da. The interrupts placed on the agenda of an object may be declared in
other objects and even at different levels of the system. In SIMULA a
list structure like the agenda may cnly be built from objects by means of
references. But references may not go from an outer level to an inner,

i. e. not from outside an object to objects declared inside that object.

To solve these problems we need to be able to manipulate entities
representing objects and interrupt procedures by the use of '"entity re-

ferences!!, i.e. references with a qualification common to all entities.

(1) One process object, MAIN, impersonates the prefixed block in such a
way that the actions of the prefixed block are effectively scheduled
according to model time.

35

We will not pursue the subject here. As stated above it should
be treated as an integrated part of the language definition and implemen-

ted outside the scope of the language.

Implementation using SIMUL ATION

In this subsection we discuss the restrictions necessary when

we implement the derived concepts using SIMULATION. As we shall see
these are essentially the two restrictions already treated (i. e. no nest-
ing of objects and limited possibilities of using interrupts). Nothing more
is obtained by avoiding the use of SIMULATION and building directly on
SIMSET or SIMULA,

We want to implement a subclass of SIMULATION in which we

have

~ the DEL.TA object structure with activity stack and

agenda

- sequencing by means of time consuming actions and

interrupts.

The DEL.TA structured objects are introduced through a common
prefix, DSO, which in turn is a subeclass of the class process. The DSO
prefix contains a reference to a "head! object representing the agenda
of the DSO. The activity stacks of the DSOs are implemented by means of
the "call!! mechanism. The actions described at the DSO level consist
of the generation of the head of the agenda, default initialization of the

priority values and the insertion of a TEST NOTICE.

The time consuming actions are built from SIMULATION!s!'HOLD!"
and "PASSIVATE!". The actions are implemented in a way that incorpo-
rates the necessary registration of events when an action is initiated

and when it is resumed after interruption.

We would like to describe (i. e. declare) the tasks to be used as
interrupts both within the subclasses of the class DSO (which we name
the subDSOs) and at the same level as these, i.e. as attributes of the

block representing the system object.

36

However, if we try to allow the declaration of procedures within
the subDSOs to describe the tasks to be used as interrupts we end up

with some major restrictions:

A notice (i. e. an object) on the agenda of an objéct from a subDSO
must distinctly indicate its associated procedure describing the inter-
rupt represented by the notice. This requires a reference to the object,
containing the declaration of the procedure, with a qualification equal or
inner to the prefix level where the procedure was specified as an attri-

bute.

But the notices are introduced at the same level as the class DSO,
whereas the considered procedure is declared in a subDSO. Consequently
we have to introduce such procedures as virtuals in the DSO prefix. This
places a limit on the number of procedures which may be used as inter-
rupts within each subDSO and imposes a certain amount of bookkeeping
on the user, since the names of the virtual procedures are fixed regard-

less of their actual use,

Instead we confine ourselves to declarations as attributes of the sys~
tem object. We declare a class TASK to be used as a prefix to the descrip-
tion of the tasks which we want to use as interrupts. In this case we are
able to list the interrupts themselves on the agendas. The execution of

an interrupt consists of a !'call! of the corresponding object.

Our last job is to simulate the task of the Quasiparallel SG by the
use of the Sequencing Set, SQS, of SIMULATION.

Examining the operation of the QSG we observe that
—- it first empties the TEST LIST,

-~ then takes one notice from the EVENT LIST and

executes the corresponding event.

- The execution of this event may produce some
TEST NOTICEs in which case the QSG again empties
the TEST LIST.

37

- When both the TEST LIST and the EVENT LIST
are empty some notices are transferred from the
FUTURE EVENT LIST to the EVENT LIST.

This implies that we may represent the three lists in the follo-

wing way:
SQS = TESTLIST-CONC EVENT I_iST CONC FUTURE EVENT LIST

(where CONC stands for concatenation).

The notices on the FUTURE EVENT LIST are char‘ac;cer‘ized by
having an. EVENT TIME greater than the current value of TIME. We thus
insert a notice on the EVENT LIST by placing it immediately after the
last notice whose EVENT TIME is equal to TIME. Notices on the TEST
LIST are inserted in the front of the SQS.

When TIME is increased, because TEST LIST and EVENT LIST
are empty, this implicitly "transfer! the notices with EVENT TIME
equal to the new value of TIME to the EVENT LIST (because the notices
on the FUTURE EVENT LIST are characterized by having an EVENT
TIME greater than the current value of TIME).

So far we have not touched the question of waiting lists, i.e. how
to decide when to place a notice on the TEST LIST because the value of

a condition of an ongoing action may have become false.

INTERRUPT ENVIRONMENT

We have implemented a subclass of SIMULATION, named INTER-
RUPT ENVIRONMENT, which uses !'"direct!! scheduling without waiting
lists by means of a procedure "REGISTER TEST!" as discussed in sec—

tion 4,

INTERRUPT ENVIRONMENT is now being used to write simula-
tion programs based on DEL TA descriptions. In a neurophysiological
research project, where a simulation program was needed, a DELTA
description was made to serve as a communication tool between the

neurophysiologist and the programming specialist (Kyng and Pedersen,

38

1974), When the DEL TA description was worked out, the use of INTER-
RUPT ENVIRONMENT allowed a straightforward translation into a

SIMULA program.

(1t should be noted that it is not possible to protect the concepts
developed in a 'system!! class like INTERRUPT ENVIRONMENT against
misuse in a prefixed block, since the protection of the interface as pro-

vided for SIMSET and SIMULATION is not part of the SIMULA L.anguage.)

39

6, REFERENCES

Holbzk-Hanssen, E., Handlykken, P. and Nygaard, K. (1975):
"System Description and the DEL.TA L.anguage'l,

DEL. TA Project Report NO. 4,
Norwegian Computing Center, Oslo, Norway.

Kyng, M., and Pedersen, B. Mgller (1974):
"Description of a Model of a Single Helix Pomatia Brain

Neuron and an Associated Neurophysiological Experiment!,
DEL. TA Project Report NO, 3,
Department of Computer Science,

University of Aarhus, Denmark.

Nygaard, K. (1973):
"On the use of an Extended SIMULA in System Description',

DELTA Project Report NO. 1,
Norwegian Computing Center, Oslo, Norway.

